REGIOSELECTIVE NUCLEOPHILIC SUBSTITUTION OF HALOGEN DERIVATIVES OF 1-SUBSTITUTED 4-OXO-1,4-DIHYDROQUINOLINE-3-CARBOXYLIC ACIDS

István Hermecz,* Lelle Vasvári-Debreczy, Benjamin Podányi, Géza Kereszturi, Mária Balogh, Ágnes Horváth, and Péter Várkonyi

Chinoin Pharmaceutical and Chemical Works Ltd., Budapest, P.O. Box 110, H-1325 Hungary

Abstract - The rate of the nucleophilic displacement of the fluoro atom of 7fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate could be enhanced either by the introduction of further fluoro atom(s) into position(s) 6 and/or 8, or by the formation of a boron chelate (e.g. 3). The regioselectivity of the nucleophilic substitution of the chloro atom in 1-substituted 6-fluoro-7-chloro-4-oxo-1,4dihydroquinoline-3-carboxylic acids could also be enhanced by the formation of a boron chelate (e.g. 7).

The discovery¹ of the 3rd generation of quinoline-3-carboxylic acids² and the introduction of compounds of this type into human³ and veterinary⁴ therapy (e.g. 1, "oxacins") were milestones in the treatment of bacterial infections.⁵ In the synthesis of these drugs, the regioselective nucleophilic substitution of a halogen atom in position 7 is a key step. When 6,7-difluoro intermediates (2, X = 6-F, 7-F) are applied,

the nucleophilic displacement of the fluoro atom in position 7 occurs with high regioselectivity.⁶ However, in the case of the application of the industrially more economic 6-fluoro-7-chloro intermediates

(2, X = 6-F, 7-Cl), the regioselectivity is dramatically lower, $^{1, 6, 7}$ as the fluoro atom is a much better leaving group in aromatic nucleophilic substitution than the chloro atom.⁸

We report herein an investigation of the nucleophilic substitution of halogen derivatives of 1-substituted 4-oxo-1,4-dihydroquinoline-3-carboxylic acids and esters (2, $R^1 = H$, Et) with piperazine or its 1- and 2methyl derivative. The nucleophilic substitution of a halogen atom on the 1,4-dihydroquinolin-4-one skeleton (2) with *N*-nucleophiles has not been investigated systematically. 5,6,7,8-Tetrafluoroquinoline⁹ underwent nucleophilic displacement solely at position 7 with *N*- and *O*-nucleophiles, while of the 5-, 6-, 7- and 8-fluoroquinoline *N*-oxides¹⁰ only the 7-fluoro derivative reacted with piperazine.

Table 1. Rates¹¹ of Reaction of Fluoro Derivatives of Ethyl 1-Ethyl-4-oxo-1,4-dihydroquinoline-3-carboxylates ($\mathbf{2}, R = R^1 = Et$) with piperazine in DMSO-d₆ at 40 °C

X	5-F	6-F	7-F	8-F	5,6-F ₂	6,7-F ₂	7 ,8- F ₂	6,7,8-F ₃
k ^{a)}	0.19	0.00	0.017	0.00	1.07	0.88	0.11	2.22

a) x 10^{-3} l·mol⁻¹·sec⁻¹ Fluoro atom position given in italics denote reactive atoms.

We first investigated¹¹ the reactivity sequence of a fluoro atom in position 5, 6, 7 or 8 of quinoline-3carboxylates (2, $R = R^1 = Et$, X = F) on treatment with piperazine in DMSO-d₆ at 40 °C (Table 1). Of the monofluoroquinolones, the 7-fluoro derivative was about 10 times less active than the 5-fluoro compound. No reaction occurred with 6- and 8-fluoro derivatives. When an additional fluoro atom was present in either position 6 or position 8, the reactivity of the 7-fluoro atom increased, and in the case of 6,7-difluoro derivative it was almost as reactive as the 5-fluoro atom in the 5,6-difluoro compound. The reactivity of the 7-fluoro atom was increased further in the 6,7,8-trifluoro derivative. Shibamori *et al.* investigated¹² the reactions of 1-cyclopropyl-4-oxo-5,6,7,8-tetrafluoro-1,4-dihydroquinoline-3carboxylic acid and ester with piperidine (besides other amines) by HPLC. Mixture of 5- and 7-substituted derivatives was obtained, and the amount of the latter was slightly higher in the case of the 3-carboxylic acid. While the 5-substituted compound was the main product (over 87%) in toluene, approximately 1:1 mixture of the 5- and 7-substituted derivatives was formed in acetonitrile and in ethanol.

