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Abstract -A short path synthesis of the a-hydroxy esters (4 and 5) from 

the aldehyde (3) using (I-ethoxyviny1)lithium and its application to the total 

syntheses of the pyrimidine nucleoside, thymine polyoxin C (1) and uracil 

polyoxin C (2), are described. 

Polyoxins are an important class of peptidyl nucleoside antibiotics isolated Gom the culture broths of 

Streptomyces cacaoi var. asoerrsis, which are potent competitive inhibitors of chitin synthetase of a variety 

of phytopathogenic fungi.1 According to recent studies, polyoxins arc also reported to inhibit chitin 

synthetase of Carrdidu ulbicms, a medically important human fungal pathogen.2 AU members of thc 

polyoxin family bear the 1-(5-amino-5-deoxy-~-D-aIlofuranun~nosyl)pyrimidines such as thymine polyoxin 

C (I)  and urdcil polyoxin C (2) as a basic component. 

A variety of chemical syntheses of amino acid nucleosides (1 and 2 )  have been reported over the years,3 

one of the most important intermediate for the general synthesis of them appeared to he (R)-a-hydroxy ester 

(A). We now report the short path synthesis of A from the readily available methyl 2,3-0-isopropylidene- 

dialdo-D-ribofuranoside (3)3i derived from D-ribose by employing an addition of (1-ethoxyvinyl)lithium 

and its application to the total syntheses of thymine polyoxin C (1) and urdcil polyoxin C (2). 
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The reaction of the aldehyde (3) with (1-ethoxyvinyl)lithium4 followed by ozonolysis and subsequent 

treatment with MezS gave the diastereomeric mixture of a-hydroxy esters which were separated into the 

major a-hydroxy ester (4)s 131% From 3 ,  [ a ] ~  -52.3' (c=1.00, CHC13)) and the minor one (5) 110% 

from 3, [ a ] ~  -44.2" (c=1.46, CHC13)). The low diastereoselectivity (21)  against 3 using vinyl 

magnesium bromide is also reported.6 An improvement of the diastereoselectivity of 4 and 5 is being 

undertaken. For the purpose of conversion of 4 into 5, treatment of 4 with trifluoromethanesulfonic 

anhydride (Tf20) afforded the hiflate (6) (83%) which was treated with PhCOOH in the presence of C S F ~  

to provide the a-benzoyloxy ester (7) (86%). Alcoholysis of 7 gave the inverted a-hydroxy ester (5) 

(65%) which is consistent with the minor one (5). In order to determine the stereochemistry of 5, the a- 

hydroxy ethyl ester (5) was converted to the reported (5s)-azide methyl ester Transesterification of 5 
with MeOH into the methyl ester (9) in the presence of Ti(0-iPr)4 was achieved in 84% yield. Triflation of 

9 followed by treatment of the triflate (10) (74%) with NaN3 afforded the diastereomerically pure a-azide 

ester (8) {95%, [ a ] ~  -53.3" (c=1.41, CHC13)) whose spectral data were identical with those { [ a ] ~  -55.3" 

(c=0.89, CHC13), 1 ~ - N M R )  of the reported (5~) -8 .3 i  Thus, the stereochemistry due to the C-5 position 
of a-hydroxy ethyl esters (4) and (5) was found to be S-  and R-configurations, respectively. For the total 

synthesis of the target molecules (1) and (2), conversion of ethyl ester group into the methyl ester group is 

not always essential process. The (R)-a-hydroxy ethyl ester (5) was converted to the (S)-a-azide ethyl 

ester (12) {55% overall yield from 5,  [ a ] ~  -49.1' (c=1.17, CHC13)) via the biflate (11) (64%) by the 

COOEt COOEt 

COOMe COOMe 

e - 
84% 95% 

4 s 
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e; MeOH, Ti(0-i Pr), I PhH, reflux f; NaN,/ DMF 
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COOEt COOEt COOEt 

a ;  Tf20, pyridine / CH2C12 b; NaN, IDMF c;  1) Dowex 50 WH+ / EtOH, reflux 

2) Ac20 I pyridine d; Ac20, AcOH, conc. H2S04 I CH2CI2 
e ;  for 15: 5-methyl-2,4-bis(trimethylsilyloxy)pyrimidine TMSOTf I CH2CI2, reflux 

e ;  for 17: 2,4-bis(trimethylsilyloxy)pyrimidine, TMSOTf I CH2C12, reflux 

f; for 16: 1) H2, 20% Pd(OH),-C I MeOH 2) CbzCI, 7% NaHCO, aq. 1 dioxane 

f;  for 18: 1) Hz, 5% Pd-BaSO, I MeOH 2) CbzCI, 7% NaHC03 aq. / dioxane 

g; 1) LiOH.H20 / THF 2) 0.1 N HCI 3) Hz, 10% Pd-C / MeOH 

S c h e m e  3 

same way as in the case of conversion of 9 to 8. Deisopropylidenation (Dowex 50W H+, EtOH, reflux) 
afforded the did,  which was acetylated directly (Ac20, pyridine) to yield the diacetate (13) (87%). 

Anomeric acetolysis smoothly gave the triacetate (14)(88%) in which no C-5 epimerization could he 

detected. Reaction of the triacetate (14) with 5-methyl-2,4-bis(trimethylsilyloxy)pyrimidine under the 
conditions reported by vorhmggen9 {trimethylsilyl trifluoromethanesulfonate (TMSOTf), ClCH2CH2C1, 

reflux} gave exclusively the p-nucleoside (15)10 (84%). Hydrogenation of the azide (15) in the presence 

of 20% Pd(OH)2-C afforded the a-amino acid ester which was treated with carbobenzyloxy chloride 

(CbzCI) in the presence of 7% aqueous NaHC03 to provide the (5s)-16 (90%). Alkaline hydrolysis of 

1 6  followed by hydrogenation gave thymine polyoxin C (1)(75%). The synthetic material ( l ) { [ a ] ~  +8S0 

(c=0.53, H20), mp 190-192 "C, IH-NMR) was identical with authentic material { [ a ] ~  +8.2" (c=0.7, 

H Z O ) , ~ ~  [ a ] ~  *8.0" (c=0.37, H Z O ) , ~ ~  mp 190-194 ' c , ~ c  mp 180-190 T,3f  ~ H - N M R ~ c , ~ } .  Likewise, 

reaction of the key triacetate (14) with 2,4-his(trimethylsilyloxy)pyrimidine8 under similar conditions 

afforded exclusively the j3-nucleoside (17)1° (84%). Hydrogenation of the a ide  (17) in the presence of 
5% Pd-Bas04 and followed by protection of amino group with Cbz group, alkaline hydrolysis and 

deprotection of Cbz group afforded uracil polyoxin C (2) { [ n ] ~  t15.9' (c=0.58, HzO), mp 247-250 "C, 

IH-NMR)} which was identical with authentic material (2) { [ a ] ~  +15.8" (c=0.205, H 2 0 ) , l h P  240-247 
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T , l a  1 ~ - N M R ~ ~ } .  The syntheses described herein demonstrate the utility of (1-ethoxyviny1)lithium for 

the short path synthesis of the a-hydroxy esters (4 and 5) from the aldehyde (3), which contribute to the 

total syntheses of thymine polyoxin C (1) and uracil polyoxin C (2). 
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