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Abstract—Electrochemical reduction or oxidation of 7-ethoxycarbonyl-
cvcloheptatriene afforded 2-ethoxycarbonylcycloheptatriene
and ethyl phenylacetate, respectively. A-Alkoxycarbonyl-1/azepine
formed Malkoxycarbonylaniline in electrochemical oxidation viaaring
contruction. AM-Alkoxycarbonyl-151, 2-diazepine afforded A
Alkoxvcarbonyl-1-amino—4-cyano-1, 3-butadiene in electro-

chemical reduction via an N-N bond fission.

Electrochemistry is useful not only for syntheses but also for investigations of reac—
tivities of organic compounds. One of the merit of the electrochemical reaction is a
possibility of an optional setting either in oxidation or reduction of the voltages of
the electric potentials.'

Cyclohepta-l, 3, 5~triene derivatives are known to isomerize to bicyclo[4.l.0]hepta-2, 4-
diene derivatives or to form stable 6w -electrons aromatic systems, tropylium ion
derivatives.? 1H-Azepine and 141, 2-diazepine derivatives are considered
to be cyclic polyolefins with partial enamine-type reactivities rather than
8 m—electrons anti—aromatic compounds. Their reactivities in thermal and photochem-
ical reaction conditions® or their reactions with organometallic compounds have been
researched extensively.*® However, to our knowledge, it is hard to find any example in
which azepine or diazepine derivatives have been a target for electrochemical reactions.
As a series of our research on the reactivities of azepine and diazepine derivatives,
we investigated the electrochemical reactions of 14azepine and 151, 2-diazepine

derivatives. Here the results are reported. (Scheme 1)
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A solution of 7-ethoxycarbonylcyclohepta—l, 3, 5-triene (1) in anhydrous acetonitrile was
electrochemically reduced in the presence of tetrabutylammonium perchrolate (TBAP)
as a supporting electrolyte with a platinum gauze as an anode and a platinum wire as
a cathode at —1.4 V vs. Ag/Ag” at 0°C under a nitrogen stream. After evaporation of
the solvent the reaction mixture was column followed by thin layer chromato-
graphed on silica gel to give 2-ethoxycarbonylcyclohepta-1,3,5-triene (4)° in
36 % vield. The current efficiency was 60 %. On the other hand, 1 resisted to
electrochemical oxidation and finally gave a low yield (5 %) of ethyl phenylacetate
(6) at +2.0 V vs. Ag/Ag” through a current efficiency of 3 %

Electrochemical reduction of Aethoxycarbonyl- (2a) and Amethoxycarbonyl-1Hazepine (2h)
at the analogous reaction conditions as above but under variable voltages resulted
in a formation of an intractable complicated mixture. However, electrochemical oxidation
of 2a and 2b at +2.0 V vs. Ag/Ag" afforded fairly good yields of Methoxycarbonyl- (6a)
and Amethoxycarbonylaniline derivative (6b) in 62 % and 79 % yields, respectively.®

The current efficiencies were 25 % and 40 %, respectively.
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MNEthoxycarbonyl—- (3a) and Amethoxycarbonyl-1K-1, 2-diazepine {3b) were electro-
chemically reduced at 1.4V vs. Ag/Ag’ to give Methoxycarbonyl- (7a) and Amethoxycarbonyl-
I-amino—4-cyano—1, 3-butadiene (7b)* in 56 % {(current efficiency 44 %) and
58 % (54 %) yields, respectively.

The reaction mechanism of the electrochemical reduction of 1 is considered to be analogous
to that of 1, 3-hydrogen migration of 7-cyanocyclohepta-1,3,5-triene under
basic conditions reported by Takahashi and her coworkers.® {(Scheme 2)
One electron reduction of 1 generates a radical anion (8), in which the hydrogen at the
T-position migrates to the 2-position. The preferential occurrence of the 1, 3-migration
is attributable to the co-planality of the three carbon atoms at 1, 2, and 7—positions,
which are concerning in the present hydrogen migratien.®

