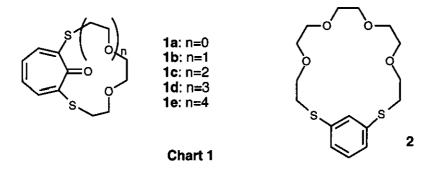
ASSOCIATION CONSTANTS OF 5,8,11,14-TETRAOXA-2,17-DI-THIABICYCLO[16.4.1]TRICOSA-1(22),18,20-TRIEN-23-ONE FOR VARIOUS METAL IONS[†]

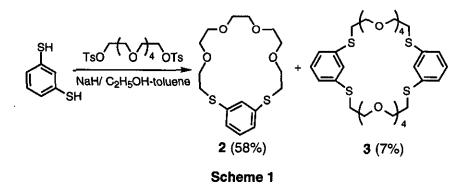

Akira Mori,*a Kanji Kubo,^b and Hitoshi Takeshita*c

^aInstitute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816, Japan ^bFaculty of Engineerings, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221, Japan ^cTohwa Institute for Science, 39, Tohwa University, Chikushigaoka, Minamiku, Fukuoka 815, Japan

Abstract—With the regard to the pronounced mercurophilicity of dithio-crown ethers incorporated into seven-membered conjugated systems, the association constants of 5,8,11,14-tetraoxa-2,17-dithiabicyclo[16.4.1]tricosa-1(22),18,20-trien-23-one, the most effective carrier of mercury(II) salt, were determined with various metal salts. An increasing order of the association constants was Na⁺< K⁺< NH₄⁺ < Li⁺ < Mg²⁺ < Zn²⁺ < Cd²⁺ < Hg²⁺ < Ba²⁺ < Ca²⁺ in acetonitrile.

Considerable attention has been paid to develop the effective separation and extraction of metal ions by means of complex formation; *e.g.*, Bacon and Kirch¹ have studied transport of heavy metal ions such as Hg^{2+} and Pb^{2+} through a liquid membrane, and Izatt *et al.*² and Gokel *et al.*³ have also studied transport of metal ions by the crown and aza-crown ethers through chloroform membrane.

Currently, we have been interested in the pronounced mercurophilic properties of dithio-crown ethers incorporated into seven-membered conjugated systems.^{4,5} Particularly, the exclusive transport of Hg^{2+} through a U-type cell with water-chloroform system was remarkable. Since the transport phenomenon is a


[†]This paper is dedicated to the memory of the late Professor Shun-ichi Yamada.

combined process of complexation, diffusion, liberation, and extraction, it is important to determine the association constants for the first step of the process between such tropone derivatives and various metal ions.

Among the dithio-crown derivatives synthesized by our hands, 5,8,11,14-tetraoxa-2,17-dithiabicyclo-[16.4.1]tricosa-1(22),18,20-trien-23-one (1d) was the most effective mercurophilic dithio-crown tropone derivative.⁵ Herein, we describe the results on the metal complexation by 1d and the role of the tropone carbonyl group by the comparison with the corresponding benzenoid derivative.

Dithio-crown ethers examined are shown in Chart 1.

UV Spectral Changes. The UV-vis spectral changes have been examined by the addition of various metal ions to several tropone-attached dithio-crown ethers and dimeric tetrathioethers, prepared from 2,7-dibromotropone and 2,4,7-tribromotropone and a series of oligoethylene glycol bis(2-mercaptoethyl)-ethers.⁵

Thioether (1) with a smaller cavity did not show much changes by the addition of metal ions. Thioether (1d) with a larger cavity showed the appreciable changes by the addition of 100 equivalent of Ca^{2+} , Ba^{2+} , Hg^{2+} and Cd^{2+} , but the slight changes by the addition of Li⁺, Na⁺, K⁺, NH₄⁺, Mg²⁺ and Zn²⁺ as shown in the upper spectra in Figure 1. The spectra of 1d changed accompanying an increase in the absorption in the longer wavelength region as shown in the lower spectra in Figure 1 when the metal ions such as Ca^{2+} , Ba^{2+} , Mg^{2+} , Zn^{2+} , Cd^{2+} , and Hg^{2+} were added in large excess. However, on the addition of Li⁺, Na⁺, K⁺, and NH₄⁺, the intensity of the absorption band at 399 nm of 1d was decreased. There is a remarkable difference in a spectral change caused by addition of different metal ions. This may indicate that the binding sites are different according to the metal ions added.

