REACTION OF 4-BROMOBENZYL-3-METHYL-1.2-OXAZIN-6-ONES WITH PRIMARY ALPHATIC AMINES. SYNTHESIS AND STRUCTURAL DETERMINATION OF NEW OXAZINE AND ISOXAZOLE DERIVATIVES

Monique Bebot,^{*} Pascal Coudert,^{*} Fernand Leal,^{*} Jacques Métin,^{*} Vincent Gaumet, ^b Sylvie Mavel,^d Catherine Rubat,^c and Jacques Couquelet^{**}

'Laboratoire de Chimie Thérapeutique: 'Laboratoire de Chimie Physique et Minerale; 'Laboratoire de Pharmacologie, Groupe de Recherche en Pharmacochimie, UFR de Pharmacie, 28 Place Henri Dunant, BP **38, 63001** Clermont-Ferrand Cedex, France : ^dLaboratoire de Chimie Thérapeutique, Faculté des Sciences Pharmaceutiques, Université François Rabelais, Avenue Monge, **37200** Tours. France

Abstract - Reaction of 4-bromobenzyl-6H-1,2-oxazin-6-ones (1) with aminoalkylamines furnished a mixture of 5-aminoalkylamino-6H-1,2-oxazin-6-ones (2), 4-**(aminoalkylaminocarbonylmethyl)isoxazoles (3)** and **5-(Aminoalkylaminocarbonyl)** isoxazoles **(4)** which were separated by column chromatography. Structure of all derivatives was determined by ${}^{1}H-$ and ${}^{13}C-_{NMR}$ methods, including INEPT measurements. Structure of isoxazoles **(3)** and **(4)** was confirmed by X-Ray analysis. In addition, test compounds were investigated for analgesic and antidepressant activities in mice.

In earlier experiments, we prepared several compounds by substitution of 4-bromobenzyl-6H-1,2-oxazin-6-ones with arylpiperazines. The aim of these investigations was the synthesis of new analgesic derivatives.¹ We extended the application of the above reaction to different diamines : morpholinoalkylamines and dimethylaminoalkylamines. Introduction of these amino groups into pharmacophoric nuclei often produced biologically active compounds, such as analgesics^{2,3} or antidepressants.⁴⁻⁶ While the action of arylpiperazines led to a sole type of derivatives, primary amines yielded three different compounds due to rearrangements. As part of our studies, we describe here the synthesis of new 1,2-oxazine and isoxazole derivatives. Their structures were established on the basis of spectral data and were confirmed by X-Ray measurements.

SYNTHESIS

Starting 4-bromobenzyl-3-methyl-1,2-oxazin-6-ones (1) were prepared according to a previously described procedure.' Reaction of diamines with 1 in methanolic solution gave rise to a mixture of three derivatives as shown in Scheme 1. The ratio of products **(2,** 3 and 4) depends on the employed bases. Thus, **dimethylaminoalkylamines** furnished only compounds (3), whereas morpholinoalkylamines led to the thee different compounds. Formation of 5-substituted 1,2-oxazinones (2) (Tables 1-3) involved an S_N2 ' mechanism without intramolecular rearrangement. Isoxazoles (3) (Tables 4-6) and (4) (Tables 7-9) were generated through an opening of the oxazine ring by amines, leading to an oxime intermediate. Further cyclisation occured by S_N2 and S_N2 ' mechanisms for 3 and 4 respectively.

Scheme 1

Yield Analysis % Calcd (Found) mp Formula X \mathbf{n}										
Compd			(%)	<u>(°C)</u>		C н	N	Cl		
2a	н	$\overline{2}$	18	$71 - 74$	$C_{18}H_{23}N_3O_3$	65.63 (65.42)	7.04 7.18	12.76 12.49)		
2 _b	H	3	8	71-83	$C_{19}H_{25}N_3O_3$	66.44 (6672)	7.34 7.28	12.24 12.15)		
2c	C1	\overline{c}	5	yellow oil	$C_{18}H_{22}N_3O_3Cl$	59.42 (59.21)	6.10 6.33	11.55 11.63	9.74 9.81)	
2d	C1	3	16	vellow oil	$C_{19}H_{24}N_3O_3Cl$	60.39 (60.38)	6.40 6.72	11.12 11.14	9.38 9.20)	

Table 1. Yield, physical and analytical data for derivatives (2a-d).