Table 2. Rates¹¹ of Reaction of Ethyl 1-Ethyl-6,7,8-trifluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (2) $R = R^{1} = Et$) with Piperazine or Its 1- or 2-Methyl Derivative in DMSO-d_c at 40 °C

$X = 6,7,8-F_3$	Piperazine	1-Methylpiperazine	2-Methylpiperazine
k ^{a)}	2.22	0.20	0.98 ^{b)}

a) x 10^{-3} l·mol⁻¹·sec⁻¹, b) lomefloxacin ethyl ester

The 6,7,8-trifluoro ester derivative (2, $R = R^1 = Et$, X = 6,7,8-F₃) similarly reacted with 2-methyl- or 1methylpiperazines (Table 2). 2-Methylpiperazine reacted in position 4 and was about half as reactive as

piperazine, while 1-methylpiperazine was *ca.* ten times less reactive. The reaction rate (k = $7.50 \cdot 10^{-3} \text{ l}\cdot\text{mol}^{-1} \text{ sec}^{-1}$) was higher when 2-methylpiperazine reacted with 6,7,8-trifluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (2, R = Et, R¹ = H, X = 6,7,8-F₃) in DMSO-d₆ at 25 °C. The nucleophilic displacement of the 7-fluoro atom was further enhanced when a boron chelate of quinoline-3-carboxylic acid (3) was applied. In DMSO-d₆ the reaction rate (k = > $70 \cdot 10^{-3} \text{ l}\cdot\text{mol}^{-1} \text{ sec}^{-1}$) was at least ten

times higher, in the less polar CDCl₃ it was lower ($k = 2.83 \cdot 10^{-3} \text{ l} \cdot \text{mol}^{-1} \text{ sec}^{-1}$).

Table 3. Reactions¹³ of 1-Substituted 6-Fluoro-7-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acids (4) with Piperazine or with 1-Methylpiperazine in DMSO-d₆ at 120-130 °C

	R	R ¹	Ratio of 5 and 6 formed		R	R ¹	Ratio of 5 and 6 formed
1	Εt	Н	80 ^a : 20	6	cycloPr	Me	87:13
2	Et	Me	82 ^b : 18	7	<i>p</i> F-Ph	Н	83:17
3	NHMe	Н	84:16	8	<i>p</i> F-Ph	Ме	84 ^e : 16
4	NHMe	Me	86°: 14	9	2-F-Et	Н	89:11
5	cycloPr	Н	87 ^d : 13	10	2-F-Et	Me	89:11

a) norfloxacin; b) pefloxacin; c) amifloxacin; d) ciprofloxacin; e) difloxacin

Koga *et al.* reported¹ that, besides norfloxacin (5, R = Et, $R^1 = H$) (66%), the biologically inactive isomeric 7-chloro-6-piperazino derivative (6, R = Et, $R^1 = H$) was isolated in 25% yield from the mixture of reaction products formed from 7-chloro-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (2, R = Et, $R^1 = H$, X = 6-F, 7-Cl) and excess piperazine at 130-140 °C.

The reaction of 7-chloro-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (**2**, $R = R^{1} = Et$, X = 6-F, 7-Cl) with piperazine in DMSO-d₆ at 40 °C was sluggish ($k_{7-Cl} \approx -7 \cdot 10^{-7} \text{ l} \cdot \text{mol}^{-1} \text{ sec}^{-1}$, $k_{6-F} = -3 \cdot 10^{-7} \text{ l} \cdot \text{mol}^{-1} \text{ sec}^{-1}$), but that of 7-chloro-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (**2**, R = Et,

 $R^{1} = H$, X = 6-F, 7-Cl) with piperazine in DMSO-d₆ at 100 °C was faster ($k_{7-Cl} = 0.75 \ 10^{-3} \ 1 \text{ mol}^{-1} \text{ sec}^{-1}$, $k_{6-F} = 0.20 \cdot 10^{-3} \ 1 \text{ mol}^{-1} \text{ sec}^{-1}$). The reaction was not regioselective in either case.

The reactions¹³ of 1-substituted 6-fluoro-7-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylic acids (4) with piperazine or with 1-methylpiperazine in DMSO-d₆ at 120-130 °C led to mixtures of 7- and 6piperazino derivatives¹³ (5) and (6) in ratios varying between 80:20 and 89:11 (Table 3). Side-product formation could be decreased (to less than 5%) when boron chelates (7) were applied instead of the 3-carboxylic acids (4).