Association Constants and Transport. Association constants (Ks) were determined by using the non-linear curve fitting method^{6,7} from the change of absorbance in the UV spectra in acetonitrile (CH₃CN) or the change of chemical shifts in the ¹H NMR spectrum in acetonitrile- d_3 (CD₃CN) by titrating at 298 K. The Ks was calculated to be 1023 M⁻¹ from the curve-fitting plot of the UV spectral change of 1d by addition of Hg(SCN)₂. Similarly, the Ks of 1d for Li⁺, Na⁺, K⁺, NH₄⁺, Ca²⁺, Ba²⁺, Zn²⁺, Mg²⁺, Cd²⁺, and Hg²⁺, calculated from the titration curves, are summarized in Table 1. The increasing order of Ks of 1d was Na⁺< K⁺< NH₄⁺ < Li⁺ < Mg²⁺ < Zn²⁺ < Cd²⁺ < Hg²⁺ < Ba²⁺ < Ca²⁺ in CH₃CN. The larger complexation constants for Ca²⁺ and Ba²⁺ over Hg²⁺ are not apparently consistent to the results

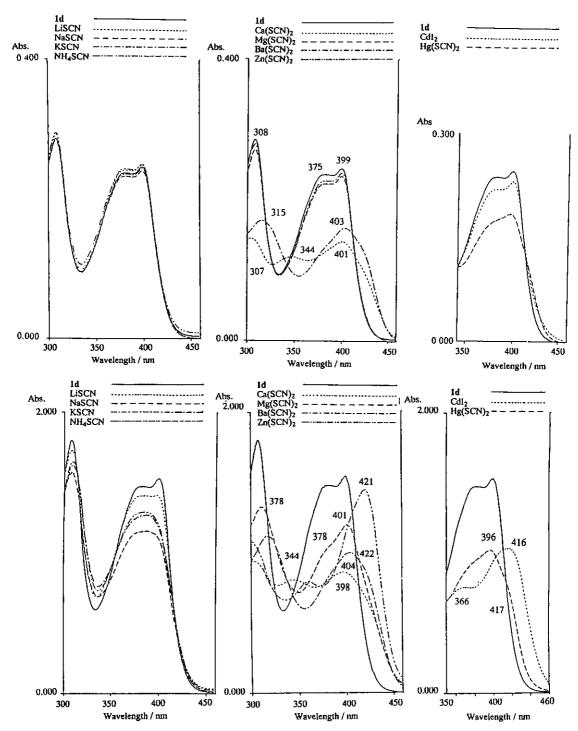


Figure 1. UV Spectral changes of 1d in the presence of various metal ions in acetonitrile. The upper spectra were measured in the presence of 100 equivalent of metal ions and the lower ones in the presence of 5000 equivalent of metal ions. In the case of Hg^{2+} , however, 300 equivalent of $Hg(SCN)_2$ was used due to low solubility.

complexes of Ca^{2+} and Ba^{2+} are not soluble in chloroform (the solvent for the transport experiment) because extraction of these ions into the chloroform-*d* (CDCl₃) solution was not observed by ¹H NMR spectroscopy.

	Method ^a	Salts	Ks	Log K _s	R ^b
1d	Α	LiSCN	30	1.48	0.999
	Α	NaSCN	4	0.56	0.993
	Α	KSCN	13	1.10	0.994
	Α	NH ₄ SCN	11	1.06	0.991
	Α	Ca(SCN) ₂	7250	3.86	0.999
	Α	$Mg(SCN)_2$	20	1.30	0.999
	Α	$Ba(SCN)_2$	5540	3.73	0.999
	Α	$Zn(SCN)_2$	24	1.37	0.999
	А	CdI ₂	73	1.86	0.999
	Α	Hg(SCN) ₂	1023	3.01	0.999
	В	$Hg(SCN)_2$	1090	3.04	0.999
le	В	$Hg(SCN)_2$	354	2.55	0.999
2	В	$Hg(SCN)_2$	516	2.71	0.995

Table 1. Association constants of the 1:1 complexes of 1d and various metal ions

a) Curve-fitting method, Method A: UV spectrum, Method B: ¹H-NMR titration

b) R factor for the curve fitting. Conditions: CH₃CN or CD₃CN at 298 K.