Table 2. Characteristic IR frequencies and ¹H-NMR chemical shifts of derivatives (2a-d).

Compd	IR $(cm1, KBr)$		$H\text{-}NMR$ (CDCl ₃ , δ , ppm)		
	$V N_H$	$vC=0$			
2a	3630-3240	1700	2.16 (3H, s, CH ₃), 2.37 (4H, t, $J = 4.5$ Hz, 2 CH ₂ morph.), 2.48 (2H, t, $J = 5.9$ Hz,		
			CH ₂), 3.63 (2H, dt, $J = 5.9$ and 4.8 Hz, CH ₂), 3.83 (4H, t, $J = 4.5$ Hz, 2 CH ₂)		
			morph.), 3.92 (2H, s, CH ₂ -C ₆ H ₅), 6.02 (1H, t, $J = 4.7$ Hz, N-H), 7.15-7.39 (5H,		
			m, C_6H_5		
2b	3660-3160	1695	1.68 (2H, quint, $J = 6.2$ Hz, CH ₂), 2.06 (3H, s, CH ₃), 2.38-2.41 (6H, m, CH ₂ +2)		
			CH ₂ morph.), 3.53 (2H, t, $J = 6.2$ Hz, CH ₂), 3.68 (4H, t, $J = 4.6$ Hz, 2 CH ₂)		
			morph.), 3.93 (2H, s, CH ₂ -C ₆ H ₅), 6.77 (1H, br s, N-H), 7.12-7.33 (5H, m, C ₆ H ₅)		
2c	3620-3120	1695	2.11 (3H, s, CH ₃), 2.33 (4H, t, J = 4.5 Hz, 2 CH ₂ morph.), 2.44 (2H, t, J = 5.8 Hz,		
			CH ₂), 3.48 (2H, dt, $J = 5.8$ and 5.0 Hz, CH ₂), 3.58 (4H, t, $J = 4.5$ Hz, 2 CH ₂)		
			morph.), 3.89 (2H, s, CH ₂ -C ₆ H ₄), 6.02 (1H, br s, N-H), 6.93-7.47 (4H, m, C ₆ H ₄)		
2d	3700-3100	1695	1.68 (2H, quint, $J = 6.2$ Hz, CH ₂), 2.06 (3H, s, CH ₃), 2.40-2.43 (6H, m, CH ₂ +2)		
			CH ₂ morph.), 3.43 (2H, t, $J = 6.2$ Hz, CH ₂), 3.71 (4H, t, $J = 4.7$ Hz, 2 CH ₂)		
			morph.), 3.94 (2H, s, $CH_2-C_6H_4$), 6.90 (1H, br s, N-H), 6.98-7.45 (4H, m, C_6H_4)		

Table 3. ¹³C-NMR chemical shifts of derivatives (2a-d).

	$\mathbf x$ Compd		\mathbf{n}	Yield	mp	Formula			Analysis % Calcd (Found)	
		$\mathbf R$		(%)	<u>(°C)</u>		C.	н	N	СI
3a	H	N \cdot o	$\overline{2}$	33	119-123	$C_{18}H_{23}N_3O_3$	65.63 (65.45)	7.04 6.92	12.76 13.01)	
3 _b	H	Ń, $\mathcal{L}_{\mathbf{o}}$	3	58	150-162	$C_{19}H_{25}N_3O_3$	66.44 (66.75)	7.34 7.16	12.24 12.16	
3 _c	Cl	, N ່ດ	$\overline{2}$	22	93-101	$C_{18}H_{22}N_3O_3Cl$	59.42 (59.25)	6.10 6.37	11.55 11.72	9.74 9.82)
3d	C1	N $\mathcal{L}_{\mathcal{O}}$	3	39	brown oil	$C_{19}H_{24}N_3O_3Cl$	60.39 (60.32)	6.40 6.71	11.12 11.23	9.38 9.02)
3 _e	H	χ	$\overline{2}$	28	111-115	$C_{16}H_{21}N_3O_2$	66.87 (66.47)	7.37 7.24	14.63 14.85	
3f	$\mathbf H$	$\mathcal{L}^{\mathbf{N}}$	3	24	102-105	C_1 ₇ $H_{23}N_3O_2$	67.74 (68.01)	7.69 7.48	13.95 14.05)	
3g	C1	χ ^N	$\overline{2}$.19	vellow oil	$C_{16}H_{20}N_3O_2Cl$	59.71 (59.57	6.26 6.21	13.06 13.31	11.02 10.69
3 _h	C1	N.	3	31		yellow oil $C_{17}H_{22}N_3O_2Cl$	60.80 (60.51)	6.60 6.75	12.52 12.84	10.56 10.37

Table 4. Yield, physical and analytical data for derivatives (3a-h).

