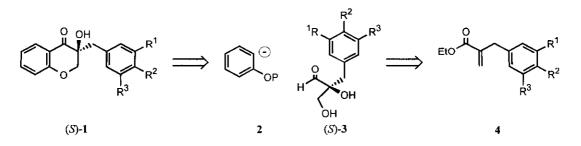
ENANTIOSELECTIVE SYNTHESIS OF EUCOMOLS USING SHARPLESS CATALYTIC ASYMMETRIC DIHYDROXYLATION[†]

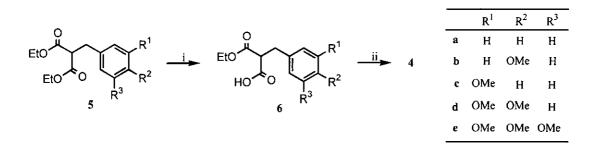
Sang-sup Jew,* Hyun-ah Kim, Jeong-hoon Kim, and Hyeung-geun Park

College of Pharmacy, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul, 151-742, Korea


Abstract - A novel synthetic method was developed for eucomols, (S)-3hydroxyhomoisoflavanones. Addition of aryllithium to aldehyde ((S)-9) obtained by asymmetric dihydroxylation of 4, followed by the formation of cyclic ether, gave eucomols, (S)-3-hydroxyhomoisoflavanones (**1a-e**).

As a small family of natural products, homoisoflavanones have been isolated from several genera in *Liliaceae*¹ and *Caesalpinoideae* (*Leguminosae*).² According to their structural features, these can be classified into three types which are eucomin (3-benzylidenechroman-4-one), dihydroeucomin (3-benzyl-chroman-4-one) and eucomol (3-hydroxy-3-benzylchroman-4-one).^{1a} Several eucomols and the related compounds such as (*R*)- and (*S*)-5,7-*O*-dimethyleucomol,³ (*R*)-*O*-trimethylsappanone B and (+)-*O*-trimethylbrazilin,⁴ and (*S*)-8-benzyloxy-*O*-tribenzylsappanone B and (-)-haematoxylin⁵ have various important biological properties. These all compounds have one chiral center at C(3) position. Because their biological activities are dependent upon the absolute configuration,³⁻⁵ the biologically active eucomols should be obtained in chiral forms. The asymmetric synthesis of the eucomols, (R)- or (S)-3-

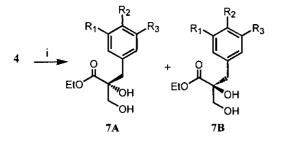
⁺ Dedicated to the late Dr. Shun-ichi Yamada, Professor Emeritus Tokyo University


hydroxyhomoisoflavanone, was reported by asymmetric hydroxylation using (+)- or (-)-8,8-disubstituted camphorylsulfonyloxaziridines as a chiral reagent.³⁻⁵ However, the stoichiometric consumption of the chiral reagent makes that method less practical to prepare large amount of the chiral eucomols and their various derivatives. In this paper, we report a novel and practical enantioselective synthesis of eucomols by the catalytic asymmetric dihydroxylation (AD) developed by Sharpless⁶ as a key reaction.

Scheme 1

Our strategy is shown in Scheme 1. Eucomol ((S)-1) was retrosynthesized via three key reactions; asymmetric dihydroxylation of 4, addition of aryllithium (2) to aldehyde ((S)-3), and the intramolecular , Mitsunobu reaction.

Scheme 2



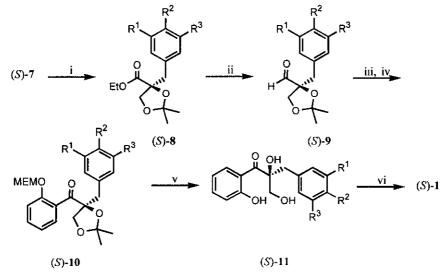
Reagents and conditions: (i) KOH (1.2 eq), EtOH, rt, 3-5 h, 6a (100%), 6b (83%), 6c (86%), 6d (87%), 6e (84%); (ii) NaH (2.1 eq), CH_2NMe_2I (1.1 eq), THF, reflux, 2-3 h, 4a (61%), 4b (60%), 4c (23%), 4d (72%), 4e (77%).