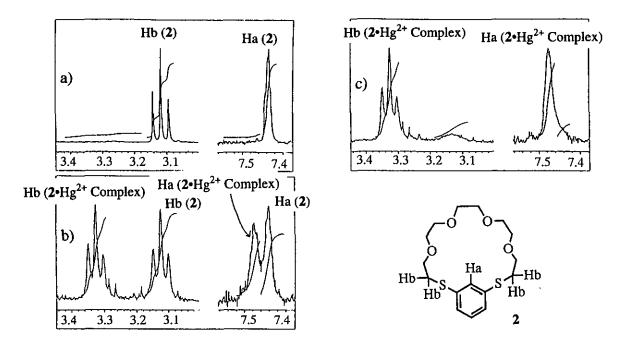


Figure 2. ¹H NMR Spectral changes of 2 upon addition of $Hg(SCN)_2$. a) [complex]/([2]+[complex])=0, [Hg(SCN)_2]=0, b) [complex]/([2]+[complex])=0.49, [Hg(SCN)_2]=1.73 c) [complex]/([2]+[complex])=0.83, [Hg(SCN)_2]=5.75 mol/L.

The considerably large λ_{max} shifts were observed in **1d** with the increasing order of Ca²⁺(398 nm) < Hg²⁺(401 nm) < Mg²⁺(396 nm) < Ba²⁺(404 nm) < Cd²⁺(416 nm) < Zn²⁺(421 nm) although the observed λ_{max} shifts due to the complexation with metal ions were not parallel to the association constants of the complexes. This is similar to the observation reported by Vögtle.⁸)

In order to compare the properties with benzenoid analogues, we have prepared a dithio-19-crown-6 ether (2) from benzene-1,3-dithiol and pentaethylene glycol bis(*p*-toluenesulfonate) (Scheme 1). It is noteworthy that upon addition of $Hg(SCN)_2$, the ¹H NMR spectrum of 2 exhibited the singals due to the complexed species in addition to the signals of the uncomplexed 2.

This indicated that the complexation and liberation processes with 2 were slow. Namely, the new proton signals of 2 by addition of Hg(SCN)₂ appeared at δ 3.32 beside those of the uncomplexed 2 at 3.12, a triplet signal for the ethylene protons adjacent to the sulfur atom (Figure 2). The association constant of 2, determined by the integral ratio of the protons, was 515 M⁻¹, which is smaller than that (1090 M⁻¹) of 1d, as being determined from the change of the chemical shift in ¹H NMR spectra. This was in good agreement with the result (1023 M⁻¹) obtained from the UV spectral measurement. The Ks (354 M⁻¹) of another crown ether 1e for Hg²⁺ was smaller than that of 1d. This result is parallel to our previously reported results of the transport.⁵

The complex formation of 1d has been examined with various metal ions, *i.e.*, alkali metal ions (Li⁺ and Na⁺), alkaline earth metals (Mg²⁺, Ca²⁺, and Ba²⁺), and some transition metal ions (Co²⁺, Ni²⁺, Fe³⁺, Cu^{2+} , Zn^{2+} , Cd^{2+} , and Ag⁺) showed no indication of ¹H NMR spectral change in CDCl₃. Extraction of Hg²⁺ into the CDCl₃ solutions containing 1d was checked. The ¹H NMR spectra of 2 were changed by the complex formation of Hg²⁺, Ag⁺, and Cd²⁺ although the selectivity of 2 was lower than 1d.

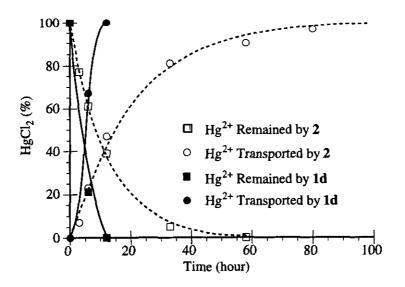


Figure 3. Transport of HgCl₂ by 1d and 2.

Figure 3 shows the representative results of the transport of Hg^{2+} by 1d and 2. It is also noteworthy that the release of Hg^{2+} for 2 from the membrane to the receiving phase is slower than those of 1d and 1e. Thus, the tropone function played an important role in the release of Hg^{2+} to the receiving phase.

