REACTION OF 4-BROMOBENZYL-3-METHYL-1,2-OXAZIN-6-ONES WITH PRIMARY ALIPHATIC AMINES. SYNTHESIS AND STRUCTURAL DETERMINATION OF NEW OXAZINE AND ISOXAZOLE DERIVATIVES

Monique Bebot,^a Pascal Coudert,^a Fernand Leal,^a Jacques Métin,^b Vincent Gaumet,^b Sylvie Mavel,^d Catherine Rubat,^c and Jacques Couquelet^a*

^aLaboratoire de Chimie Thérapeutique; ^bLaboratoire de Chimie Physique et Minérale; ^cLaboratoire de Pharmacologie, Groupe de Recherche en Pharmacochimie, UFR de Pharmacie, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France; ^dLaboratoire de Chimie Thérapeutique, Faculté des Sciences Pharmaceutiques, Université François Rabelais, Avenue Monge, 37200 Tours, France

Abstract - Reaction of 4-bromobenzyl-6<u>H</u>-1,2-oxazin-6-ones (1) with aminoalkylamines furnished a mixture of 5-aminoalkylamino-6<u>H</u>-1,2-oxazin-6-ones (2), 4-(aminoalkylaminocarbonylmethyl)isoxazoles (3) and 5-(Aminoalkylaminocarbonyl)isoxazoles (4) which were separated by column chromatography. Structure of all derivatives was determined by ¹H- and ¹³C-NMR methods, including INEPT measurements. Structure of isoxazoles (3) and (4) was confirmed by X-Ray analysis. In addition, test compounds were investigated for analgesic and antidepressant activities in mice.

In earlier experiments, we prepared several compounds by substitution of 4-bromobenzyl-6<u>H</u>-1,2-oxazin-6-ones with arylpiperazines. The aim of these investigations was the synthesis of new analgesic derivatives.¹ We extended the application of the above reaction to different diamines : morpholinoalkylamines and dimethylaminoalkylamines. Introduction of these amino groups into pharmacophoric nuclei often produced biologically active compounds, such as analgesics^{2,3} or antidepressants.⁴⁻⁶ While the action of arylpiperazines led to a sole type of derivatives, primary amines yielded three different compounds due to rearrangements. As part of our studies, we describe here the synthesis of new 1,2-oxazine and isoxazole derivatives. Their structures were established on the basis of spectral data and were confirmed by X-Ray measurements.

SYNTHESIS

Starting 4-bromobenzyl-3-methyl-1,2-oxazin-6-ones (1) were prepared according to a previously described procedure.¹ Reaction of diamines with 1 in methanolic solution gave rise to a mixture of three derivatives as shown in Scheme 1. The ratio of products (2, 3 and 4) depends on the employed bases. Thus, dimethylaminoalkylamines furnished only compounds (3), whereas morpholinoalkylamines led to the three different compounds. Formation of 5-substituted 1,2-oxazinones (2) (Tables 1-3) involved an S_N2' mechanism without intramolecular rearrangement. Isoxazoles (3) (Tables 4-6) and (4) (Tables 7-9) were generated through an opening of the oxazine ring by amines, leading to an oxime intermediate. Further cyclisation occured by S_N2 and S_N2' mechanisms for 3 and 4 respectively.

Compd X		n	Yield	mp	Formula	Analy	sis %	Calcd (F	ound)
			(%)	(°C)		C	Н	N	Cl
2a	н	2	18	71-74	C ₁₈ H ₂₃ N ₃ O ₃	65.63	7.04	12.76	
			ļ	ļ	J	(65.42	7.18	12.49)	
2b	н	3	8	71-83	C ₁₉ H ₂₅ N ₃ O ₃	66.44	7.34	12.24	
						(66.72	7.28	12.15)	
2c	CI	2	5	yellow oil	C ₁₈ H ₂₂ N ₃ O ₃ Cl	59.42	6.10	11.55	9,74
						(59.21	6.33	11.63	9.81)
2d	СІ	3	16	yellow oil	C ₁₉ H ₂₄ N ₃ O ₃ Cl	60.39	6.40	11.12	9.38
						(60.38	6,72	11.14	9.20)

Table 1. Yield, physical and analytical data for derivatives (2a-d).

