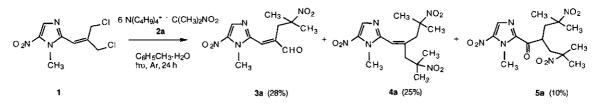
# SYNTHESIS OF NEW 2-HIGHLY BRANCHED 5-NITRO-IMIDAZOLES BY BIS-S<sub>RN</sub>1 METHODOLOGY

Patrice Vanelleab, \* Kamel Benakliab, José Maldonadoa, and Michel P. Crozetb

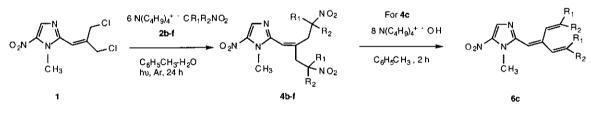

<sup>a</sup>Laboratoire de Chimie Organique, Université de la Méditerranée, Faculté de Pharmacie, 27 Bd J. Moulin, 13385 Marseille Cedex 05, France

<sup>b</sup>Laboratoire de Chimie Moléculaire Organique, UMR 6517 «Chimie, Biologie et Radicaux Libres», Universités d'Aix-Marseille 1 et 3, Faculté des Sciences et Techniques de Saint-Jérôme, Av Escadrille Normandie-Niemen, B 562, 13397 Marseille Cedex 20, France

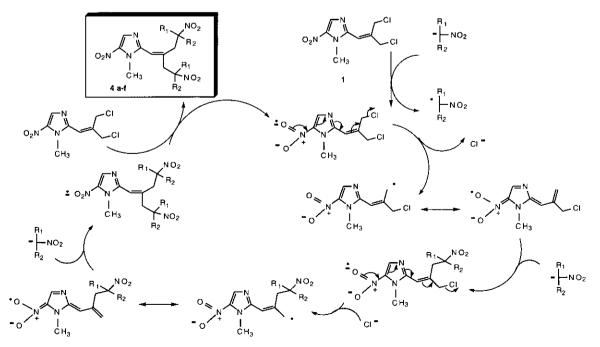
<u>Abstract</u>- A versatile bis-S<sub>RN</sub>1 methodology allows straightforward access to 2highly branched 5-nitroimidazoles by reacting 3-chloro-2-chloromethyl-1-(1methyl-5-nitroimidazol-2-yl)prop-1-ene with various nitronate anions.

Since the initial proposal by Kornblum<sup>1</sup> and Russell<sup>2</sup> of the radical chain mechanism put forward to explain the *C*-alkylation of nitronate anions by *p*-nitrobenzyl chloride and its designation as  $S_{RN}I$  by Bunnett,<sup>3</sup> there has been a booming development of the reaction both from synthetic and mechanistic points of view. The first bis- $S_{RN}I$  reaction has been recently disclosed in naphthoquinone series,<sup>4</sup> leading the bis-*C*alkylation product in 80% yield. The unique heterocyclic example has been reported in imidazole series, but if the bis-*C*-alkylation product (**4a**) was obtained in 25% yield, the reaction of 3-chloro-2-chloromethyl-1-(1-methyl-5-nitroimidazol-2-yl)prop-1-ene (1) with 2-nitropropane anion (**2a**) gave also two other products proceeding by an initial  $S_{RN}I$  mechanism followed by  $S_N2$  or  $S_N2'$  and Michael reactions leading respectively to the aldehyde (**3a**) (28%) and the derivative (**5a**) (10%) as shown in Scheme 1.<sup>5</sup>

Scheme 1




The nitroimidazoles, in particular metronidazole the most commonly used, are accepted as the drugs of choice for the chemotherapy of anaerobic bacteria and protozoal diseases and also for the radiosensitization of hypoxic tumors.<sup>6</sup> However, resistance to these compounds has been demonstrated in trichomonads and


in *Bacteroides fragilis*, both in natural populations and induced in the laboratory under drug pressure.<sup>7</sup> Moreover, certain nitroimidazoles have been found to be mutagenic and carcinogenic.<sup>8</sup> Thus, new principles for treatment of infections are therefore highly desirable.

On the other hand, the nature of nucleophile is crucial to  $S_{RN}1$  reactions, and therefore an understanding of the relationship between the nucleophile and the substrate in single electron transfer reaction is of use to increase the selectivity and the yield of the reaction.<sup>9</sup> In continuation of our program directed toward the preparation of new pharmacological compounds by  $S_{RN}1$  reactions,<sup>10</sup> we have investigated the reactivity of 1 with various aliphatic, cyclic and heterocyclic nitronate anions. By using the same experimental conditions, phase-transfer conditions<sup>11</sup> with 40% tetrabutylammonium hydroxide in water and toluene and when the ratio of nitronate anion to bis-chloride was 6/1, only the bis-*C*-alkylation products (**4b-f**) were obtained in moderate to good yield (48 to 62%) as shown in Scheme 2 and indicated in table.