The generation of a 6π -cationic system was observed by the ¹H NMR spectrum in 5M D₂SO₄ (Figure 4). In respect of the chemical shift differences of 1d, $\Delta\delta$, between CDCl₃ and 5M-D₂SO₄, [¹H NMR (D₂SO₄) δ =3.45 (8H, m), 3.55-3.64 (8H, m), 3.87 (4H, t, J=4.8 Hz), 7.70-7.73 (2H, m), 8.16-8.25 (2H, m)], the generation of a delocalized 6π cationic system caused remarkable down-field shifts for the tropone protons ($\Delta\delta$ =-0.78). This result showed the formation of the tropylium ion.



Figure 4. ¹H NMR Spectra of 1d in CDCl₃ and 5 M D₂SO₄.

In conclusion, the troponoid thio-crown ether (1d) was more effective carrier of Hg^{2+} than the benzenoid thio-crown ether (2) with the similar cavity size. The results clearly showed that protonation is responsible for the ready liberation of Hg^{2+} by generating a 6π cationic system with the seven-membered ring to cause Coulomb repulsion with the complexed Hg^{2+} .

On the other hand, the troponoid thio-crown ethers showed the changes of UV-vis spectra by the addition of various metal ions. It is suggested that the troponoid structure can be utilized as a chromophore on the complex formation.

EXPERIMENTAL

The elemental analyses were performed at the elemental analysis laboratory in the Institute of Advanced Material Study, Kyushu University. The melting points were obtained on a Yanagimoto Micro Melting Point Apparatus and are uncorrected. The NMR spectra were measured on a GSX 270H Model spectrometer in CDCl₃ and CD₃CN; the chemical shifts are expressed in δ unit. The mass spectra were measured with a JEOL 01SG-2 spectrometer. The IR spectra were recorded on a JASCO IR-A102 spectrophotometer with KBr disks for crystalline compounds or with liquid films inserted between NaCl plates for oily

514

phase for the column chromatography was Wakogel C-300 and the eluant was a mixture of ethyl acetate, chloroform, and hexane.

Synthesis of 1,3-Benzo-19-dithiocrown-6 Ether (2); To a refluxing mixture of toluene (50 mL) and EtOH (50 mL) were added a solution of pentaethyleneglycol bis(p-toluenesulfonate) (264 mg, 1 mmol) in toluene (10 mL) and EtOH (15 mL) and a solution of 1,3-benzenedithiol disodium salt [prepared from dithio (142 mg, 1 mmol) and NaH (88 mg, 2.2 mmol)] in EtOH (10 mL) through microfeeders in a 3 h period under N₂ stream. After removing the solvent in vacuo, the residue was acidified with 2M HCl and extracted with CHCl₃. Silica gel column chromatography of the organic fractions gave 1,3-benzo-19dithiocrown-6 ether (2) [a colorless oil, 170 mg, 58%. Anal. Calcd for C₁₆H₂₄O₄S₂: C, 55.78; H, 7.02. Found: C, 55.76; H, 7.05. ¹H NMR δ=3.13 (4H, t, J=6.8 Hz), 3.62 (4H, s), 3.63(8H, s), 3.69 (4H, t, J=6.8 Hz), 7.16 (3H, br s), and 7.46 (1H, s); ¹³C NMR d=33.0 (2C), 69.9 (2C), 70.6 (2C), 70.7 (2C), 70.8 (2C), 127.4 (2C), 128.4, 128.9, and 137.1 (2C); MS m/z, 344 (M⁺, 20), 168 (66), 154 (44), 153 (56), 136 (74), 135 (100), 134 (55), and 96 (46); IR v: 2862, 1571, 1463, 1396, 1353, 1291, 1113, 1034, 777, and 685 cm⁻¹; UV λ_{max}^{MeOH} =217 nm (ϵ =10000), 252.6 (14000), 298.1 (1300), and 308.0 (1000)] and a 2:2-condensate (3) [colorless crystals, mp 70-71.5 °C, 20 mg, 7%. Anal. Calcd for C₃₂H₄₈O₈S₄: C, 55.78; H, 7.02. Found: C, 56.11; H, 7.10. MS m/z, 688 (M⁺, 100), 212 (41), 195 (48), 194 (82), 169 (52), 168 (86), and 136 (43); ¹H NMR δ =3.11 (8H, t, J=6.8 Hz), 3.6-3.65 (24H, m), 3.67(8H, t, J=7.0 Hz), 7.12-7.20 (6H, m), and 7.34 (2H, br s); 13 C NMR δ =33.0 (4C), 69.9 (4C), 70.5 (4C), 70.6 (4C), 70.7 (4C), 126.8 (4C), 129.17 (2C), 129.24 (2C), and 137.2 (4C); IR v: 2876, 1574, 1558, 1466, 1450, 1427, 1392, 1370, 1352, 1283, 1244, 1170, 1119, 1093, 1041, 1022, 948, 936, 909, 886, 834, 786, 769, and 677 cm⁻¹; UV $\lambda_{max}^{CHCl_3}$ =255 nm (ϵ =20900), 298.2 (1800), and 308.8 (1300)].