Table 2. Characteristic IR frequencies and ¹H-NMR chemical shifts of derivatives (2a-d).

Compd IR (cm ⁻¹ , KBr)		ⁱ , KBr)	ⁱ H-NMR (CDCl ₃ , δ, ppm)			
	V N-H	<u>v C=</u> 0				
2a	3630-3240	1700	2.16 (3H, s, CH ₃), 2.37 (4H, t, \underline{J} = 4.5 Hz, 2 CH ₂ morph.), 2.48 (2H, t, \underline{J} = 5.9 Hz,			
			CH ₂), 3.63 (2H, dt, $J = 5.9$ and 4.8 Hz, CH ₂), 3.83 (4H, t, $J = 4.5$ Hz, 2 CH ₂			
			morph.), 3.92 (2H, s, CH_2 -C ₆ H ₅), 6.02 (1H, t, $J = 4.7$ Hz, N-H), 7.15–7.39 (5H,			
	1		$ m, C_6H_5\rangle$			
2b	3660-3160	1695	1.68 (2H, quint, $\underline{J} = 6.2$ Hz, CH ₂), 2.06 (3H, s, CH ₃), 2.38-2.41 (6H, m, CH ₂ +2			
ł	}		CH ₂ morph.), 3.53 (2H, t, \underline{J} = 6.2 Hz, CH ₂), 3.68 (4H, t, \underline{J} = 4.6 Hz, 2 CH ₂			
			morph.), 3.93 (2H, s, C <u>H</u> ₂ -C ₆ H ₅), 6.77 (1H, br s, N-H), 7.12-7.33 (5H, m, C ₆ H ₅)			
2c	3620-3120	1695	2.11 (3H, s, CH ₃), 2.33 (4H, t, $J = 4.5$ Hz, 2 CH ₂ morph.), 2.44 (2H, t, $J = 5.8$ Hz,			
			CH ₂), 3.48 (2H, dt, \underline{J} = 5.8 and 5.0 Hz, CH ₂), 3.58 (4H, t, \underline{J} = 4.5 Hz, 2 CH ₂			
			morph.), 3.89 (2H, s, CH_2 -C ₆ H ₄), 6.02 (1H, br s, N-H), 6.93-7.47 (4H, m, C ₆ H ₄)			
2đ	3700-3100	1695	1.68 (2H, quint, \underline{J} = 6.2 Hz, CH ₂), 2.06 (3H, s, CH ₃), 2.40-2.43 (6H, m, CH ₂ +2			
			CH ₂ morph.), 3.43 (2H, t, \underline{J} = 6.2 Hz, CH ₂), 3.71 (4H, t, \underline{J} = 4.7 Hz, 2 CH ₂			
			morph.), 3.94 (2H, s, CH ₂ -C ₆ H ₄), 6.90 (1H, br s, N-H), 6.98-7.45 (4H, m, C ₆ H ₄)			

Table 3. ¹³C-NMR chemical shifts of derivatives (2a-d).

Compd	СН3	CH₂ benz.	(CH ₂) _n	CH ₂ morph,	C (4)	Ar	C(5)	C=N	C=0
2a	17.9	32.2	40.6, 57.1	52.9, 66.8	107.6	127.0-137.0	137.4	156.3	163.3
2b	17.9	32.5	25.9, 44.8, 57.2	53.8, 66.5	106.1	126.9-138.2	137.2	156.7	164.3
2c	17.7	30.3	40.4, 57.1	52.9, 66.7	105.9	127.4-134.9	137.3	156.2	163.7
2d	17.5	30.4	25.7, 44.3, 57.0	53.6, 66.3	104.4	127.4-135.8	137,4	156.5	164.0