Table 5. Characteristic **IR** frequencies and **'H-NMR** chemical shifts of derivatives (3a-h).

Compd	CH ₃	$N(CH_3)_2$	CH_2 -C=O	(CH ₂) _n	CH ₂ <u>morph.</u>	C(4)	Ar	$C=N$	C(5)	$C=O$
3a	10.2		31.0	35.6, 56.6	53.0.66.7	107.7	126.7-130.2	160.7	166.4	168.7
3b	10.3		31.1	24.9, 39.0, 57.1	53.6, 66.5	107.8	126.9-130.3	160.9	166.6	169.0
3c	10.2		30.3	35.4.56.6	52.9.66.3	110.8	126.7-133.2	160.0	164.8	168.5
3d	10.3		30.1	24 4, 38 0, 56 3	52.9.65.7	111.0	$126.6 - 133.1$	160.1	164.6	168.8
3e	10.2	45.0	31.0	37.0, 57.6		107.8	127.0-130.1	160.8	166.7	168.9
3f	10.1	44.8	31.2	24.3.41.2.59.7		107.7	126.6-130.0	160.8	167.0	169.0
3g	10.2	44.9	30.4	36 8, 57, 5		111.0	126.9-133.5	160.1	164.9	168.7
3h	9.7	44.5	29.7	25.2, 38.9, 57.7		110.6	126.3-132.8	159.6	164.3	168.4

Table 6. ¹³C-NMR chemical shifts of derivatives (3a-h).

Table 7. Yield, physical and analytical data for derivatives **(4a)** and **(4c)**

Compd	x	n	Yield mp		Formula	Analysis % Calcd. (Found)				
			(%)	(°C)			н	N		
4a	н	2	28		yellow oil $\mathcal{C}_{18}H_{23}N_3O_3$	65.63 (65.51)	7.04 7.19	12.76 13.01)		
4c	CI	2	10	96-108	$C_{18}H_{22}N_3O_3Cl$	59.42 (59.05)	6.10 6.47	11.55 11.43	9.74 9.79	

Table 8. Characteristic IR frequencies and 'H-NMR chemical shifts of derivatives **(4a)** and **(4c)**

Compd	IR $(cm-1, KBr)$ $V N-H$	$vC=0$	¹ H-NMR (CDCl ₃ , δ , ppm)
42	3680-3120	1660	2.15 (3H, s, CH ₃), 2.53 (4H, t, $\underline{J} = 4.6$ Hz, 2 CH ₂ morph.), 2.62 (2H, t, $\underline{J} = 6.0$ Hz,
4с	3560-3260	1670	CH ₂), 3.55 (2H, dt, $J = 6.0$ and 5.4 Hz, CH ₂), 3.75 (4H, t, $J = 4.6$ Hz, 2 CH ₂) morph.), 4.17 (2H, s, CH ₂ -C ₆ H ₅), 7.18-7.30 (6H, m, N-H+C ₆ H ₅) 2.09 (3H, s, CH ₃), 2.52 (4H, t, $J = 4.6$ Hz, 2 CH ₂ morph.), 2.60 (2H, t, $J = 6.0$ Hz,
			CH ₂), 3.54 (2H, dt, $J = 6.0$ and 5.2 Hz, CH ₂), 3.74 (4H, t, $J = 4.6$ Hz, 2 CH ₂) morph.), 4.31 (2H, s, CH ₂ -C ₆ H ₄), 7.01-7.38 (5H, m, N-H+C ₆ H ₄)