The formation of ethyl phenylacetate (5) can be explained as follows, One electron release
from the carbonyl group of 1 forms a ketyl-type cation radical (9). It is well known that
the isomerization between a cycloheptatriene system (9) and a bicyclof4. 1.0]heptadiene
system (10) favors to the later when the substituent is electron—withdrawing.’ Thus, 1
becomes to be easy to isomerize to the bicyclic system (10) by electrochemical
oxidation. An aromatization of 10 employing a proton elimination followed by an

extraction of proton radical from solvent can form 5.
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The reaction mechanism of azepine derivatives (2) is considered to be as analogous
to that of the formation of 5. (Scheme 2) One electron oxidation of 2 generates a cation
radical (11), which tautomerizes to 12, and finally aromatizes to the aniline derivative
(6). Reported transformation of 2 to 6 in acidic media well support this mechanism.®
An electrochemical reduction of 3 can be explained to proceed as follows, One electron
transfer to 3 forms an anion radical (13), which ruptures the N-N bond to form an imino
radical-type anion radical (14), which then generates the cyano compound (7) through
a proton radical elimination followed by a proton extraction from solvent. This
mechanism is essentially same as those of a formation of 7 from 3 by reactions with
bases or with appropriate metals.®

The failure of 2 and 3 in electrochemical reduction to form the hydrogen migrating
products of the type 4 is apparently attributable to the lack of the corresponding
hydrogen (7-position hydrogen in 1) in 2 and 3, which should migrate. '
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EXPERIMENTAL

The working electrode was a combination of a platinum gauze of a size 5cm depth
and 12 em width and a platinum wire, which were separated each other by means of
a medium-porosity sintered glass frit. The reference electrode was a silver wire.
The controlled potential power was supplied from a Yanaco Potentio/Galvancstatic Electro-
lyser VE-O apparatus. Acetonitrile was distillated fromcalciumhydride and used immediately.
Wakogel C-200 and Wakogel B5-F were used for column and thin layer chromatographies,
respectively.

Typical reactions are mentioned below.

Electrochemical Reduction of 7-Fthoxycarbonyl—1, 3, 5—cycloheptatriene (I). A solution of
1 (151 mg, 0.92 mmol) and TBAP (1.57 g, 4.60 mmol) in anhydrous acetonitrile (100 mL)
was electrolyzed at —1.4 V vs. Ag/Ag’ at 0°C under a nitrogen stream for 20 min. 52. 8 Coulomb
of electricity was passed. After evaporation of the solvent, the reaction mixture was
column chromatographed on silica gel with an eluent of hexane—ethyl acetate (19:1) to
give a colorless oil, which was further purified by thin layer chromatography on
silica gel with a developing solvent of hexane-ethyl acetate (19:1) to give 4 (54 mg,
35.8 %, R=0.60, current efficiency 82.2 %).

Electrochemical Oxidation of 7-Fthoxvcarbonyi—I, 3, 5—cycloheptatriene (I). A solution of
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1 (512 mg, 3.12 mmol) and TBAP (6.93 g, 0.20 mmol) in anhydrous acetonitrile (200 mL)
was electrolyzed at +2.0 V vs. Ag/Ag’ at 0°C under a nitrogen stream. 194 Coulomb
of electricity was passed. After evaporation of the solvent, the reaction mixture was
column chromatographed on silica gel with an eluent of hexane—ethyl acetate (19:1) to
give a colorless oil, which was further purified by thin layer chromatography on
silica gel with a developing solvent of hexane-ethyl acetate (19:1) to give 5 (14.9 mg,
2.9 % R=0.55, current efficiency 15.5 %).

Electrochemical Oxidation of N-Ethoxycarbonyl—1H-azepine (2a). A solution of 2a (471 mg,
3.12 mmol) and TBAP (6.93 g, 20.3 nmol) in anhydrous acetonitrile (200 mlL) was electro—
lyzed at +2.0 V vs, Ag/Ag’ at 0°C under a nitrogen stream. 546 Coulomb of electrici-
ty was passed. After evaporation of the solvent, the reaction mixture was column
chromatographed on silica gel with an eluent of hexane—ethyl acetate (4:1) to give a
yellow o0il, which was further purified by thin layer chromatography on silica gel
with a developing solvent of hexane—ethyl acetate {(3:1) to give 6 (336 mg, 71.3 %,
R=0. 50, current efficiency 39.2 %).

Flectrochemical Reduction of N-Ethoxycarbonyil-1H-1, 2-diazepine (3a). A solution of 3a
(140 mg, 0.92 mmol) and TBAP (1.59 g, 4.65 mmol) in anhydrous acetonitrile (100 mL)
was electrolyzed at -1.4 V vs. Ag/Ag’ at 0°C under a nitrogen stream. 68.9 Coulomb
of electricity was passed. After evaporation of the solvent, the reaction mixture was
column chromatographed on silica gel with an eluent of hexane—ethyl acetate (3:2) to give
colorless crystals, which were further purified by thin layer chromatography on silica
gel with a developing solvent of hexane—ethyl acetate (3:7) to give 7 (59 mg, 42.2 %,
R~=0.50, current efficiency 54.3 %).