Compd	x	R	n	Yield	mp	Formula	Analy	sis %	Calcd (F	ound)
				(%)	<u>(°C)</u>		c	Н	Ν	CI
3a	н	(^N)	2	33	119-123	C ₁₈ H ₂₃ N ₃ O ₃	65.63 (65.45	7.04 6.92	12.76 13.01)	
3Ъ	Н		3	58	150-162	C19H25N3O3	66.44 (66.75	7.34 7.16	12.24 12.16)	
3c	Cl		2	22	93-101	C ₁₈ H ₂₂ N ₃ O ₃ Cl	59.42 (59.25	6.10 6.37	11.55 11.72	9.74 9.82)
3d	CI		3	39	brown oil	C ₁₉ H ₂₄ N ₃ O ₃ Cl	60,39 (60.32	6.40 6.71	11.12 11.23	9.38 9.02)
3e	н	× ^N	2	28	111-115	$C_{16}H_{21}N_3O_2$	66.87 (66.47	7.37 7.24	14.63 14.85)	
3f	Н	× ^N ×	3	24	102-105	$C_{17}H_{23}N_3O_2$	67.74 (68.01	7.69 7.48	13.95 14.05)	
3g	CI	×N_	2	. 19	yellow oil	C ₁₆ H ₂₀ N ₃ O ₂ CI	59.71 (59.57	6.26 6.21	13.06 13.31	11.02 10.69)
3h	СІ	, N	3	31	yellow oil	C ₁₇ H ₂₂ N ₃ O ₂ Cl	60.80 (60.51	6.60 6.75	12.52 12.84	10.56 10.37)

Table 4. Yield, physical and analytical data for derivatives (3a-h).

Table 5. Characteristic IR frequencies and ¹H-NMR chemical shifts of derivatives (3a-h).

Compd	IR (cm [*]	¹ , KBr)	¹ H-NMR (CDCl ₃ , δ, ppm)
	VN-H	v C=0	
3a	3660-3140	1645	2.32-2.33 (7H, m, CH ₃ +2 CH ₂ morph.), 2.41 (2H, t, $J = 5.9$ Hz, CH ₂), 3.34 (2H,
			dt, J = 5.9 and 4.9 Hz, CH ₂), 3.51-3.53 (6H, m, CH ₂ +2 CH ₂ morph.), 6.45 (1H, br
			s, N-H), 7.46-7.71 (5H, m, C ₆ H ₅)
3b	3660-3160	1635	1.71 (2H, quint, $J = 6.6$ Hz, CH ₂), 2.34 (3H, s, CH ₃), 2.40-2.44 (6H, m, CH ₂ +2
			CH ₂ morph.), 3.38 (2H, dt, $J = 6.6$ and 5.1 Hz, CH ₂), 3.54 (2H, s, CH ₂ -C=O), 3.65
			(4H, t, $J = 4.6$ Hz, 2 CH ₂ morph.), 6.80 (1H, t, $J = 4.8$ Hz, N-H), 7.49-7.71 (5H,
			m, C_6H_5)
3c	3540-3140	1650	2.33 (3H, s, CH ₃), 2.46-2.50 (6H, m, CH ₂ +2 CH ₂ morph.), 3.32-3.36 (4H, m,
			CH ₂ + CH ₂ -C=O), 3.66 (4H, t, $J = 4.5$ Hz, 2 CH ₂ morph.), 6.56 (1H, br s, N-H),
			7.36-7.52 (4H, m, C ₆ H ₄)
3d	3700-3150	1645	1.67 (2H, m, CH ₂), 2.24 (3H, s, CH ₃), 2.47-2.53 (6H, m, CH ₂ +2 CH ₂ morph.),
			3.20-3.23 (4H, m, CH ₂ +CH ₂ -C=O), 3.64 (4H, t, $J = 4.5$ Hz, 2 CH ₂ morph.), 7.17
			(1H, br s, N-H), 7.31-7.43 (4H, m, C ₆ H ₄)
3e	3600-3240	1645	2.11 (6H, s, N(CH ₃) ₂), 2.30-2.33 (5H, m, CH ₃ +CH ₂), 3.29 (2H, dt, \underline{J} = 5.9 and 5.2
			Hz, CH ₂), 3.48 (2H, s, CH ₂ -C=O), 6.30 (1H, br s, N-H), 7.42-7.70 (5H, m, C_6H_5)
3f	3360-3140	1645	1.54 (2H, quint, $J = 5.6$ Hz, CH ₂), 1.90 (6H, s, N(CH ₃) ₂), 2.27-2.31 (5H, m,
			CH ₃ +CH ₂), 3.38 (2H, dt, \underline{J} = 5.6 and 4.7 Hz, CH ₂), 3.50 (2H, s, CH ₂ -C=O), 7.45-
_			7.69 (5H, m, C_6H_5), 8.33 (1H, br s, N-H)
3g	3620-3140	1650	2.17 (6H, s, $N(CH_3)_2$), 2.31-2.37 (5H, m, CH_3+CH_2), 3.25-3.30(4H, m,
			$CH_2+CH_2-C=O$), 6.40 (1H, br s, N-H), 7.33-7.51 (4H, m, C ₆ H ₄)
36	3620-3120	1650	1.33 (2H, quint, $J = 6.4$ Hz, CH ₂), 1.82 (6H, s, N(CH ₃) ₂), 1.97-2.05 (5H, m,
			CH_3+CH_2 , 2.98-3.02 (4H, m, $CH_2+CH_2-C=0$), 7.07-7.27 (4H, m, C_6H_4), 7.64
			(1H, t, J = 4.9 Hz, N-H)

