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Abstract- Benzyl 2-(hydroxymethy1)phenyl sulfoxides (1) treated with p- 

toluenesulfonic acid monohydrate (TsOH.H20) undergo the Pummerer-type 

rearrangement to give henzaldehydes in one step. The reaction was found to 

proceed via the oxosulfonium salt (6) as an intermediate. 

The Pummerer rearrangement of sulfoxides has been widely studied, and has received considerable 

attention as a synthetically useful process.' It has been reported that the Pummerer rearrangement of 

sulfoxides followed by hydrolysis of the a-acetoxysulfides gives aldehydes.= However, in practice this 

method has some limitations for the preparation of aldehydes, since the a-acetoxysulfides are easily 

converted into vinyl sulfides by p-elimination. In order to avoid p-elimination of the a-acetoxysulfide, 

trifluoroacetic anhydride is used instead of acetic anhydride for the Pummerer rearrangement at low 

temperature.3 A very mild method for the conversion of the sulfoxides to the acetals using iodine in 

methanol followed by hydrolysis to give the aldehydes has also been r ep~r t ed .~  

Asymmetric intramolecular Pummerer-type cyclization of the sulfoxides using 0-methyl-0-tert- 

hutyldimethylsilyl ketene acetal has been reported and applied in the preparation of p-lactam derivatives5 
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We tried the preparation of the 1.3-oxathiane (2) from benzyl2-(hydroxymethy1)phenyl sulfoxide (la) 

with a catalytic amount of p-toluenesulfonic acid monohydrate to investigate the possibility of 1,3-S-0 

interaction. This reaction gave the desired 1,3-oxathiane (2) in 89% yield together with benzaldehyde(3a) 

in 10% yield (eq 1). 

We were interested in this one step formation of benzaldehyde from the sulfoxide ( la )  bearing o- 

hydroxymethyl group in the Pummerer rearrangement. In this article we wish to describe the detailed 

perspective views for the reactions. 

RESULTS AND DISCUSSION 

Initially, we examined the optimum oxidation reaction conditions of this one step conversion from benzyl2- 

(hydroxymethy1)phenyl sulfoxide (la16 with TsOH-HzO to benzaldehyde (3a) as shown in Scheme 1. 

The best yield of 3a from the sulfoxide ( l a )  was 65% obtained by treating the latter with 2.0 eq of 

TsOHoH20 in acetoniuile at 90 'C for 20 min as shown in Table 1. Although the starting sulfoxide was 

consumed completely under the reaction conditions, the reason for these rather low yield of benzaldehyde 

(3a) is attributed to the formation of benzyl2-(hydroxymethyl)phenyl sulfide produced as a by-product in 

20% yield via the redox reaction between the starting sulfoxide (la) and 2-mercaptobenzyl alcohol. 

Similarly, the reactions of sulfoxides ( la- lh)  were examined under the same reaction conditions. The 

results are summarized in Table 1. 

The results in Table 1 reveal that the arylic aldehydes involving phenyl and naphthyl derivatives were 

prepared in moderate to good yields, whereas the alkyl derivatives gave the corresponding aldehydes in 

rather low yields together with intractable compounds. 4-Methoxyphenyl compound did not give the 

aldehyde but gave N-(4-methoxyphenylmethyl)acetoamide in 72% yield. This result indicates that the S-C 

bond of sulfoxide ( lb)  readily cleaved under this reaction condition and produced the Cmethoxybenzyl 

cation which was then captured by acetonitrile used as a solvent. 

In these reactions the o-hydroxymethyl group should play an impoltant role for preparation of aldehydes. 
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Scheme I 

dSrLR TsOH.H20 1 CH&N 
R-CHO 

Table 1. Conversion of sulfoxides into aldehydes. 

