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Abstract - Palladium(0)-catalyzed cross-coupling reaction of 5-stanuylimidazole 

with 3-iodoindole gave two products including unexpected cine substitution. 

Palladium(0)-mediated coupling reaction of organotin compounds with halides or triflates (Stille reaction) 

has emerged in recent years as a powerful method for the stereoselective and chemoselective formation of 

carbon-carbon bonds including heterocycles.' One of the limitations of this method that has recently been 

reported is in the tendency of certain a-substituted olefinic stannane to undergo cine suhstitution.2 To date, 

cine-substitution of q l -  andlor heteroarylstannane has not yet been reported. Here, we describe the first 

example of cine substitution of heteroarylstannane. 
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During the course of studies toward total syntheses of grossularines-1 and -2,3.4 we required 

3-imidazolylindole (4b) for the synthesis of a tetracyclic a-carboline framework. 5-Stannylimidazole (2) 

was prepared from I-ethoxymethyl(E0M)-5-bromo-2-methylthiodaoe (1)s by bromine-lithium 

exchange reaction with u-BuLi followed by treatment with trimethyltin chloride. The cross-coupling 

reaction of 2 with 3-iodoindole (3)6 was canied out in the presence of Pd(PPhi)a in DMF (12 h at 120 "C) 

to give two coupling products. Both products were easily separated by silica gel column chromatography 

[EtOAchexane (3:7)] to give the faster moving product and the slower moving product (46 and 38% 
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yields based on 3).  Each compound showed similar spectral data except the melting points, and we 

therefore tantatively suggested that the faster moving product was 3-(4-imidazolyl)indole (4a) and the 

slower moving product was 3-(5-imidazolyl)indole (4 b) .7 Moreover, this reaction was re-examined using 

the protocol [Pd(PPh3)4, 2,6-di-tert-butyl-4-methylphenol, i-PrzNEt, toluene, reflux] of Stork2b to 

produce the same two products [4a (13%) and 4 b  (34%) yields based on 31. In addition, an existence of 

regioisomer of 5-bromoimidazole or 5-stannylimidazole (2)8 has been denied in spectral data and by 

thin layer chromatography. 
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For the determination of structures of 4 a  and 4 b ,  both products independently led to tetracyclic 

a-carbolines as follows. Hydrolysis of esters (4a  and 4 b )  followed by Curtius rearrangement using 

diphenylphosphoryl azide (DPPA) yielded isocyanates (6: 81% and 9:  84% from 4 a  and 4b) ,  which were 

subjected to thermal electrocyclic reaction in the 2-azahexatriene system9 involving the indole 2,3-bond in 

o-dichlorobenzene to provide tetracyclic a-carholines (7: 72% and 1 0 :  91%)'0 (Scheme 2). In the 

difference nuclear Overhauser effect (NOE) experiments, when C5-H of a-carboline (7) was irradiated, no 

NOE enhancement of the methylene group (EOM-group) was observed. On the other hand, irradiation of 

C5-H of a-carboline (1 0) caused NOE enhancement (8.0%) of the methylene group (EOM-group). These 

results indicated that the faster moving product corresponding to a-carboline (7) was abnormal product, 

3-(4-imidazolyl)indole (4a) and the slower moving product corresponding to a-carboline (1  0) was the 

normal product, 3-(5-imidazolyl)indole (4b) as initially speculated. It was demonstrated that this reaction 

proceeds by way of not only ipso-substitution but also cine-substitution reaction. Thus, we found 

anomalous Stille reaction between heteroatylstannane and heteroaryl halide. 
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Mechanistically, the indole-Pd"-I species, derived from oxidative insertion of Pd(0) into 3-iodoindole (3). 

would be coordinated with the imidazolylstannane. For the normal ipso-substitution, transmetalation of 

this coordinated species1 ' would be converted into the indole-Pd"-imidazole species and then the ipso 

product (4b) would be 0btained.l In contrast, this coordinated species'' might undergo a Heck-type 

insertion reaction by some factors. Next step, a palldium-carbene intermadiatezb-e reported recently might 

be generated by 1,l-elimination of trimethyltin iodide from a Heck-type adduct to yield the cine product 

(4a) through 1,2-hydrogen shift followed by reductive elimination. It is considered that factors in order to 

undergo cine substitutions depend on an electronic andlor a steric effects of substituents of imidazole 

ring.2b-e Further studies are in progress. 
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