Compd	CH ₃	N(CH ₃) ₂	<u>C</u> H ₂ -C=0	(CH ₂) _n	CH ₂ morph,	C(4)	Ar	C=N	C(5)	C=O
3a	10.2	-	31.0	35.6, 56.6	53.0, 66.7	107. 7	126.7-130.2	160.7	166.4	168.7
3Ъ	10.3	-	31.1	24.9, 39.0, 57.1	53.6, 66.5	10 7.8	126.9-130.3	160.9	166.6	169.0
3c	10.2	-	30.3	35.4, 56.6	52.9, 66.3	110.8	126.7-133.2	160.0	164.8	168.5
3d	10.3	-	30.1	24.4, 38.0, 56.3	52.9, 65.7	111.0	126.6-133.1	160.1	164.6	168.8
3e	10.2	45.0	31.0	37.0, 57.6	_	107.8	127.0-130.1	160.8	166.7	168.9
3f	10,1	44.8	31.2	24.3, 41.2, 59.7	_	107.7	126.6-130.0	160.8	167.0	169.0
3g	10.2	44.9	30.4	36.8, 57.5	_	111.0	126.9-133.5	160.1	164,9	168.7
3h	9.7	44.5	29.7	25.2, 38.9, 57.7	_	110.6	126.3-132.8	159.6	164,3	168.4

Table 6. ¹³C-NMR chemical shifts of derivatives (3a-h).

Table 7. Yield, physical and analytical data for derivatives (4a) and (4c).

Compd	x	n	Yield mp (%) (°C) Formula		Formula	Analysis % Calcd. (Found)			
pu						С	Н	N	CI
4a	н	2	28	yellow oil	C ₁₈ H ₂₃ N ₃ O ₃	65.63 (65.51	7.04 7.19	12.76 13.01)	
4c	Cì	2	10	96-108	C ₁₈ H ₂₂ N ₃ O ₃ Cl	59.42 (59.05	6.10 6.47	11.55 11.43	9.74 9.79)

Table 8. Characteristic IR frequencies and ¹H-NMR chemical shifts of derivatives (4a) and (4c).

Compd	$\frac{IR (cm^{-1}, KBr)}{V N H}$		¹ H-NMR (CDCl ₃ , δ, ppm)
	VN-H	<u>vc=</u> 0	
4a	3680-3120	1660	$[2.15 (3H, s, CH_3), 2.53 (4H, t, J = 4.6 Hz, 2 CH_2 morph.), 2.62 (2H, t, J = 6.0 Hz, 2.53 (2H, t, J = 6.0 Hz), 2.53 (2$
			(H_2) 3 55 (2H dt $J = 6.0$ and 5.4 Hz, (H_2) , 3.75 (4H, t, $J = 4.6$ Hz, 2 CH ₂
			momb) $4.17(2H = CH_{-}C_{+}H_{-})$ 7 18-7 30 (6H m N-H+C_{+}H_{-})
			morph.), 4.17 (21, 5, C <u>112</u> Cs13), 7.18 7.50 (01, 10, 17 Cs13)
4c	3560-3260	1670	$2.09 (3H, s, CH_3), 2.52 (4H, t, J = 4.6 Hz, 2 CH2 morph.), 2.60 (2H, t, J = 6.0 Hz,$
			CH ₂), 3.54 (2H, dt, \underline{J} = 6.0 and 5.2 Hz, CH ₂), 3.74 (4H, t, \underline{J} = 4.6 Hz, 2 CH ₂
			morph.), 4.31 (2H, s, CH ₂ -C ₆ H ₄), 7.01-7.38 (5H, m, N-H+C ₆ H ₄)