Scheme 1. Some selected ¹³C NMR data in DMSO-d₆

Boron chelate formation (e.g. 7 or **10-12**) decreases the electron density on C-7 more than on C-6 (see ¹³C NMR data in Scheme 1). Accordingly, besides an enhancement of the reaction rate, the regioselectivity of the nucleophilic displacement of the 7-chloro atom is increased. Industrially, the application of acetyl derivatives¹⁴ (e.g. 7) is more favorable than that of fluoro derivatives (e.g. **10**), whose formation involves use of the corrosive boron trifluoride etherate or 42% tetrafluoroboric acid.

When an electron-donating atom or group was present at position 8 of the quinolone moiety, the regioselectivity could not be influenced by boron complex formation. Only the 9-piperazino derivative

(13) was formed from 9-fluoro-10-chloro-7-oxo-2,3-dihydro-7*H*-pyrido[1,2,3-*de*]-1,4-benzoxazine-6-carboxylic acid¹⁵ (14) and from its boron derivative¹⁶ (15), whereas both the 9,10-difluoro derivative¹⁵ (16) and its difluoro boron derivative¹⁷ (17) reacted with 1-methylpiperazine to give ofloxacin (18). For some further examples of the applications of boron complexes to enhance the reactivity of the fluoro atom at position 7 of the quinolone moiety, see under Ref. 18.

REFERENCES AND NOTES

- 1. H. Koga, A. Itoh, S. Murayama, S. Suzue, and T. Irikura, J. Med. Chem., 1980, 23, 1358.
- 2. P. Remuzon and D. Bouzard Stud. Med. Chem., 1996, 1, 173.
- H. C. Neu, The Lancet, 1987, 1319; D. T. W. Chu, Exp. Opin. Ther. Patents, 1996, 6, 711 (Chem. Abstr., 1996, 125, 157463); R. Davic, A. Markham, and J. A. Balfour, Drugs, 1996, 51, 1019.
- 4. M. Yagisawa, J. Vet. Med., 1994, 47, 241; S. Nakamura, Drugs, 1995, 49 (Suppl. 2), 152.
- V. T. Andriole (ed.) "The Quinolones", Academic Press, London, 1988; J. S. Wolfson and D. C. Hooper, Clin. Microbiol. Rev., 1989, 2, 378.
- 6. C. B. Ziegler Jr., N. A. Kuck, S. M. Harris, and Y.-i. Lin, J. Heterocyclic Chem., 1988, 25, 1543; S. Deloisy, A. Olesker, and G. Lukacs, Heterocycles, 1995, 41, 259.
- 7. U. R. Kalkote, V. T. Sathe, R. K. Kharul, S. P. Chavan, and T. Ravindranathan, *Tetrahedron Lett.*, 1996, 37, 6785.
- J. F. Bunnett, E. W. Garbisch Jr., and K. M. Pruitt, J. Am. Chem. Soc., 1957, 79, 385; H. Suhr, Chem. Ber., 1964, 97, 3268.
- 9. G. M. Brooke, W. K. R. Musgrave, and R. J. D. Rutherford, J. Chem. Soc. C, 1966, 215.
- 10. M. Bellas and H. Suschitzky, J. Chem. Soc, 1963, 4007.
- 11. 1-Substituted 4-oxo-1,4-dihydroquinoline-3-carboxylate ($\mathbf{2}, R = Et$) (0.02 mol⁻¹) reacted with a cyclic amine (0.06 mol⁻¹) in DMSO-d₆ at 40 °C in an NMR tube, and the reaction was monitored by ¹H NMR. The rate constant of the second-order reaction was calculated on the basis of the signal of 2-H, using the equation dA/dt = -k[A]_{B} with the MATLAB and MicroMath programs, where [A] denotes to the concentration of the starting quinoline, and [B] the concentration of the secondary amine.
- K. Shibamori, H. Egawa, T. Miyamoto, Y. Nishimura, A. Hokawa, J. Nakano, and J. Matsumoto, *Chem. Pharm. Bull.*, 1990, **38**, 2390; see also T. Miyamoto, J. Matsumoto, K. Chiba, H. Egawa, K. Shibamori, A. Minamida, Y. Nishimura, H. Okady, M. Kataoka, M. Fujita, T. Hirose, and J. Nakano, *J. Med. Chem.*, 1990, **33**, 1645; D. B. Morau, T. S. Dunne, N. A. Kuck, and Y. Liu, *J. Med. Chem.*, 1989, **32**, 1313.

