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Abstract --Total synthesis of a macrocyclic antibiotic, micrococcin P I  (1). 

constructed from four segments called Fragments A, B, C, and D, was achieved. 

The synthesis of a central 2,3,6-trithiazole-substituted pyridine moiety [Fragment 

A with C (A-C)], followed by coupling with Fragments B and D synthesized 

independently gave the protected Fragment A-B-C-D. Final deprotection of all 

the protecting groups and cyclization gave synthetic 1.  

Micrococcin P I  (11,' isolated from the culture of Bacillus pumilus, is a unique macrocyclic antibiotic. So 
2 

far, although many similar antibiotics have been isolated from various kinds of strains, the synthesis of 
3.4 any such antibiotics has not been reported except micrococcin P (2). The antibiotic ( I )  includes 

characteristic structures, a central 2,3,6-trithiazole-substituted pyridiue skeleton called Fragment A-C (13) 

and a thiazole-dehydropeptide moiety similar to 2. However, the two sites of Fragments A and D of 1 are 

structurally different from those of 2 ,  as shown in Figure 1. That is, the P, (1) is constructed from a 2- 

[(R)-2-(1-amino-2-hydroxypropyl)thiazolyl-41 segment in Fragment A and 2-amino-2-buteuoic acid (AAbu) 

residue in Fragment D, whereas the P (2) is comprised of a 2-[(a-2-(1-amino-1- propen-1-yl)thiazolyl-41 

Fragment A Fragment A 

5. N- 

OH 

Fragment D Fragment D 
Fragment B Fragment B 

Micrococcin PI ( I )  Figure 1. Micrococcin P (2) 
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segment and L-threonine residue. Unfortunately, however, the chemical and physical constants of 1 have 
1 13 1 

not yet been reported except for the H and C NMR spectral data. The interesting structure as well as 

the bioactivity of 1, which exhibits inhibitory action of bacterial protein synthesis, attracted us to investigate 
4 

its synthesis and structure-bioactivity relationship. Recently, we  have reported briefly the total synthesis 
5 

of 2 from versatile 2-hromoacetyl-3-[(4-ethoxycarbonyl)thiazolyl-2]-6-dimethoxymethylpyridine (9). 

Here, we  would like to report on the total synthesis of 1 from 9 via cyclization of Fragment A-B-C-D, after 

convenient syntheses and couplings of Fragments A, B, C ,  and D. 

First of all, to synthesize the Fragment A-C s o  as not to dehydrate the hydroxy group in Fragment A, the 

tert-butyldiphenylsilyl (TPS) group as the protecting group was chosen. Similarly to the case of the 
4 

synthesis of Fragment A of 2, the hydroxyl group on N-benzyloxycarbonyl (Cbz)-L-Thr-NH, (3) was 

protected with TPSCl to give Chz-Thr(TPS)-NHz (4), the Cbz group of which was hydrogenolyzed with 

10% Pd-C to give H-Thr(TPS)-NH, (5). The formed 5 was coupled with 2-[(R)-2-(N-Boc)amino-2(2- 
6 

methyl)propyl]thiazole-4-carboxylic acid (6: Fragment C) using diphenylphosphonic azide (DPPA) to give 

the corresponding dipeptide derivative (7). Furthermore, thioamidation of 7 with Lawesson's reagent gave 
7 

the expected dipeptide thioamide derivative (8)  as the precursor for the synthesis of Fragment A-C, as 

shown in Scheme 1. 

oil qz, NH2 
CbzHN CbrHN HzN 

0 0 0 

I) TPSCI, irnidazole, DMF, 0 "C, 30 rnin, rt, 24 h. li) 10% Pd-C, HZ. ELOH, rt, 3 h, 
iii) DPPA, E13N, 5, DMF, 0 'C, 3 h, rt, overnight, iv) Lawcsson's rcagent, DM€. 
n. 12 h. 

Scheme 1 

4 
Subsequently, to construct the Fragment A-C skeleton, thiazolation of 9 with 8 by using successive 

KHC03, trifluoroacetic anhydride (TFAA), and 28% NH3 gave the corresponding 2,3-dithiazolyl- 

substituted pyridine derivative (10). Furthermore, after formylation of 1 0  with 2M HCI, the immediate 

thiazolination of the obtained 6-formylpyridine derivative (11) with phenacyl (Pac) 2-[(S)-(I-amino-2- 
4 

thiol)propyl]thiazole-4-carboxylate using trifluoroacetic acid (TFA) and then oxidation with M n q  gave the 
8 

expected 2,3-dithiazolyl-6-bithiazolylpyridine derivative (12), by the Shioiri method. Finally, Pac ester 

hydrolysis of 1 2  with 1M LiOH gave the corresponding 6-[4-(carboxy)thiazolyI-2-(4-thiazolyl-2)1pyridine 
9 

derivative ( 1  3) almost quantitatively, as shown in Scheme 2. 