The substrates (4) for AD reaction were prepared from diethyl benzylmalonates (5) as shown in Scheme 2. 5 was partially hydrolyzed with KOH to give 6, which was subjected to Mannich reaction with N,Ndimethylmethyleneammonium iodide (Eschenmoser's salt) to give 4.

Scheme 3

Table 1

	AD-mix-α,	7A	AD-mix-β,	7B
	% ee	% yield	% ee	% yield
a	71	85	76	90
b	63	80	80	93
с	75	82	88	97
d	83	94	90	96
e	93	83	93	97


Reagents and conditions: (i) AD-mix- α (chiral ligand (DHQ)₂PHAL) or AD-mix- β (chiral ligand (DHQD)₂PHAL) *t*-BuOH:H₂O = 1:1, 0 °C, 20-24 h.

The asymmetric dihydroxylations of **4** with AD-mix- α or AD-mix- β were performed by standard procedure to give **7A** and **7B**, respectively. The absolute configuration of **7Ba** was assigned (*S*) by comparison of the specific rotation of (*R*)-2-hydroxy-2-methyl-3-phenylpropionic acid⁷ which was obtained by the chemical transformation of **7Ba**. It was in accord with the absolute configuration expected from Sharpless model.⁶ The configurations of **7b-e** obtained from **4b-e** were assigned by the Sharpless model. The ee values were determined by the ¹H-NMR spectra of the (*S*)- α -methoxy- α -(trifluoromethyl)phenylacetic acid esters of **7**. As shown in Table 1, the AD reactions were performed in 80-97% yields. Generally, AD-mix- β gave better results than AD-mix- α in both chemical yield and ee yield. In case of **4a-c** having de- or monomethoxyphenyl group, 63-88% ee were obtained. However, **4d** and **4e** bearing di- or trimethoxyphenyl group provided relatively better results (83-93% ee). The transformation of (*S*)-**7** to (*S*)-**1** was then carried out as in Scheme 4. The protection of diol ((*S*)-**7**) with 2,2-dimethoxypropane gave the corresponding acetonide ((*S*)-**8**), which was reduced to the corresponding aldehyde ((*S*)-**9**) with DIBALH. The addition of *o*-2-methoxyethoxymethoxyphenyllithium⁸ to (*S*)-**9**, followed by oxidation with pyridiniumchlorochromate gave (*S*)-**10**, which was treated with 2% HClHETEROCYCLES, Vol. 46, 1997

MeOH to afford the α,β -dihydroxyketone ((S)-11). The intramolecular Mitsunobu reaction⁹ of (S)-11 with triphenylphosphine and diethyl azodicarboxylate gave (S)-1.

In summary, eucomols, (S)-3-hydroxyhomoisoflavanone (1a-e) were prepared through 7 steps from 4 in overall yield 12-21% and 76-93% ee. High ee of catalytic asymmetric dihydroxylation in this procedure gave advantage for industrial application.

Scheme 4

Reagents and conditions: (i) 2,2-dimethoxypropane (2.5 eq), *p*-TsOH (0.2 eq), THF, rt, 16-18 h, (S)-8b (83%), (S)-8c (98%), (S)-8d (93%), (S)-8e (93%); (ii) DIBALH (1.2 eq), toluene, -78 °C, 20-30 min, (S)-9b (88%), (S)-9c (87%), (S)-9d (85%), (S)-9e (46%); (iii) (*o*)-MEMOC₆H₄Li (1.0 eq), THF, -78 °C \rightarrow rt, 3-5 h; (iv) PCC (1.5 eq), NaOAc (0.3 eq), CH₂Cl₂, reflux, 3-4 h, (S)-10b (28%), (S)-10c (29%), (S)-10d (37%), (S)-10e (44%); (v) 2% HCl-MeOH, 50 °C, 1-2 h, (S)-11b (91%), (S)-11c (88%), (S)-11d (91%), (S)-11e (88%); (vi) (C₆H₅)₃P (1.5 eq), DEAD (1.5 eq), THF, rt, 12 h, (S)-1c (71%), (S)-1d (81%), (S)-1e (73%).

ACKNOWLEDGEMENT

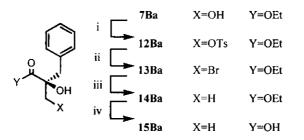
This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1996.