Table 9. "C-NMR chemical shifts of derivatives **(4a)** and **(4c)**

SPECTROSCOPIC INVESTIGATIONS AND X-RAY DETERMINATION

The 'H-NMR data and most characteristic **IR** frequencies of compounds (2,3 and 4) are listed in Tables **2,** 5 and 8, and ¹³C-NMR lines in Tables 3, 6 and 9. Principal ¹H-¹³C long-range correlations determined by a selective INEPT experience (Insensitive Nuclei Enhanced by Polarisation Transfer) are listed in Table **10.** For derivatives (2), spectral data are comparable to those previously reported.¹ In the case of compounds (3) and (4), their amidic structure has been established essentially on the basis of $^1H^{-13}C$ long-range correlations. For example, INEPT spectrum of **3c** showed long-range correlations between carbonyl group at 168.5 ppm and both N-H signal at 6.6 ppm and CH_2 -C(4) at 3.32 ppm. But no correlation was found between aromatic carbons and $C_{H_2}C(4)$. On the contrary, INEPT spectrum of 4c showed a long-range correlation between aromatic carbons and CH_2 -C(4) at 4.31 ppm, but no correlation between carbonyl group at 157.2 ppm and $CH₂-C(4)$. In addition, a long-range correlation was observed between carbonyl group and N-H signal at **7.38** ppm. Structures of **3c** and **4c** were confirmed by their crystallographic data. Projection of both molecules obtained with the ORTEP-I11 program' are given in Figure **1.**

Table 10. 'H-'Ic long-range correlations in the INEPT spectra of compounds **(2,3** and **4).**

Irradiated protons	Compds 2	Compds 3	Compds 4
CH,	$C=N, C(4)$	$C=N, C(4)$	$C=N, C(4)$
$CL_2-C(4)$	$C(4)$, Ar, $C(5)$, C=N	$C=O, C(4), C=N, C(5)$	$C(4)$, Ar, $C(5)$, C=N
CH_2 -NH	C(5)	$C=O$	$C=O$
NH	$C(4)$, $C=O$	$C=O$	$C = O$
Ar ortho	$CH2-C(4)$, Ar	$C(5)$, Ar	$CH2-C(4)$, Ar

Figure 1. ORTEP drawings of **3c** (left) and **4c** (right) showing **50** % probability displacement ellipsoids

PHARMACOLOGICAL STUDIES

Following our search for new antinociceptive agents, we first investigated derivatives (2) for analgesic properties in the phenylbenzoquinone-induced writhing test.⁸⁻⁹ since they share structural similarities with previously described' **arylpiperazinyloxazinones** effective in this field. Unfortunately 1,2-oxazinones **(2)** exhibited a weak activity causing around 20 % decrease of visceral pain at the dose of 100 mg/kg i.p. In the same conditions, isoxazoles (3) and (4) were also devoid of potent antinociceptive effect. Furthermore, compounds (2, 3 and 4) did not present any significant antidepressant activity at 100 mg/kg i.p. in the forced swimming test¹⁰ as well as in the reserpine-induced palpebral ptosis test.¹¹⁻¹²

EXPERIMENTAL

All chemicals were obtained from Janssen Chimica, Noisy-le-Grand, France. Melting points were determined on a Reichert apparatus without correction. IR spectra were recorded on a Beckman 4240 spectrophotometer. NMR spectra were obtained on a Bmker AC 400 **MHz.** The chemical shifts were reported in parts per million *(6,* ppm) downfield from tetramethylsilane, used as an internal standard for CDCI, solution. The NMR signals were designated as follows : s, singlet; t, triplet; quint, quintet; m, multiplet; dt, doublet of triplets. INEPT spectra were run by using the standard Bruker program 1NEPTDN.AU. Reaction progress and purity of products were checked by analytical TLC using silicagel plates (60-25 + F254, SDS, Peypin, France). Spots were visualized with UV 254 light. Column chromatography was performed with Silice A.C.C. 60, Chromagel $(35-70\mu m, SDS)$. Microanalyses were performed by the Service Central d' Analyses du CNRS, Vemaison, France, and the analytical results obtained were within ± 0.4 % of the theoretical values.

Preparation of 4-benzyl-3-methyl-5-(N-morpholinoalkylamino)-6-oxo-6H-1,2-oxazines 2, 5-aryl-3methyl-4-(aminoalkylaminocarbonylmethyl)isoxazoles 3 and 4-benzyl-3-methyl-5-(N-morpholino**ethylaminocarbonyl)isoxazoles** 4.