Table 9. ¹³C-NMR chemical shifts of derivatives (4a) and (4c).

Compd	СН3	CH ₂ benz.	(CH ₂) _n	CH ₂ morph,	C(4)	Ar	C(5)	C=0	C=N
4a	10.4	28.1	35.4, 56.7	53.3, 66.8	121.2	126.6-138.3	157.0	157,4	161.7
4c	10.2	25.4	35.4, 56.7	53.3, 66.8	119.8	126.9-135.6	157.7	157.2	161.8

SPECTROSCOPIC INVESTIGATIONS AND X-RAY DETERMINATION

The ¹H-NMR data and most characteristic IR frequencies of compounds (2, 3 and 4) are listed in Tables 2, 5 and 8, and ¹³C-NMR lines in Tables 3, 6 and 9. Principal ¹H-¹³C long-range correlations determined by a selective INEPT experience (Insensitive Nuclei Enhanced by Polarisation Transfer) are listed in Table 10. For derivatives (2), spectral data are comparable to those previously reported.¹ In the case of compounds (3) and (4), their amidic structure has been established essentially on the basis of ¹H-¹³C long-range correlations. For example, INEPT spectrum of 3c showed long-range correlations between carbonyl group at 168.5 ppm and both N-H signal at 6.6 ppm and CH₂-C(4) at 3.32 ppm. But no correlation was found between aromatic carbons and CH₂-C(4). On the contrary, INEPT spectrum of 4c showed a long-range correlation between aromatic carbons and CH₂-C(4) at 4.31 ppm, but no correlation between carbonyl group at 157.2 ppm and CH₂-C(4). In addition, a long-range correlation was observed between carbonyl group and N-H signal at 7.38 ppm. Structures of 3c and 4c were confirmed by their crystallographic data. Projection of both molecules obtained with the ORTEP-III program⁷ are given in Figure 1.

Table 10. ¹H-¹³C long-range correlations in the INEPT spectra of compounds (2, 3 and 4).

Irradiated protons	Compds 2	Compds 3	Compds 4
CH ₃	C=N, C(4)	C=N, C(4)	C=N, C(4)
C <u>H</u> 2-C(4)	C(4), Ar, C(5), C=N	C=O, C(4), C=N, C(5)	C(4), Ar, C(5), C=N
С <u><i>Н</i></u> NH	C(5)	C=O	C=O
NH	C(4), C=O	C=O	C=O
Ar ortbo	<u>C</u> H ₂ -C(4), Ar	C(5), Ar	<u>C</u> H ₂ -C(4), Ar

Figure 1. ORTEP drawings of 3c (left) and 4c (right) showing 50 % probability displacement ellipsoïds

Following our search for new antinociceptive agents, we first investigated derivatives (2) for analgesic properties in the phenylbenzoquinone-induced writhing test,⁸⁻⁹ since they share structural similarities with previously described¹ arylpiperazinyloxazinones effective in this field. Unfortunately 1,2-oxazinones (2) exhibited a weak activity causing around 20 % decrease of visceral pain at the dose of 100 mg/kg i.p. In the same conditions, isoxazoles (3) and (4) were also devoid of potent antinociceptive effect. Furthermore, compounds (2, 3 and 4) did not present any significant antidepressant activity at 100 mg/kg i.p. in the forced swimming test¹⁰ as well as in the reserpine-induced palpebral ptosis test.¹¹⁻¹²