By comparison with 2a, these results seem surprising but may be explained by possible intervention of secondary steric hindrances disfavoring the ionic competitive reactions of  $S_{RN}1$ , and the bis- $S_{RN}1$  as demonstrated in Scheme 3 was the predominant mechanism observed.



#### Scheme 3

| Ί | 'al | Ы | e |
|---|-----|---|---|
|   |     |   |   |

|          |                                                   |       | Formula                                                        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------------|-------|----------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Product of                                        | Yield | Analysis data                                                  | mp   | RMN <sup>1</sup> H (200MHz, CDCl <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | bis-C-alkylation 4                                | (%)   | % Calcd; Found                                                 | (°C) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>—</b> |                                                   |       |                                                                |      | 1:1 mixture of stereoisomers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | NO <sub>2</sub>                                   |       | C <sub>18</sub> H <sub>29</sub> N <sub>5</sub> O <sub>6</sub>  |      | 0.94 (m, 3H); 0.97 (m, 3H); 1.17 (m, 2H); 1.42 (m, 2H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ь        |                                                   | 48    | 018112911300                                                   | 104  | 1.49 (s, 3H); 1.51 (s, 3H); 1.77 (m, 2H); 2.05 (m, 2H); 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                   | -10   | C, 52.54; 52.60                                                | 104  | or 3.10 (AX, $J_{AX}$ = 14.1 Hz, 1H); 2.58 or 3.53 (AB, $J_{AB}$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | CH <sub>3</sub> NO <sub>2</sub>                   |       | H, 7.10; 7.03                                                  |      | 14.1 Hz, 2H); 3.87 or 3.88 (s, 3H); 2.92 or 4.10 (AX, $J_{AX}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | -                                                 |       | N, 17.02; 16.99                                                |      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                                   |       |                                                                |      | = 14.1 Hz, 1H); 6.03 or 6.06 (s, 1H); 7.97 or 7.98 (s, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                                                   |       | C <sub>20</sub> H <sub>29</sub> N <sub>5</sub> O <sub>6</sub>  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| с        | $\int \lambda^{N} \lambda^{O_2N} \langle \rangle$ | 59    |                                                                | 100  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                   |       | C, 55.16; 55.20                                                | 180  | 1.26-1.33 (m, 4H); 1.56 (m, 12H); 2.40 (m, 4H); 2.51 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | $CH_3 $                                           |       | H, 6.71; 6.80                                                  |      | 2H); 3.41 (s, 2H); 3.88 (s, 3H); 5.97 (s, 1H); 7.99 (s, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                   |       | N, 16.08; 16.10                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                   |       | C22H33N5O6                                                     |      | 1.58 (m, 10H); 1.70-1.82 (m, 2H); 1.90-1.98 (m, 2H); 2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                   |       |                                                                |      | (dd, J = 15.3 and 8.1 Hz, 4H); 2.26-2.40 (m, 2H); 2.52 (s, 10.1); 2.52 (s, 1 |
| d        | O <sub>2</sub> N <sup>N</sup> N                   | 51    | C, 57.01; 56.92                                                | 120  | 2H); 2.60 (dd, J = 15.6 and 8.2 Hz, 4H); 3.60 (s, 2H); 3.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | CH <sub>3O2N</sub>                                |       | H, 7.18; 7.20                                                  |      | (s, 3H); 5.95 (s, 1H); 8.00 (s, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | - 🗸                                               |       | N, 15.11, 15.09                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                   |       |                                                                |      | 1:1 mixture of stereoisomers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                   |       | C22H29N5O6                                                     |      | 1.05-1.39 (m, 6H); 1.45-1.60 (m, 6H) 1.67 (m, 1H); 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                   |       |                                                                |      | (m, 1H); 1.96 (m, 1H); 2.08 (m, 1H); 2.36 (m, 4H); 2.53 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| e        |                                                   | 49    | C, 57.51; 57.60                                                | 172  | 2.58 (AX, $J_{AX}$ = 15.3 Hz, 1H); 3.05 or 3.08 (AX, $J_{AX}$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | CH,                                               |       | H, 6.36; 6.40                                                  |      | 15.3 Hz, 1H); 3.16 or 3.28 (AX, $J_{AX} = 14.6$ Hz, 1H); 3.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | NO <sub>2</sub>                                   |       | N, 15.24; 15.30                                                |      | or 3.86 (s, 3H); 4.18 or 4.24 (AX, $J_{AX}$ = 14.6 Hz, 1H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                                                   |       |                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u> </u> |                                                   |       | CaoHaoN-Or-                                                    |      | 5.94 or 5.95 (s, 1H); 7.98 (s, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                   |       | C <sub>20</sub> H <sub>29</sub> N <sub>5</sub> O <sub>10</sub> |      | 1 41 (a 6H), 1 46 (a 6H), 4 00 (a 2H), 4 15 (a 2H), 4 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | $O_2N$ $N$ $O_2N$ $O$ $O$                         | 62    |                                                                | 104  | 1.41 (s, 6H); 1.46 (s, 6H); 4.00 (s, 3H); 4.15 (m, 2H); 4.28 (m, 2H); 4.25 (m, 2H); 4.42 (a, 2H); 4.47 (m, 2H); 5.00 (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| I        |                                                   | 62    | C, 48.09; 48.10                                                | 104  | (m, 2H); 4.35 (m, 2H); 4.42 (s, 2H); 4.47 (m, 2H); 5.00 (s, 2H); 6.52 (c, 1H); 8.06 (c, 1H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | $CH_3 \xrightarrow{VO} O$<br>NO <sub>2</sub>      |       | H, 5.85; 5.79                                                  |      | 2H); 6.52 (s, 1H); 8.06 (s, 1H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                   |       | N, 14.02; 13.95                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