The appropriate diamine (10 mmol) was added to a solution of **a-bromobenzyl-6H-l,2-oxazin-6-one** (1) (5 mmol) in methanol (30 mL). The mixture was stirred at 0°C for 3 h. After evaporation the residue was triturated in an aqueous solution of 1N NaHCO₃ (30 mL), and extracted with chloroform (3 \times 30 mL). The organic layer was dried over sodium sulfate and after evaporation, the residue was purified by column chromatography (eluent : ethyl acetate-cyclohexane, 40:60 to collect the first fraction, and then a gradient of ethyl acetate - methanol mixture for the following Fractions).

Table 11. Experimental details for structures (3c) and (4c).

X-Ray analyses **of** 3c and 4c

Compounds 3c and 4c were crystallized from ethanol to give single crystals. X-Ray crystallographic data collections were carried out at room temperature on a Enraf-Nonius CAD-4 difiactometer with graphite monochromated MoK_{α} radiation ($\lambda = 0.71069$ Å). Crystals data are listed in Table 11. Lattice parameters were obtained by least-squares refinement of 25 reflections with $8 < \theta < 20^\circ$. The intensity data were collected in an **0** - 20 scan mode without absorption correction. All calculations were performed with the crystallographic software package MoIEN.¹³ Atomic scattering factors and anomalous dispersion

correction were taken from International Tables for X-Ray Crystallography.¹⁴ Structures were solved by direct methods using MULTAN 11/82.¹⁵ All non-H atoms were located in the initial E-map and refined anisotropically using a full-matrix least-squares method. H-atom parameters were refined isotropically.

ACKNOWLEDGMENT

The authors wish to thank Professor Tibor Liptaj for his collaboration in **NMR** experiences.

REFERENCES

- 1. M. Bebot, P. Coudert, C. Rubat, D. Vallee-Goyet, D. Gardette, S. Mavel, E. Albuisson, and J. Couquelet, *Chem. Pharm. BUN.,* 1997,45,659.
- 2. C.G. Wermuth, G. Leclerc, and P. Melounou, *Chim. Ther.,* 1970, *5,* 243.
- 3. M.C. Viaud, P. Jamoneau, C. Flouzat, J.G. Bizot-Espiard, B. Pfeiffer, P. Renard, D.H. Caignard, G. Adam, and G. Guillaumet, *J. Med Chem.,* 1995,38, 1278.
- 4. J.P. Yardley, G. E. Morris Husbands, G. Stack, J. Butch, J. Bicksler, J.A. Moyer, E.A. Muth, T. Andree, H. Fletcher, M.N.G. James, and A.R. Sielecki, *J. Med Chem.,* 1990, 33, 2899.
- 5. D. Giamoti, G. Viti, P. Sbraci, V. Pestellini, G. Volterra, F. Borsini, A. Lecci, A. Meli, P. Dapporto, and P. Paoli, *J. Med. Chem.,* 1991, 34, 1356.
- 6. T. Nakagawa, K. Ukai, and S. Kubo, *Arzneim.-Forsch./Drue Res.,* 1993, 43, 1 1
- 7. M.N. Burnett and C.K. Johnson, 'ORTEP 111', report ORNL-6895, Oak Ridge National Laboratory, Tennessee, USA, 1996.
- 8. E. Siegmund, R. Cadmus, and G. Lu, *Proc. Soc. Exu. Biol. Med.,* 1957, *95,* 729.
- 9. P. Linee, *J. Pharmacol.* (Paris), 1972, 3, 513.
- 10.R.D. Porsolt, A. Bertin, and M. Jalfre, *Arch. In!. Pharmacodvn.,* 1977, *229,* 327.
- 11.C Gouret and J. Thomas, *J. Pharmacol.* (Paris), 1973, 4,401
- 12.G Raynaud and C. Gouret, *Chim. Ther.,* 1973,3,328.
- 13.C.K. Fair, 'MoIEN, an alternative intelligent system for crystal structure analysis,' Enraf-Nonius, Delft, The Netherlands, 1990.
- 14.'International Tables for X-Ray Crystallography,' Vol. 4, Kynoch Press, Birmingham, England, 1974.
- 15.P. Main, S.J. Fiske, S.E. Hull, L. Lessinger, G. Germain, J.P. Declercq, and M.M. Woolfson, 'MULTAN 11/82, a system of computer programs for the automatic solution of crystal structures from X-ray diffraction data,' Universities of York, England and Louvain, Belgium, 1982.

16.G.H. Stout and L.H. Jensen, 'X-ray Structure Determination : a practical Guide,' Macmillan, New-York, 1968, p. 412.