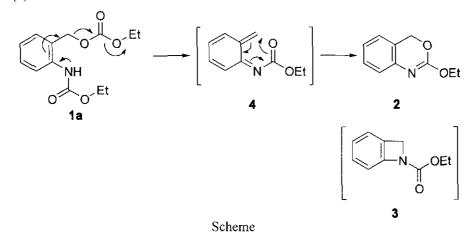
FACILE IN SITU PREPARATION OF o-AZAXYLYLENE FROM N,O-DIETHOXYCARBONYL-o-AMINOBENZYL ALCOHOL

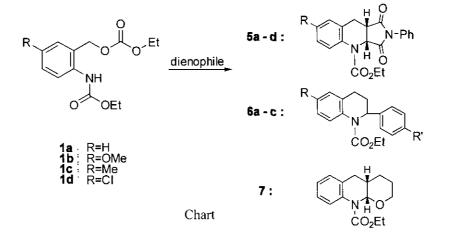
Kota Nishiyama, Hajime Kubo,* Tomohide Sato, Kimio Higashiyama, and Shigeru Ohmiya

Department of Synthetic Organic Chemistry, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa 142-8501, Japan

<u>Abstract</u> ----- o-Azaxylylenes were generated only by gentle refluxing of *N*, *O*-diethoxycarbonyl-*o*-aminobenzyl alcohols in *o*-dichlorobenzene and then underwent the Diels-Alder reaction with dienophiles to give 1,2,3,4-tetrahydroquinolines.


INTRODUCTION

o-Azaxylylenes are expected to exhibit excellent reactivities similar to *o*-xylylenes but they have been only slightly utilized in organic syntheses because of the requirement of extraordinary reaction conditions for the generation, e.g., flash vacuum thermolysis of *o*-aminobenzyl alcohols,¹ and photolysis of *o*-aminophenyldiazomethane at 10 K under an argon atmosphere.² Recently, milder reaction conditions for the generation of *o*-azaxylylene have been reported, for example, the pyrolysis of benzoisothiazoline dioxide at 215 °C,³ the 1,4-elimination of *o*-[*N*-alkyl-*N*-(trimethylsilyl)amino]benzyltrimethylammonium halide at 50 °C⁴ and dehydration of *o*-alkylaminobenzyl alcohol with a Lewis acid.⁵ In this paper, we wish to report a facile method for the generation of *o*-azaxylylenes from *N*,*O*-diethoxycarbonyl-*o*-aminobenzyl alcohols and their application in the preparation of 1,2,3,4tetrahydroquinoline derivatives.


RESULT AND DISCUSSION

o-Aminobenzyl alcohols have been used as a precursor in the preparation of o-azaxylylenes.^{1,5} For the purpose of the efficient formation of o-azaxylylene, o-aminobenzyl alcohols were converted to N,O-diethoxylcarbonyl-o-aminobenzyl alcohols based on the enhancement in acidity of the hydrogen atom

on the amide group. Refluxing in o-dichlorobenzene, N,O-diethoxycarbonyl-o-aminobenzyl alcohol(1a) produced 4H-3,1-benzoxadine(2)(58%). The 4π cycloaddition products of o-azaxylylenes, such as benzazetidines(3), were not observed. It was postulated that the o-azaxylylene(4) was formed by elimination of CO₂ and ethanol from 1a, which causes the 6π electrocyclic reaction to give benzoxazine(2).⁶

To confirm this hypothesis, the intermolecular cycloaddition reactions were attempted in the presence of dienophiles. *N*,*O*-Diethoxycarbonyl-*o*-aminobenzyl alcohols(**1a-d**) were heated with *N*-phenyl-maleimide(5 eq.) as a dienophile at 180°C in *o*-dichlorobenzene under a nitrogen atmosphere for 8 h. The products(**5a-d**) were isolated by column chromatography. The yields and the structures of the products(**5a-d**) are shown in Table, entries 1-4. The yields of the products(**5a-d**) increased with the electron-donating potency of the substituent. This result agreed with the effects of a substituent on the dienes in a normal Diels-Alder reaction.⁷ The relative stereochemistries of **5a-d** were determined by comparison with the ¹H-NMR data of **5a-d** and the reported ¹H-NMR data of *cis*-1-benzyl-1,2,3,4-tetrahydroquinoline-2,3-dicarboxylic acid *N*-phenylimide.⁸ In the ¹H-NMR spectrum of **5a**, the H-2 proton was assigned to the signal at δ 5.89 with a large coupling constant(*J*=9.1 Hz).⁹ This indicated that the H-2 and H-3 protons were situated in *cis* configuration. Similar spectral features were found in the ¹H-NMR spectra of the compounds (**5b-5d**), indicating that they have the same relative stereochemistry. Therefore, it was apparent that *o*-azaxylylenes would be generated *in situ* as intermediates by release of CO₂ and ethanol from the *N*,*O*-diethoxycarbonyl-*o*-aminobenzyl alcohols and then reacted with *N*-

phenylmaleimide as dienes to give the cyclic adducts.