On the other hand, to synthesize the protected Fragment D, first, the protection of Boc-L-Thr-OBn (14)  with 

rert-hutyldibutylsilyl chloride (TBSCI) gave the corresponding Thr(TBS) derivative, the benzyl (Bn) ester of 
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ii) iii) 

10: R=CH(OMe), -----, 11: R=CHO 12: R=Pac -----, 13: R-H 
quant 

i) a) 8, KHCO,, 0 'C, 3 0  min, rl, overnight, b) TFAA. pyndine, 0 "C, 2 h. c) 28% NH,, ethyl acelatc. 0 "C, 15 
min, ii) 2M HCI-THF, rt, 12 h, iil) a) toluene, rt, 15 min, b) MnO?. toluene, overnight, iv) 1M UOH,  THF. 
0 ° C . 2 h .  

Scheme 2 

which was hydrogenolyzed with 10% Pd-C to give Boc-f;Thr(TBS)-OH (15). Next, coupling of 1 5  with 
10 

S-(+)-I-aminopropanol using BOP as condensing agent gave Boc-L-Thr(TBS)-NH-(S)-(2- 

hydroxy)propane (16),  the hydroxyl group of which was acetylated with acetic anhydride (Ac20) to give 

the corresponding (2-acetoxy)propane derivative (17)  almost quantitatively. Then, deprotection of the Boc 

group of 1 7  with TFA in the presence of MS4A (molecular sieves) proceeded smoothly to give the expected 

N-free Thr(TBS)-NH-(2-acetoxy)propane (1 8) ,  as  shown in Scheme 3. 

OTBS 
iii) qsx 1") 

& - 
BwHN TFA.HzN %EX 

quant. 
0 0 

i) a) TBSCI, imidazole, CH2CI2, 0 "C, 3 0  min. rt, overnight, b) IO%Pd-C, Hz, EtOH. 
n. 3 h, ii) (57-(+)-I-aminopropanol, BOP, (i-Pr),NEt. CH3CN, 0 "C, 3 0  min, rt, 
overnight, iii) AcZ0. pyridine, rt, 2 h,  iv) TFA 1 CHzC12, rl, 1 h,  MS4A. 

Scheme 3 

Finally, the protected Fragment D (18) as the precursor was subjected to the coupling with 13 and then P- 
elimination. Fragment condensation of 13 with 18 by the BOP method gave the protected Fragment A-C 

derivative (19). Selective deprotection of only the TBS group of the side chain of 19 with 70% AcOH 
I I 

was tried successfully to give the corresponding Fragment A-C(20) containing Thr residue, the hydroxy 

group of which was mesylated with methanesulfonyl chloride (MsCI) and then P-eliminated with 

1.8-diazabicyclo[5.4.0lundecene-7 (DBU) to give the protected Fragment A-C-D (21). Then, both ester 

and acetyl hydrolyses of 21 with 1M LiOH were canied out to give the corresponding 3.14- 
12 

carboxythiazolyl-Zlpyridine derivative (22). Furthermore, condensation of the carboxyl group in 22 
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13 with ethyl 2-[(2)-1-(O-TPS-~-Thr)amino-l-propen-l-yl]thiawle-4-carboxylate (23) by the BOP method 
14 

gave the protected Fragment A-B-C-D (24). After ester hydrolysis of 2 4  using 1M LiOH, consecutive 

deprotections of the both PTS and Boc groups with a mixture of TFA and CH2CI2 (4 : 6 v/v), and 

cyclization by the BOP method gave a crude micrococcin P I ,  as shown in Scheme 4. The obtained reddish 

syrup was purified on a silica gel column using a mixture of CHCI3 and MeOH (15 : 1 v/v) as the eluent to 
15 give crude crystals. Recrystallization from MeOH-EtOAc gave 1 as a colorless powder. 

iv) - 22: R ~ = R ~ = H  
72% 

vi) - 1 

13% 

(4 steps) 

i) 18. BOP. (i-Pr),NEt. DMF, 0 "C, 3 0  min, rt, overnight. ii) 7OBAcOH-THF, rl. 72  h, iii) a) MsCI, 
El3N, CHzC12,O "C, 10 min, b) DBU. CH2CI2. O "C, 30  mi", rl, overnight, iv) 1M LiOH, THF, O "C, 
3 h, V) 23, BOP, (i-Pr),NEt. DMF, O°C, 30  min, rt, overnight, iv) (a) 1M LtOH, THF, O'C, I h, rl, 
6 h, (b) TFA:CH,CI,-460, rl, 3 h, ( c )  BOP, (i-Pr),NEt, DMF, 0 "C, I h, rt, overnight, d) TBAF, 
THF. rt. 3 0  min. . . 

Scheme 4. 
24 

The chemical and physical constants of the synthetic 1 {mp 215-245 'C, [a]" +40.0° (c 0.50,90% EtOH, 

Amax 324.6 nm) were first obtained. Furthermore, it was found that the ' H  and I3c NMR spectral data 

were identical with all of those of the natural 1 .  Accordingly, the configurational structure of 1 could be 

clearly confirmed by the identification of the physical constants (NMR) as well as satisfactory elemental 

analysis. 

In conclusion, the total synthesis of 1 was achieved by the effective selections of the protecting groups and 

the cyclization conditions as well as the useful synthesis of the promising 2,3,6-trithiazole-substituted 



HETEROCYCLES, VOI. 48, NO. 7,1998 1323 

pyridine skeleton. 
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