REFERENCES AND FOOTNOTES

1. D. Seebach, Angew. Chem., Int. Ed Engl., 1979, 18, 239; P. G. Gassmann, 0. M.
Rasmy, T. 0. Murdock, and K. Saito, J rg Chem , 1981, 46, 5455,

2. W. Tochtermann, C. Degel, H. 0. Horstmann, and D. Krauss, Tetrahedron Lett.,
1970, 4719; W. D. Stohrer, Chem Ber., 1973, 106, 970.

3. R. A. Acheson, “An Introduction to the Chemistry of Heterocyclic Compounds”,
John Willey and Sons, Inc., 1976; J. Streith, J. P. Luttringer, and M. Nastasi, J Org
Chem., 1971, 36, 2962; S. Ito, Y. Yokoyama, T. Okumoto, K. Saito, K. Takahashi, K. Satake,
H Takamuku, M. Kimura, and S. Morosawa, Bull. Chem Soc. Jpn., 1990, 63, 3162; K.
Saito, A. Yoshino, H. Watanabe, and K. Takahashi, Heierocycles, 1992, 34, 497.

4. K. Saito, S. lida, and T. Mukai, Bull. Chem Soc. Jjpn., 1984, 57, 3483; K. Saito, T. Mukai,
and S. Tida, 7bid., 1986, 59, 2485; K. Saito, Y. Horie, and K. Takahashi, J rganometal.




1156 HETERQCYCLES, Vol. 48, No. 6, 1998

Chem., 1989, 363, 231; K. Saito, M. Kozaki, and K. Takahashi, Heterocycles, 1990, 31,
1491; K. Saito, A. Yoshino, and K. Takahashi, ibid, 1991, 32, 1.

. K. Takahashi, H. Yamamoto, and T. Nozoe, Bull. Chem Soc. Jpn., 1970, 43, 200.

6. L. A. Paquette, D. E. Kuhla, and J. H. Barrette, J Org. Chem , 1989, 34, 2879; J.
Streith, J. P. Luttringer, and M. Nastasi, 7bid., 1971, 36, 2962; K. Saito, H.
Kojima, T. Okudaira, and K. Takahashi, Bull. Chem Soc. Jpn., 1983, 56, 175; M. Nitta
and H. Miyama, Heterocycies, 1986, 24, 1411.

7. R Hoffmann, Tetrahedron Lett., 1970, 2907; H. Gunther, ibid, 1970, 5173,

8. H. Prinzbach and H. Babsh, 7etrahedron Lert., 1997, 1355; L. A. Paquette, D. E. Kuhla,
and J. H. Barrette, J Org Chem, 1969, 34, 2879,

9. K. Saito, H. Kojima, T. Okudaira, and K. Takehashi, Bull. Chem Soc. Jpn., 1983, 56,
175; K. Saito, Y. Horie, and K. Takahashi, [ Organometal. Chem , 1989, 363, 231: K.
Saito, M. Kozaki, and K. Takahashi, Heferocycles, 1990, 31, 1491.

10. A formation of the complicated mixture in electrochemical reduction of 2 may be
explained by the instability of the vinyl radical-type anion radical (15), which
is expected to be formed by reduction of 2. A decomposition or a pelymerization

of 15 can form the complicated mixture.
S - -
O = o*
| N—COsR | N9< - ’N§<

. : =N OR OR

15 16 17

—
Qror —— s
N

=N®@
18 19

Scheme 3
One electron oxidation of 3 can form two kinds of cations. An electron removal

from the carbonyl group generates a cation (16) and a removal from the system
of the ring part form a conjugated cation (18). If the same type of a valence
isomerization as those of 9 takes a place in 16, a diaziridine—type cation (17)
may be generated. An instability of 17 due to the aziridine—structure can be
a reason of the formation of the complicated mixture by decomposition.

An N-N bond fission in 18 generates 19. Removal of proton to form a cyano
group and a catch of hydrogen from an appropriate source can form 7.

A failure to form 7 in the electrochemical oxidation of 3 may show that 18 should

not be formed or it is too unstable to form 19 v7a the N-N bond rupture course.
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