CORRELATION OF ¹⁵N NMR CHEMICAL SHIFTS WITH CALCULATED PARTIAL CHARGES IN PYRIDINE *N*-OXIDES

Kiyoshi Matsumoto, ** Mona Ciobanu,* Takane Uchida, b and Takahisa Machiguchic

*Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-01, Japan,

^b Faculty of Education, Fukui University, Fukui 910, Japan,

^c Department of Chemistry, Faculty of Science, Saitama University, Urawa, Saitama 338, Japan

<u>Abstract</u> - *p*-Substituted pyridine *N*-oxides have been found very good linear correlations between the ¹⁵N NMR chemical shifts and the partial charges, obtained by semiempirical molecular orbital methods.

Pyridine N-oxides are of great synthetic utility due to the reactivity-modifying influence of the oxygen atom on the ring system. This influence often leads to complex and unexpected differences between the properties of pyridines and their N-oxides.¹ The presence of the oxygen atom can have, depending on the reagent used in any particular transformation, either an electron-withdrawing or an electron-donating effect. The effect reflects an important contribution of the canonical structures (1b) and (1c) to the resonance hybrid of pyridine N-oxide.¹

¹⁵N NMR spectroscopy can in principle have a chemical application as the identification of structure of nitrogen compounds, since their chemical shifts are intimately related to the electronic environment of the given nucleus.² We reported the substituent effects on the ¹⁵N NMR chemical shifts of the ylidic nitrogens in pyridinium bis(methoxycarbony!)methylids³ and dicyanomethylids,⁴ whereas other workers

Dedicated to the memory of Professor Shunichi Yamada, Professor Emeritus Tokyo University.

have reported ¹⁴N and ¹⁵N NMR spectra⁵⁶ for some pyridine *N*-oxides. We report herein that there are good correlations between the ¹⁵N NMR chemical shifts and the calculated partial charges of pyridine *N*-oxides which are derived from semiempirical molecular orbital (MO) methods.

In order to observe the nitrogen nucleus of pyridine N-oxides (1~11), we have attempted the naturalabundance ¹⁵N NMR spectroscopy. The sensitivity is limited by the low solubility of several substrates and by the natural line width of the ¹⁵N resonances. To obtain the signals accurately in the ¹⁵N resonances at high signal/noise ratios, we have performed the spectroscopy at the highest achievable resolution in dimethyl sulfoxide-d₆ with and without Cr(acac)₃ at 68 °C, respectively.²

Table 1 shows the chemical shifts obtained as above and the partial charges computed with four MO (AM1, PM3, INDO, and ETH) methods.⁷ As it can be seen in Table 1, the ¹⁵N chemical shifts of pyridine *N*-oxides are sensitive to the nature of substituents at the 4-position on the pyridine ring. When the ring has a strong electron-withdrawing substituent (NO₂, CN, PhCO, MeCO₂, or MeCO) on the ring, the contribution of resonance structures analogous to **1b** becomes predominant. Thus, the nitrogen- oxygen bonds in the pyridine *N*-oxides tend to possess a substantial double-bond character. Accordingly, the ¹⁵N nuclei of the *N*-oxides (**7~11**) resonate at downfields relative to the parent pyridine *N*-oxide (1). In contrast, when the ring has an electron-donating substituent (Me, Et, *i*-Pr, *t*-Bu, or Ph) at the 4-position, the ¹⁵N nuclei of the *N*-oxides (**2~6**) resonate at upfield as compared with that of **1**.

Hence, we may expect good correlations between the ¹⁵N NMR chemical shifts and the calculated partial charges.⁷ Figures 1 ~4 exhibit the correlations between the chemical shifts and the partial charges. These demonstrate explicitly that there are very good linear correlations (correlation coefficients, $r^2=0.976$ ~ 0.905) in all four cases, particularly when AM1 method was used (correlation coefficient: $r^2=0.976$) and even when ETH was used (correlation coefficient: $r^2=0.951$).

