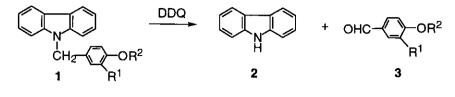
1

p-METHOXYBENZYL GROUP AS A PROTECTING GROUP OF THE NITROGEN IN INDOLE DERIVATIVES: DEPROTECTION BY DDQ OR TRIFLUOROACETIC ACID

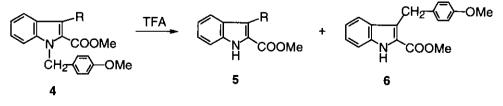
Yasuyoshi Miki,* Hiroko Hachiken, Yoshimi Kashima, Wakiko Sugimura, and Norihide Yanase


Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-Osaka 577, Japan

<u>Abstract</u> - Deprotection of 9-*p*-methoxybenzylcarbazole with DDQ gave a carbazole. However, methyl 1-*p*-methoxybenzylindole-2-carboxylate and dimethyl 1-*p*-methoxybenzyl-2,3-indoledicarboxylate were treated with TFA to yield the corresponding methyl indole-2-carboxylate and dimethyl indole-2,3-dicarboxylate.

In a synthesis of indole natural products, protection of the nitrogen in an indole by alkyl groups,¹ e. g., benzyl and alkoxymethyl,² is usually necessary. Protection of the nitrogen in an indole by a benzyl group is frequently used, but the debenzylation sometimes resulted in low yields³ or required severe conditions.⁴ Deprotection of the *p*-methoxybenzyl ⁵ or 2,4-dimethoxybenzyl group⁶ of the nitrogen in heterocycles was done by treatment with TFA. Yonemitsu and Oikawa⁷ showed excellent results in the deprotection of *p*-methoxybenzyl or 2,4-dimethoxybenzyl group of alcohols by DDQ oxidation, but there are no reports regarding indole derivatives. Therefore, we were intrigued by the use of a *p*-methoxybenzyl group as a protecting group of the nitrogen in an indole.

We first investigated the effect of DDQ in the deprotection of 9-*p*-methoxybenzylcarbazole (1a) by using Yonemitsu and Oikawa's condition⁷ (CH₂Cl₂, room temperature, 96 h), but 1a was recovered (Scheme 1). As shown in Table 1, treatment of 1a with DDQ (1.1 equivalent) at 50°C in the presence of water (30 equivalents) gave carbazole (2) in 27% yield, but 1a was recovered in 42% yield (Entry 1). A mixture of 1a and DDQ (2.2 equivalents) in toluene in the presence of water (30 equivalents) was heated at 80°C for 71 h to give 2 and *p*-methoxybenzaldehyde (3a) in 79 and 48% yields, respectively (Entry 2). Reaction of 1b ($R^2 = CH_2Ph$) with DDQ gave 2 in 78% yield, but the corresponding hydroxy derivative (1c) was not isolated. This result shows that the benzyloxy group in 1b is stable in this condition (Entry 3). 1c ($R^2 = H$) and 1d ($R^2 = TBDMS$) also afforded 2 in 64 and 84% yields, respectively (Entries 4 and 5). We next examined the reactivity of 9-(3,4-dimethoxybenzyl)carbazole (1e), which has an additional methoxy group on the benzene ring of 1a. In a similar manner in the conversion of 1a to 2, debenzylation of 1e was effected in 82% yield in shorter time compared with 1a (Entry 6).


a; $R^1 = H$, $R^2 = Me$ **b**; $R^1 = H$, $R^2 = CH_2Ph$ **c**; $R^1 = R^2 = H$ **d**; $R^1 = H$, $R^2 = TBDMS$ **e**; $R^1 = OMe$, $R^2 = Me$

I able I	Ta	ab	le	1
----------	----	----	----	---

				Yield(%)					
Entry	1	R ¹	R ²	Solvent	Con	dition	2	3	1
1	а	н	Me	benzene	50°C	104 h	27	22	42
2	а	Н	Me	toluene	80°C	71 h	79	48	5
3	b	Н	CH ₂ Ph	toluene	80°C	101 h	78	52	-
4	с	Н	н	toluene	80°C	40 h	64	28	9
5	d	н	TBDMS	toluene	80°C	79 h	84	33	10
6	е	OMe	Ме	toluene	80°C	48 h	82	80	6

When methyl 1-*p*-methoxybenzylindole-2-carboxylate (4a), which has a methoxycarbonyl group at the 2position on an indole ring, was treated with DDQ (2.2 equivalents) in benzene at 50°C for 55 h, 4a was recovered (Scheme 2). However, reaction of 4a with TFA (5 equivalents) in CH_2Cl_2 at room temperature gave a mixture of the NH derivative (5a) and 3-*p*-methoxybenzylindole (6) in 6 and 50% yields, respectively, but in the presence of *m*-dimethoxybenzene (DMB)(3 equivalents), 4a gave 5a in 77% yield as shown in Table 2 (Entries 1 and 2). Next, we investigated the reactivity of dimethyl 1-*p*-methoxybenzylindole-2,3-dicarboxylate (4b), which has an additional methoxycarbonyl group at the 3-position on the indole ring. 4b was also recovered by treatment with DDQ (2.2 equivalents) in benzene at 50°C for 55 h, but the reaction of 4b in hot TFA provided 5b in 52% yield (Entry 4).