EXPERIMENTAL

All chemicals were obtained from Janssen Chimica, Noisy-le-Grand, France. Melting points were determined on a Reichert apparatus without correction. IR spectra were recorded on a Beckman 4240 spectrophotometer. NMR spectra were obtained on a Bruker AC 400 MHz. The chemical shifts were reported in parts per million (δ , ppm) downfield from tetramethylsilane, used as an internal standard for CDCl₃ solution. The NMR signals were designated as follows : s, singlet; t, triplet; quint, quintet; m, multiplet; dt, doublet of triplets. INEPT spectra were run by using the standard Bruker program INEPTDN.AU. Reaction progress and purity of products were checked by analytical TLC using silicagel plates (60-25 + F254, SDS, Peypin, France). Spots were visualized with UV 254 light. Column chromatography was performed with Silice A.C.C. 60, Chromagel (35-70 μ m, SDS). Microanalyses were performed by the Service Central d' Analyses du CNRS, Vernaison, France, and the analytical results obtained were within ± 0.4 % of the theoretical values.

Preparation of 4-benzyl-3-methyl-5-(<u>N</u>-morpholinoalkylamino)-6-oxo-6<u>H</u>-1,2-oxazines 2, 5-aryl-3methyl-4-(aminoalkylaminocarbonylmethyl)isoxazoles 3 and 4-benzyl-3-methyl-5-(<u>N</u>-morpholinoethylaminocarbonyl)isoxazoles 4.

The appropriate diamine (10 mmol) was added to a solution of α -bromobenzyl-6<u>H</u>-1,2-oxazin-6-one (1) (5 mmol) in methanol (30 mL). The mixture was stirred at 0°C for 3 h. After evaporation the residue was triturated in an aqueous solution of 1N NaHCO₃ (30 mL), and extracted with chloroform (3 × 30 mL). The organic layer was dried over sodium sulfate and after evaporation, the residue was purified by column chromatography (eluent : ethyl acetate-cyclohexane, 40:60 to collect the first fraction, and then a gradient of ethyl acetate - methanol mixture for the following fractions).

	3c	4c
Crystal data		
Formula	C18H22N3O3CI	C18H22N3O3Cl
Fw	363.85	363.85
Color, form	Colorless, prism	Colorless, prism
Crystal size (mm)	0.35 × 0.45 × 0.50	0.08 × 0.37 × 0.42
Symmetry	Orthorhombic	Monoclinic
Space group	Pna2 ₁	P21/c
<u>a</u> (Å)	10.211(2)	15,738(5)
<u>b</u> (Å)	22,346(3)	7.275(1)
<u>c</u> (A)	8.032(2)	17.489(2)
<u>₿</u> (°)		111.59(2)
$\underline{V}(A^3)$	1832.7(9)	1861.9
<u>Z</u>	4	4
\underline{D}_{calc} (g.cm ⁻³)	1.32	1.30
<u>F</u> (000)	768	768
Data collection		
θ limits (°)	$1 \le \theta \le 35$	$1 \le \theta \le 30$
Nber. of measured reflections	4249	4490
Nber. of independant reflections	4249	4490
Nber. of observed reflections with $\underline{I} \ge 1.5 \ \underline{\sigma}(\underline{I})$	2666	2130
Standard reflections	3	3
Frequency (s)	3600	3600
Intensity decay	2 %	2 %
Data collected	$0 \le h \le 16$	$-25 \le h \le 25$
	$0 \le k \le 36$	$0 \le k \le 11$
	$0 \le l \le 12$	$0 \le l \le 28$
Refinement on F		
Final <u>R</u>	0,045	0.053
$\underline{\omega}R$	0.039	0.051
<u> </u>	2.04	1.69
Nber. of reflections	2665	2118
Nber. of parameters	314	315
ω	$1/\underline{\sigma}^2(\underline{F})$	$1/\underline{\sigma}^2(\underline{F})$
$(\Delta / \sigma)_{max}$	0.01	0.01
Max. and min. electron density	0.24	0.20
in final Fourier difference map (e A ³)	- 0.28	- 0.19
Extinction coefficient g ^a	5.86×10^{-7}	1.79×10^{-7}
$*\underline{F}_{c} = \underline{F}_{0} (1 + g\underline{I}_{c})^{-16}$		

Table 11. Experimental details for structures (3c) and (4c).