In summary, we have found linear correlations between the ¹⁵N chemical shifts and partial charges of the nitrogen nucleus in pyridine *N*-oxides. Therefore, semiempirical molecular orbital calculations such as AM1, PM3, INDO, and ETH methods which are readily and commercially available have proven useful to predict the ¹⁵N chemical shifts of aromatic *N*-oxides.

 Table 1.
 ¹⁵N Chemical Shifts and Partial Charges (Obtained with Semiempirical MO Methods)

 of Pyridine N-Oxides (1-11).

Substrate	¹⁵ N Chemical Shift ^a	Partial Charge ^b			
		AMI¢	PM3d	INDO ^e	ETH ^f
1 (R = H)	84.0	0.354	1.073	0.237	0.518
2 (R = Me)	90.1	0.351	1.067	0.226	0.500
3 (R = Et)	88.4	0.351	1. 067	0.227	0.499
4 ($R = i - Pr$)	88.4	0.351	1.070	0.226	0.494
5 (R = t-Bu)	88.8	0.351	1.070	0.226	0.493
6 ($R = Ph$)	85.9	0.354	1. 070	0.232	0.495
7 ($\mathbf{R} = \mathbf{MeCO}$)	74.8	0.369	1. 09 3	0.242	0.550
$8 (R = MeCO_2)$	74.4	0.371	1.096	0.246	0.544
9 (R = PhCO)	75.4	0.368	1.092	0.242	0.544
10(R = CN)	74.9	0.366	1.087	0.239	0.539
$11(R = NO_2)$	70.5	0.376	1.114	0.247	0.555

^a Chemical shifts are reported in ppm scale from the external standard, nitromethane. ^b Partial charges in the nitrogens are described in au unit. ^c Correlation coefficient: $r^2=0.976$. ^d $r^2=0.905$. e $r^2=0.933$. f $r^2=0.951$

Figure 1. Correlation of ¹⁵N Chemical Shifts versus Partial Charges Calculated with AM1 Method.

Figure 2. Correlation of ¹⁵N Chemical Shifts versus Partial Charges Calculated with PM3 Method.

Figure 3. Correlation of ¹⁵N Chemical Shifts versus Partial Charges Calculated with INDO Method.

Figure 4. Correlation of ¹⁵N Chemical Shifts versus Partial Charges Calculated with ETH Method.

EXPERIMENTAL

Pyridine N-oxides (1~11) were prepared according to the method of Ochiai et al.⁸ The NMR spectra were recorded in DMSO-d₆ on a JEOL FX 90Q FT NMR spectrometer. Chemical shifts are reported in ppm upfield from nitromethane as the external standard.

ACKNOWLEDGEMENT

This work was supported in part by a Grant-in-Aid for Scientific Research (No.08221214) from the Ministry of Education, Science, Sports and Culture, Japan.

REFERENCES

- 1. A. R. Katritzky and J. M. Lagowski, Chemistry of the Heterocyclic N-Oxides, Academic Press, New York, 1971; E. Ochiai, Aromatic Amine N-Oxides, Elsevier, Amsterdam, 1967.
- 2. G. C. Levy and R. L. Lichter, Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy, John Wiley & Sons, New York, 1979.
- 3. K. Matsumoto, T. Uchida, K. Aoyama, and M. Asahi, Chem. Express, 1986, 1, 423.
- 4. K. Matsumoto, T. Uchida, Y. Ikemi, H. Fujita, K. Aoyama, and M. Asahi, *Heterocycles*, 1986, 24, 339.
- 5. L. Stefaniak, Spectrochim. Acta Part A, 1976, 32, 345.
- 6. I. Yavari and J. D. Roberts, Org. Magn. Reson., 1979, 12, 87.
- The partial charges on the nitrogen atoms of the substrates (1~11) using CAChe systems (Version 3.7, CAChe Scientific, Oxford Molecular Group). AMI: M. J. S. Dewar, E. G. Zoebisch, E. F. Hearly, and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902; PM3: J. J. P. Stewart, J. Comp. Chem., 1989, 10, 209; INDO: J. Ridley and M. Zerner, Theoret. Chim. Acta, 1973, 32, 111.
- 8. E. Ochiai, J. Org. Chem., 1957, 18, 534 and references cited therein.

Received, 25th February, 1997