Scheme 2

a; R = H, b; R = COOMe

Viold/9/ V

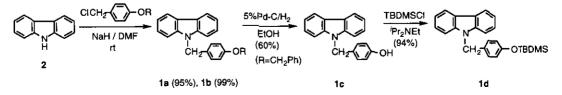
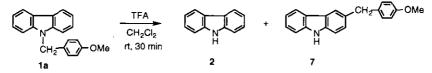

							TIERO	(70)
Entry	4	<u>R</u>	Additive	Solvent	Cond	dition	5	6
1	а	Н	_	CH ₂ Cl ₂	rt	8 h	6	50
2	а	н	DMB	(CH ₂ Cl) ₂	reflux	8 h	77	23
3	b	COOMe	—	(CH ₂ CI) ₂	reflux	20 h	reco	vered
4	b	COOMe		TFA	reflux	0.5 h	52	

Table 2


DMB = m-dimethoxybenzene

REFERENCES AND NOTES

- 1. T. W. Green and P. G. M. Wuts, 'Protective Groups in Organic Synthesis,' 2nd ed., John Wiley and Sons, Inc. New York, 1991.
- R. J. Sundberg and H. F. Russell, J. Org. Chem., 1973, 38, 3324; M. P. Edwards, A. M. Doherty, S. V. Ley, and H. M. Organ, *Tetrahedron*, 1986, 42, 3723; J. E. Macor, K. Ryan, and M. E. Newman, J. Org. Chem., 1989, 54, 4785; J. E. Macor, J. T. Forman, R. J. Post, and K. Ryan, *Tetrahedron Lett.*, 1997, 38, 1673.
- Y. Miki, Y. Tada, N. Yanase, H. Hachiken, and K. Matsushita, *Tetrahedron Lett.*, 1996, 37, 7753.
- Y. Murakami, T. Watanabe, A. Kobayashi, and Y. Yokoyama, Synthesis, 1984, 738; T. Watanabe, A. Kobayashi, M. Nishiura, H. Takahashi, T. Usuí, I. Kamíyama, N. Mochizuki, K. Noritake, Y. Yokoyama, and Y. Murakami, Chem. Pharm. Bull., 1991, 39, 1152; Y. Miki and H. Hachiken, Synlett, 1993, 333; H. Suzuki, A. Tsukuda, M. Kondo, M. Aizawa, Y. Senoo, M. Nakajima, T. Watanabe, Y. Yokoyama, and Y. Murakami, Tetrahedron Lett., 1995, 36, 1671.
- 5. D. R. Buckle and C. J. M. Rockell, J. Chem. Soc., Perkin Trans. I, 1982, 627.
- 6. E. D. Edstrom and Y. Wei, J. Org. Chem., 1993, 58, 403.
- 7. K. Hirota, T. Yoshioka, T. Tanaka, Y. Oikawa, and O. Yonemitsu, Tetrahedron, 1986, 42, 3032.
- 8. Fremy's salt, CAN,⁹ and RuO₄ / NaIO₄¹⁰ were not effective for the oxidative debenzylation of 1a.
- 9. H. Yoda, T. Nakajima, and K. Tanabe, Tetrahedron Lett., 1996, 37, 5531.
- 10. P. H. J. Carlsen, T. Katsuki, V. S. Martin, and K. B. Sharpless, J. Org. Chem., 1981, 46, 3938.
- 11. 9-p-Alkoxybenzylcarbazoles (1a-d) were synthesized as follows:

12. Treatment of **1a** with TFA (5 equivalents) in CH_2Cl_2 gave **2** and 3-*p*-methoxybenzylcarbazole (7) in 14 and 66% yields, respectively. However, when 9-benzylcarbazole was treated with hot TFA for 3 h, the starting material was recovered.

13. Typical Experimental Procedure

A mixture of **1a** (57 mg, 0.2 mmol) and DDQ (100 mg, 0.44 mmol) in toluene (2 mL) and H₂O (0.1 mL) was stirred at 80 °C for 71 h. Saturated aqueous NaHCO₃ solution was added to the reaction mixture and the mixture was extracted with CHCl₃. The extracts were washed with water, dried over Na₂SO₄, and evaporated off. The residue was purified by TLC on silica gel (*n*-hexane : $CH_2Cl_2 = 4 : 1$) to give **2** (26 mg, 79%), **3a** (13 mg, 48%), and **1a** (3 mg, 5%).

Received, 5th September, 1997