By base-promoted nitrous acid elimination, new highly conjugated 5-nitroimidazoles of potential biological interest **6** may also be obtained: for example, **4c** in refluxing toluene with 8 equiv of 40%  $N(C_4H_9)_4OH$  in water for 2 h, gave **6c** in 80% yield.

In conclusion, we have developed an original and easy access to new 2-highly branched 5-nitroimidazoles by using a bis- $S_{RN1}$  reaction and shown that crowded nitronates gave more selective reactions. The biological activities of these new 5-nitroimidazoles are under investigation.

### **ACKNOWLEDGEMENTS**

The support of this work by the Centre National de la Recherche Scientifique is gratefully acknowledged. We thank Dr R. Faure for stimulating discussions about these spectroscopic data.

## EXPERIMENTAL

Melting points were taken on a Büchi apparatus using glass capillary tubes and are uncorrected. The <sup>1</sup>H NMR spectra were recorded on a Bruker 200 MHz instrument and chemical shifts are reported in  $\delta$  units (ppm) relative to internal TMS. Microanalyses for C, H, N were performed by the Microanalytical Section of St-Jérôme Faculty, Aix-Marseille 3 University, France.

The chloride (1) is obtained by chloration of 2-(1-methyl-5-nitro-1*H*-imidazol-2-ylmethylene)propane-1,3diol<sup>12</sup> with thionyl chloride. The nitroalkanes (**2b-e**) are prepared from secondary amines by oxidation with *m*-CPBA in refluxing 1,2-dichloroethane for 3 h,<sup>13</sup> and 2,2-dimethyl-5-nitro-1,3-dioxane (**2f**) was obtained as previously described.<sup>14</sup>

General Procedure for SRN1 reactions in Norris conditions

Under nitrogen atmosphere, an aqueous solution of 40% tetrabutylammonium hydroxide in water (7.9 mL, 12 mmol) reacted with nitroalkane or 2,2-dimethyl-5-nitro-1,3-dioxane (12 mmol) for 1 h. A solution of 3-chloro-2-chloromethyl-1-(1-methyl-5-nitroimidazol-2-yl)prop-1-ene (1) (0.50 g, 2 mmol) in 20 mL of toluene was added and the mixture was stirred for 24 h under nitrogen and irradiation with two 60 W fluorescent lamps. The organic layer was separated and the aqueous layer was extracted with three portions of toluene (20 mL). The combined organic layers were washed twice with 40 mL of water, dried over MgSO<sub>4</sub> and evaporated under reduced pressure. Purification by chromatography on a silica gel column eluting with dichloromethane-ethyl acetate (95/5) and recrystallization from ethanol gave the bis-C-alkylation product (**4b-f**) as yellow solid.