X-Ray analyses of 3c and 4c

Compounds 3c and 4c were crystallized from ethanol to give single crystals. X-Ray crystallographic data collections were carried out at room temperature on a Enraf-Nonius CAD-4 diffractometer with graphite monochromated MoK_{α} radiation ($\lambda = 0.71069$ Å). Crystals data are listed in Table 11. Lattice parameters were obtained by least-squares refinement of 25 reflections with 8 < θ < 20°. The intensity data were collected in an θ - 2 θ scan mode without absorption correction. All calculations were performed with the crystallographic software package MolEN.¹³ Atomic scattering factors and anomalous dispersion

correction were taken from International Tables for X-Ray Crystallography.¹⁴ Structures were solved by direct methods using MULTAN 11/82.¹⁵ All non-H atoms were located in the initial E-map and refined anisotropically using a full-matrix least-squares method. H-atom parameters were refined isotropically.

ACKNOWLEDGMENT

The authors wish to thank Professor Tibor Liptaj for his collaboration in NMR experiences.

REFERENCES

- 1. M. Bebot, P. Coudert, C. Rubat, D. Vallee-Goyet, D. Gardette, S. Mavel, E. Albuisson, and J. Couquelet, *Chem. Pharm. Bull.*, 1997, 45, 659.
- 2. C.G. Wermuth, G. Leclerc, and P. Melounou, Chim. Ther., 1970, 5, 243.
- M.C. Viaud, P. Jamoneau, C. Flouzat, J.G. Bizot-Espiard, B. Pfeiffer, P. Renard, D.H. Caignard, G. Adam, and G. Guillaumet, *J. Med. Chem.*, 1995, 38, 1278.
- J.P. Yardley, G. E. Morris Husbands, G. Stack, J. Butch, J. Bicksler, J.A. Moyer, E.A. Muth, T. Andree, H. Fletcher, M.N.G. James, and A.R. Sielecki, *J. Med. Chem.*, 1990, 33, 2899.
- 5. D. Giannoti, G. Viti, P. Sbraci, V. Pestellini, G. Volterra, F. Borsini, A. Lecci, A. Meli, P. Dapporto, and P. Paoli, *J. Med. Chem.*, 1991, 34, 1356.
- 6. T. Nakagawa, K. Ukai, and S. Kubo, Arzneim.-Forsch./ Drug Res., 1993, 43, 11.
- M.N. Burnett and C.K. Johnson, 'ORTEP III', report ORNL-6895, Oak Ridge National Laboratory, Tennessee, USA, 1996.
- 8. E. Siegmund, R. Cadmus, and G. Lu, Proc. Soc. Exp. Biol. Med., 1957, 95, 729.
- 9. P. Linee, J. Pharmacol. (Paris), 1972, 3, 513.
- 10.R.D. Porsolt, A. Bertin, and M. Jalfre, Arch. Int. Pharmacodyn., 1977, 229, 327.
- 11.C. Gouret and J. Thomas, J. Pharmacol. (Paris), 1973, 4, 401.
- 12.G. Raynaud and C. Gouret, Chim. Ther., 1973, 3, 328.
- 13.C.K. Fair, 'MolEN, an alternative intelligent system for crystal structure analysis,' Enraf-Nonius, Delft, The Netherlands, 1990.
- 14. 'International Tables for X-Ray Crystallography,' Vol. 4, Kynoch Press, Birmingham, England, 1974.
- 15.P. Main, S.J. Fiske, S.E. Hull, L. Lessinger, G. Germain, J.P. Declercq, and M.M. Woolfson, 'MULTAN 11/82, a system of computer programs for the automatic solution of crystal structures from X-ray diffraction data,' Universities of York, England and Louvain, Belgium, 1982.

16.G.H. Stout and L.H. Jensen, 'X-ray Structure Determination : a practical Guide,' Macmillan, New-York, 1968, p. 412.