- 13. Reactions were carried out in NMR tubes in DMSO-d₆ at 120-130 °C, and the ratios of **5** and **6** were calculated from the ¹H NMR spectra by comparing the integrals of the doublet signals of 5-H (~7.9 ppm, ${}^{3}J_{5-H,6-F} = \sim 16.4$ Hz) in **5** and that of the singlet signal of 5-H (~8.3 ppm) in **6**.
- 14. The appropriate 1-substituted 6-fluoro-7-chloro-4-oxo-1,4-dihydro-4*H*-quinoline-6-carboxylate- (O^3, O^4) -bis(acetate-O)-boron 7 (2 mmol) and secondary amine (6 mmol) (piperazine and 1-methylpiperazine) in DMSO (10 mL) was stirred at 110 °C for 2 h. A solution of 3% aqueous sodium hydroxide (20 mL) was added to the brownish-red solution and the reaction mixture was boiled under reflux for 1 h. The hot pale-yellow solution was filtered and the pH value was adjusted to 7 by adding 96% acetic acid (*ca* 1.8 mL). The reaction mixture was left to crystallize in a refrigerator overnight. The white crystals were filtered off, washed with water and methanol, dried to give the appropriate **5**. Yield: norfloxacin (R = Et, R¹ = H) 93%, pefloxacin (R = Et, R¹ = Me) 96%, amifloxacin (R = NHMe, R¹ = Me) 92%, ciprofloxacin (R = cycloPr, R¹ = H) 95%, difloxacin (R = *p*F-Ph, R¹ = Me), which contains 3.5%, 2.9%, 2.3%, 2.2%, and 4.3% of isomeric **6**, respectively, according to ¹H NMR investigations.
- I. Hermecz, G. Kereszturi, L. Vasvári-Debreczy, Á. Horváth, M. Balogh, G. Kovács, P. Ritli, J. Sipos, A. Pajor, and Z. Mészáros, PCT Int. Appl. 87 03,594 (*Chem. Abstr.*, 1987, 107, 198652); I. Hermecz, G. Kereszturi, L. Vasvári-Debreczy, Á. Horváth, M. Balogh, G. Kovács, P. Ritli, J. Sipos, A. Pajor, and Z. Mészáros, PCT Int. Appl. 87 03,595 (*Chem. Abstr.*, 1987, 107, 198651); I. Hermecz, G. Kereszturi, L. Vasvári-Debreczy, Á. Horváth, M. Balogh, P. Ritli, J. Sipos, A. Pajor, and K. Mármarosi, PCT Int. Appl. 88 07,998 (*Chem. Abstr.*, 1989, 110, 173110).
- 16. I. Hayakawa, T. Hirmitsu, and Y. Tanaka, Chem. Pharm. Bull., 1984, 32, 4907.
- 17. The 9-fluoro-10-chloro-3-methyl-7-oxo-2,3-dihydro-7*H*-pyrido[1,2,3-*de*]-1,4-benzoxacine-6-carboxy-late-(O⁶,O⁷)-bis(acetate-O)-boron (425 mg) and piperazine (258 mg) in DMSO (5 mL) was stirred at 110 °C for 1 h. The excess of piperazine was removed in *vacuo*, and the residue was treated with 6% aqueous sodium hydroxide (2 mL) and acetone (5 mL). The reaction mixture was refluxed for 1 h, and the pH of the solution was then adjusted to 7. The crystals of **13** were filtered off, washed with water, dried and recrystallized from methanol. mp >270 °C, yield 62% (225 mg), ¹H NMR (DMSO-d₆) δ: 7.46 ppm (s, 8-H).
- 18. Daiichi Seiyaku Co., Ltd. Jap. Kokai Tokkyo Koho 85 78,986 (Chem. Abstr., 1985, 103, 123491).
- J. P. Sanchez, R. D. Gogliotti, J. M. Domagala, S. J. Gracheck, M. D. Huband, J. A. Sesnie, M. A. Cohen, and M. A. Shapiro, *J. Med. Chem.*, 1995, **38**, 4478; K. Hashimoto, Y. Okaichi, D. Nomi, H. Miyamoto, M. Bando, M. Kido, T. Fujimura, T. Furuta, and J. Minamikawa, *Chem. Pharm. Bull.*, 1996, **44**, 642; T. E. Renau, J. P. Sanchez, and J. M. Domagala, *J. Heterocyclic Chem.*, 1996, **33**, 1407.