sulfoxide R TsOHoH20 solvent (temp.) time aldehyde yield of 3 

(eq.1 ('C) (min) (%) 

l a  Ph 0.1 toluene(100) 30 3a 10 

1 a Ph 1 .O toluene(100) 20 3a 55 

1 a Ph 2.0 toluene(100) 20 3a 61 

1 a Ph 2.0 toluene(80) 30 3a 45 

l a  Ph 2.0 CH3CN(90) 20 3a 65 

1 a Ph 2.0 CH3CN(60) 120 3a 51 

1 b 4-CH30CsH4 2.0 CH3CN(90) 20 3b 0 

I C  4-CH3C6Hq 2.0 CH3CN(90) 20 3 c 67 

1 d 4-ClCgH4 2.0 CH3CN(90) 20 3d 70 

1 e 4-OzNCgHq 2.0 CH3CN(90) 20 3 e 64 

I f  I-naphthyl 2.0 CH3CN(90) 20 3 f 52 

1 g 2-naphthyl 2.0 CH3CN(90) 20 3 g  64 

l h  CH3(CH2)8 2.0 CH3CN(90) 20 3 h 37 

Therefore, in order to understand the role of the o-hydroxymethyl group, we prepared benzyl phenyl 

sulfoxide (4) and o-methoxymethyl derivative (5) and treated them under the same reaction conditions. 

However, both substrates did not react under the present reaction conditions (eqs 2 and 3). Thus, it 

appears that the hydroxyl group in the ortho position serves as a fundamental role in the reaction sequence. 

Under the present reaction conditions, the 1,3-oxathiane (2) prepared elsewhere yielded benzaldehyde (3a) 

in only 8% yield, suggesting that the path via the 1,3-oxathiane (2) is a minor process. 

From the experimental observation, we propose that the mechanism for this reaction involves the initial 
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explain the Pummerer-type transformation of 5-methyl-2-(methylsu1finyl)-a-phenethyl alcohol (8) into 5- 

methyl-2-(chloromethylsulfanyl)phenethyl alcohol (10) via the oxosulfonium salt (9b7 

Figure 1. An ORTEP (50% probability ellipsoids) drawing of 1-benzyl-3H-2,l- 

benzoxathiol-1-ium tetrafluoroborate (6c). Selected bond lengths (A) and angles (deg) : S(1)- 

O(1) = 1.595(2), S(l)-C(l) = 1.775(2), S(1)-C(8) = 1.815(2), O(1)-S(1)-C(1) = 94.5(1), 

O(1)-S(1)-C(8) = 103.9(1), C(I)S(l)-C(8) = 100.2(1), S(1)-0(1)<(7) = 113.2(2). 

We tried to isolate the intermediate (6a) by the treatment of the sulfoxide (la) with trifluoromethanesulfonic 

anhydride or triethyloxonium tetrafluoroborate in anhydrous CHzClz at -78 to 0 "C. Indeed, the cyclic 

oxosulfonium salt (6b or 6c) was obtained as colorless solids (eq 4). The oxosulfonium salt (6b) was 

characterized by IH, 13C NMR and FABMS.* In the 'H NMR spectrum of 6b  in CD3CN, the two 

benzylic methvlene orotons were observed at the markedlv downfield shifts of 6 4.60.5.04 and 5.20.5.67 
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as two sets of AB quartet peaks. The FABMS spectrum (pos.) of 6b shows the cyclic oxosulfonium 

cation peak at d z  229 ([M-CF3S03-1+) together with d z  607 ([2M-CF3S03-1+), 

Finally, the oxosulfonium salt (6c) was identified by X-Ray crystallographic analysis.9 An ORTEP 

drawing of the compound (6c) is shown in Figure 1. This is the first example for X-Ray crystallographic 

analysis of the cyclic oxosulfonium salt (6c). The short intermolecular S-F distance, (2.769(2) A), which 

is shorter than the sum of the van der Waals' radii (3.2 A) of the two elements, shows a strong interaction 

between the sulfur cation and counter anion. Detailed tables of atomic coordinates, bond length and 

angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. 

Furthermore, treatment of this cyclic oxosulfonium salt (6b) with Hz0 or IN-NaOH again resulted in the 

formation of benzyl 2-(hydroxymethy1)phenyl sulfoxide (la). This result obviously demonstrates the 

formation of cyclic oxosulfonium salt. We carried out the reaction of the cyclic oxosulfonium salt (6c) 

with 2.0 equiv. of TsOH'H20 in acetonitrile at 90 "C for 20 min to ascertain that 6 is a real intermediate of 

this reaction. This reaction gave benzaldehyde in 86% yield. From this result, this reaction was found to 

proceed via the oxosulfonium salt (6) as an intermediate. 
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