Determination of Association Constants (Ks); The titrations were conducted by adding a crown ether solution (1.3 mol/L in CH₃CN) containing a progressive concentration of excess metal salt, using a 25 or 250 mL syringe, to the cuvette containing 2 mL of the crown ether solution (1.3 mol/L in CH₃CN). The solutions were homogenized by ultrasonic wave for 5 min. The spectrum was recorded after each addition as shown in Figure 1. The added equivalents of the cation were then plotted against the absorption intensity change at a certain wave length around the absorption peak on the spectrum (420-460 nm).⁶ Even though the solvent takes part in the association interaction, the solvent concentration is virtually unaffected. The K_s of 1d, 1e, and 2 with Hg²⁺ were determined using ¹H NMR titration procedure.⁷

Transport Experiments; By the similar procedures as described in a previous paper,⁴ transport experiments with standard solution (10 mL, aq I) of HgCl₂ (0.05 mmol) were done using a U-type cell consisted of CHCl₃ (20 mL) containing **1d** or **2** (0.05 mmol) and 5 M HCl (10 mL, aq II), at rt. Spectrophotometric determinations of metal ions before and after the transport via complexation with **1d** and **2** were carried out.

REFERENCES

 E. Bacon and M. Kirch, J. Membrane Sci., 1985, 24, 185; E. Bacon and M. Kirch, *ibid.*, 1987, 32, 159.

- R. M. Izatt, G. A. Clark, and J. J. Christensen, J. Membrane Sci., 1985, 24, 1; R. M. Izatt, M. B. Jones, J. D. Lamb, J. S. Bradshaw, and J. J. Christensen, *ibid.*, 1986, 26, 241; R. M. Izatt, R. L. Bruening, G. A. Clark, J. D. Lamb, and J. J. Christensen, *ibid.*, 1986, 28, 77.
- 3. J. C. Hernandez, J. E. Trafton, and G. W. Gokel, Tetrahedron Lett., 1991, 32, 6269.
- H. Takeshita, A. Mori, and S. Hirayama, J. Chem. Soc., Chem. Commun., 1989, 564; S. Hirayama, A. Mori, and H. Takeshita, Kyushu Daigaku Sogo Rikogaku Kenkyuka Hokoku, 1992, 13, 349; A. Mori, B. Z. Yin, and H. Takeshita, Chem. Express, 1992, 313; K. Kubo, A. Mori, and H. Takeshita, *ibid.*, 1992, 945; K. Kubo, A. Mori, and H. Takeshita, Heterocycles, 1993, 36, 1941; A. Mori, K. Kubo, and H. Takeshita, Bull. Chem. Soc. Jpn., 1994, 67, 1094; N. Kato, K. Kubo, A. Mori, and H. Takeshita, Heterocycles, 1995, 41, 1901; H. Takeshita, Q. F. Wang, K. Kubo, and A. Mori, Chem. Lett., 1995, 993.
- 5. H. Takeshita, B. Z. Yin, K. Kubo, and A. Mori, Bull. Chem. Soc. Jpn., 1993, 66, 3451.
- 6. K. A. Connors, "Binding Constants", John Wiley & Sons, New York, 1987.
- M. Sawada, Y. Okumura, M. Shizuma, Y. Takai, Y. Hidaka, H. Yamada, T. Tanaka, T. Kaneda, K. Hirose, S. Misumi, and S. Takahashi, J. Am. Chem. Soc, 1993, 115, 7381.
- 8. H. G. Löhr and F. Vögtle, Acc. Chem. Res., 1985, 18, 65.

Received, 24th March, 1997