2-(3-Cyclohexylidene-2-cyclohexylidenemethylpropenyl)-1-methyl-5-nitro-1H-imidazole (6c)

To a solution of 0.40 g (0.92 mmol) of 1-methyl-5-nitro-2-[3-(1-nitrocyclohexyl)-2-(1-nitrocyclohexylmethyl)propenyl]-1*H*-imidazole (**4c**) in 20 mL of toluene, an aqueous solution of 40% tetrabutylammonium hydroxide in water (4.8 mL, 7.3 mmol) was added. After 2 h refluxing, the organic layer was separated and the aqueous layer was extracted with toluene (3 x 20 mL). The combined organic layers were washed with water (3 x 50 mL), dried over MgSO<sub>4</sub> and evaporated under reduced pressure. The crude solid was purified by chromatography on a silica gel column eluting with dichloromethane and recrystallization from hexane gave 0.25 g (80%) of the product as yellow needles, mp 91 °C, <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.57-1.60 (m, 12H); 2.22-2.40 (m, 8H); 3.87 (s, 3H); 5.92 (br s, 2H); 6.33 (s, 1H); 8.08 (s, 1H). Anal. Calcd for C<sub>20</sub>H<sub>27</sub>N<sub>3</sub>O<sub>2</sub>: C, 70.35; H, 7.97; N, 12.31. Found: C, 70.40; H, 7.93; N, 12.30.

#### REFERENCES

- 1. N. Kornblum, R. E. Michel, and R. C. Kerber, J. Am. Chem. Soc., 1966, 88, 5660 and 5662.
- 2. G. A. Russell and W. C. Danen, J. Am. Chem. Soc., 1966, 88, 5663.

- 3. J. K. Kim and J. F. Bunnett, J. Am. Chem. Soc., 1970, 92, 7463.
- 4. P. Vanelle, S. Donini, T. Terme, J. Maldonado, C. Roubaud, and M. P. Crozet, *Tetrahedron Lett.*, 1996, **37**, 3323.
- 5. P. Vanelle, K. Benakli, J. Maldonado, C. Roubaud, and M. P. Crozet, Heterocycles, 1996, 43, 731.
- A. Breccia, B. Cavalerri, and G. E. Adams, 'Nitroimidazoles: Chemistry, Pharmacology and Clinical Application,' Plenum Press, New York, 1982; M. D. Nair and K. Nagarajan, 'Progress in Drug Research: Nitroimidazoles as chemotherapeutic agents,' Vol. 27, ed. by E. Jucker, Birkhauser Verlag, Basel, 1983, pp. 163-252.
- 7. J. G. Meingassner, H. Mieth, R. Czok, D. G. Lindmark, and M. Muller, Antimicrob. Agents Chemother., 1978, 13, 1; M. L. Britz and R. G. Wilkinson, *ibid.*, 1979, 16, 19.
- C. E. Voogd, *Mutat. Res.*, 1981, 86, 243; M. De Méo, P. Vanelle, E. Bernadini, M. Laget, J. Maldonado, O. Jentzer, M. P. Crozet, and G. Duménil, *Env. Mol. Mutagen.*, 1992, 19, 167; J. L. Ré, M. De Méo, M. Laget, H. Guiraud, M. Castegnaro, P. Vanelle, and G. Duménil, *Mutat. Res.*, 1997, 375,147.
- W. R. Bowman, 'Photoinduced Electron Transfer: Photoinduced Nucleophilic Substitution at sp<sup>3</sup>-Carbon,' ed. by M. A. Fox, and M. Chanon, Elsevier, Amsterdam, 1988, Part C, Chap. 4.8, pp. 421-486.
- P. Vanelle, M. P. Crozet, J. Maldonado, and M. Barreau, *Eur. J. Med. Chem.*, 1991, 26, 167; O. Jentzer, P. Vanelle, M. P. Crozet, J. Maldonado, and M. Barreau, *ibid.*, 1991, 26, 687; M. P. Crozet, A. Gellis, C. Pasquier, P. Vanelle, and J.-P. Aune, *Tetrahedron Lett.*, 1995, 36, 525; C. Roubaud, P. Vanelle, J. Maldonado, and M. P. Crozet, *Tetrahedron*, 1995, 51, 9643; A. Gellis, P. Vanelle, M. Kaafarani, K. Benakli, and M. P. Crozet, *ibid.*, 1997, 53, 5471.
- B. L. Burt, D. J. Freeman, P. G. Gray, R. K. Norris, and D. Randles, *Tetrahedron Lett.*, 1977, 3063.
- 12. P. Vanelle, J. Maldonado, M. P. Crozet, K. Senouki, F. Delmas, M. Gasquet, and P. Timon-David, *Eur. J. Med. Chem.*, 1991, 26, 709.
- 13. K. E. Gilbert and W. T. Borden, J. Org. Chem., 1979, 44, 659.
- 14. H. Piotrowska, T. Urbanski, and I. Kmiotek, Roczn. Chem., 1973, 47, 409.

Received, 18th September, 1997