In order to extend the application of this method, 4-substituted styrenes as dienophiles were employed in the intermolecular cycloaddition reaction. *N*,*O*-diethoxycarbonyl-*o*-aminobenzyl alcohol (**1a**) was heated with 4-substituted styrenes to give a single isomer of the 2-aryl-1,2,3,4-tetrahydroquinolines(**6ac**). In the ¹H-NMR spectra of **6a**, **6b**, and **6c**, the H-2 proton was assigned to the signals at δ 5.40(t), 5.42(t), and 5.50(t), respectively. This indicated that the aryl group was situated at the 2 position of the tetrahydroquinoline and these reactions proceeded with regioselectivety. The same reaction of **1a** was performed with 3,4-dihydro-2*H*-pyran (8 eq.) in a sealed tube to give a 10% yield of *cis*-10ethoxycarbonyl-3,4,4a,5,10,10a-hexahydro-2*H*-pyra[6,5-*b*]quinoline(**7**).

entry	starting material	dienophile	product	yield (%)
1	1a	N-phenylmaleimide	5a	52
2	1b	N-phenylmaleimide	5b	85
3	1c	N-phenylmaleimide	5c	63
4	1d	N-phenylmaleimide	5d	40
5	1a	4-N, N-dimethylaminostyrene	6a	70
6	1a	4-methoxystyrene	6b	51
7	1a	4-nitrostyrene	6c	31
8	1a	3,4-dihydro-2H-pyran	7	10

 Table
 Reaction of N,O-diethoxycarbonyl-o-aminobenzyl alcohols with dienophiles

As a result, the present study showed that unstable o-azaxylylenes were generated from N,Odiethoxycarbonyl-o-aminobenzyl alcohols at low temperature and atmospheric pressure. Since the intermolecular cycloaddition reaction proceeds with high stereo- and regio-selectiveties and the *N*-ethoxycarbonyl group of the products is easily deprotected, this method is facile for the preparation of 1,2,3,4-tetrahydroquinolines and related compounds.

REFERENCES AND NOTE

- 1. M. Letulle, P. Guenot, and J. L. Ripoll, Tetrahedron Lett., 1991, 32, 2013.
- 2. W. Sander, and J. Morawietz, Tetrahedron Lett., 1993, 34, 1913.
- 3. W. Danikiewicz, K. Wojciechowski, and M. Olejnik, Tetrahedron Lett., 1995, 36, 1099.
- Y. Ito, E. Nakajo, and T. Saegusa, Synth. Commun., 1986, 16, 1073., Y. Ito, E. Nakajo, M. Nakatsuka, and T. Saegusa, Tetrahedron Lett., 1983, 24, 2881.
- 5. A. S. Caill, L. Trimble, C. Berthelette, and C. K. Lau, Synlett, 1996, 669.

6. 2-Ethoxy-4H-3,1-benzoxazine (2)

Colorless viscous oil. ¹H-NMR (CDCl₃) δ : 1.36 (3H, t, *J*=7.2 Hz, CH₂CH₃), 4.38 (2H, t, *J*=7.2 Hz, CH₂CH₃), 5.33 (2H, s, Ar-CH₂), 6.97 (1H, d, *J*=7.9 Hz, H-8), 7.05 (1H, t, *J*=7.9 Hz, H-7), 7.05 (1H, d, *J*=7.9 Hz, H-5), 7.24 (1H, t, *J*=7.9 Hz, H-6). MS *m/z* : CI, 178 (M⁺+1), 150 (M⁺+1 -28); EI, 177 (M⁻), 149 (M⁺-28).

- 7. K. N. Houk, J. Amer. Chem. Soc., 1973, 95, 4092.
- 8. K. Wojciechowski, Tetrahedron, 1993, 49, 7277.

9. cis-1-Ethoxycarbonyl-1,2,3,4-tetrahydroquinoline-2,3-dicarboxylic acid N-phenylimide (5a)

Colorless crystal, mp 138-139 °C (*n*-hexane/CH₂Cl₂). ¹H-NMR (CDCl₃) δ : 1.19-1.48 (3H, br, CH₂CH₃), 2.98 (1H, dd, *J*=7.4, 14.5 Hz, Ar-CH₂), 3.21 (1H, d, *J*=14.5 Hz, Ar-CH₂), 3.82 (1 H, ddd, *J*=1.7, 7.4, 9.1 Hz, Ar-CH₂CH), 4.16-4.46 (2H, br, CH₂CH₃), 5.89 (1H, m, N-CH), 6.83-7.38 (9H, m, Aromatic-H). MS *m/z*: EI 350 (M⁺), 278 (M⁺-72). Anal. Calcd for C₂₀H₁₈N₂O₄: C, 68.56; H, 5.18 N 8.00. Found C, 68,42; H,5.24; N, 8.06.