REFERENCES AND NOTES

1. (a) W. Heller and C. Tamm, Fortschr. Chem. Org Naturst., 1981, 40, 105; (b) M. Adinolfi, G. Barone,

M. Belardini, R. Lanzetta, G. Laonigro, and M. Parrilli, Phytochemistry, 1985, 24, 2423; (c) L.

Camarda, L. Merlini, and G. Nasini, Heterocycles, 1983, 20, 39; (d) A. Tada, R. Kasai, T. Saitoh, and J.


Shoji, Chem. Pharm. Bull., 1980, 28, 1477 and 2039; (e) G. Barone, M. Belardini, R. Lanzetta, G.

Laonigro, and M. Parrilli, *Rend. Accad. Sci. Fis. Mat., Naples (Ital.)*, 1983, **50**, 297 [*Chem. Abstr.*, 1985, **102**, 5997g]; (f) N. Kaneda, H. Nakanishi, T. Kuraishi, and T. Katori, *Yakugaku Zasshi*, 1983, **103**, 1133; (g) M. Adinolfi, G. Barone, M. Belardini, R. Lanzetta, G. Laonigro, and M. Parrilli, *Phytochemistry*, 1984, **23**, 2091; (h) M. Adinolfi, G. Barone, R. Lanzetta, G. Laonigro, L. Mangoni, and M. Parrilli, *ibid.*, 1985, **24**, 624; (i) Y. Watanabe, S. Sanada, Y. Ida, and J. Shoji, *Chem. Pharm. Bull.*, 1985, **33**, 5358.

- (a) M. Namikoshi, H. Nakata, and T. Saitoh, *Phytochemistry*, 1987, 26, 1831; (b) T. Saitoh, S. Sakashita, H. Nakata, T. Shimokawa, K. Kinjo, J. Yamahara, M. Yamasaki, and T. Nohara, *Chem. Pharm. Bull.*, 1986, 34, 2506; (c) K. K. Purushothaman, K. Kalyant, K. Subramaniam, and S. P. Shanmughanathan, *Indian J. Chem., Sect. B.* 21, 383; (d) D. D. Mc Pherson, G. A. Cordell, D. D. Soejarto, J. M. Pezzut, and H. H. S. Fong, *Phytochemistry*, 1983, 22, 2835.
- 3. F. A. Davis and B.-C. Chén, Tetrahedron Lett., 1990, 31, 6823.
- 4. F. A. Davis and B.-C. Chen, J. Org. Chem. 1993, 58, 1751.
- 5. A. Arnoldi, A. Bassoli, G. Borgonovo, and L. Merlini, J. Chem. Soc., Perkin Trans. 1, 1995, 2447.
- 6. R. A. Johnson and K. B. Sharpless, 'Catalytic Asymmetric Synthesis: Catalytic Asymmetric

Dihydroxylation.' ed. by I. Ojima, VCH publishers, New York, 1993, pp. 227-272.

7. (a)

Reagents and conditions: (i) TsCl (1.5 eq), pyridine (4.5 eq), CHCl₃, rt, 24 h (87%); (ii) LiBr (3.0 eq), THF, 55°C, 40 h, (67%); (iii)Bu₃SnH (2.2 eq), AIBN (cat.), benzene, reflux, 20 min, (53%); (iv) 6N-HCl, reflux, 6 h (100%).

7Ba ($[\alpha]^{13}_{D}$ +10.43° (c 0.86, CHCl₃)) was tosylated to give **12Ba** which was converted to bromide

(13Ba). Debromination of 13Ba, followed by hydrolysis afforded 15Ba ($[\alpha]^{20}_{D}$ +13.2° (c 1.51, dioxane) *lit.*^{7b} (*R*)-2-hydroxy-2-methyl-3-phenylpropionic acid, $[\alpha]^{20}_{D}$ +17.0° (c 5.60, dioxane)); (b) M.

Kobayashi, K. Koga, and S. Yamada, Chem. Pharm. Bull., 1972, 20, 1898.

- 8. *o*-2-Methoxyethoxymethoxyphenyllithium was prepared by the treatment of *o*-2-methoxyethoxymethoxyphenylbromide with *n*-BuLi (1.1 eq)-THF at -78 °C (0.5 h).
- 9. (a) S. Bitlner and Y. Assaf, Chem. Ind., 1975, 281; (b) M. S. Manhas, W. H. Hoffman, B. Lal, and A. K. Bose, J. Chem Soc., Perkin Trans 1, 1975, 461.

Received, 24th February, 1997