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Abstract —Total synthesis of a macrocyclic antibiotic, micrococcin Py (1},
constructed from four segments called Fragments A, B, C, and D, was achieved.
The synthesis of a central 2,3,6-trithiazole-substituted pyridine moiety [Fragment
A with C (A—C)]; followed by coupling with Fragments B and D synthesized
independently gave the protected Fragment A-B-C-D. Final deprotection of all
the protecting groups and cyclization gave synthetic 1.

Micrococcin P, (1),1 isolated from the culture of Baciflus pumilus, is a unigue macrocyclic antibiotic. 5o
far, although many similar antibiotics have been isolated from various kinds of strains,2 the synthesis of
any such antibiotics has not been reported except micrococcin P (2).3‘4 The antibiotic (1) includes
characteristic structures, a central 2,3,6-trithiazole-substituted pyridine skeleton called Fragment A-C (13)
and a thiazole-dehydropeptide moiety similar to 2. However, the two sites of Fragments A and D of 1 are
structurally different from those of 2, as shown in Figure 1. That is, the P, (1) is constructed from a 2-
[(R)-2-(1-amino-2-hydroxypropyDthiazolyl-4] segment in Fragment A and 2-amino-2-butenoic acid (AAbu)

residue in Fragment D, whereas the P (2) is comprised of a 2-[(Z)-2-(1-amino-1- propen 1-yD)thiazolyl-4]
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segment and L-threonine residue.  Unfortunately, however, the chemical and physical constants of 1 have
not yet been reported except for the 'H and °C NMR spectral data.' The interesting structure as well as
the bioactivity of 1, which exhibits inhibitory action of bacterial protein synthesis, attracted us to investigate
its synthesis and structure-bioactivity relationship. Recently,4 we have reported briefly the total synthesis
of 2 from versatile 2-bromoacetyl-3-[(4-ethoxycarbonyl)thiazoly}-2]-6-dimethoxymethylpyridine (9).5
Here, we would like to report on the total synthesis of 1 from 9 via cyclization of Fragment A-B-C-D, after
convenient syntheses and couplings of Fragments A, B, C, and D.

First of all, to synthesize the Fragment A-C so as not to dehydrate the hydroxy group in Fragment A, the
tert-butyldiphenylsilyl (TPS) group as the protecting group was chosen. Similarly to the case of the
synthesis of Fragment A of 2,4 the hydroxyl group on N-benzyloxycarbonyl (Cbz)-L-Thr-NH, (3) was
protected with TPSCI to give Cbz-Thr(TPS)-NHz (4), the Cbz group of which was hydrogenolyzed with
10% Pd-C to give H-The(TPS)-NH, (8). The formed 5 was coupled with 2-[(R)-2-(N-Boc)amino-2-(2-
methyl)propyl]thiazole-4-carboxylic acid (6: Fragment C)6 using diphenylphosphonic azide (DPPA) to give
the corresponding dipeptide derivative (7). Furthermore, thioamidation of 7 with Lawesson’s reagent gave
the expected dipeptide thioamide derivative (8)7 as the precursor for the synthesis of Fragment A-C, as

shown in Scheme 1.
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Scheme 1.

Subsequently, to construct the Fragment A-C skeleton, thiazolation of 9" with 8 by using successive
KHCO;, wuifluoroacetic anhydride (TFAA), and 28% NH; gave the corresponding 2,3-dithiazolyl-
substituted pyridine derivative (10).  Furthermore, after formylation of 10 with 2M HCI, the immediate
thiazolination of the obtained 6-formylpyridine derivative (11) with phenacyl (Pac) 2-[(5)-(1-amino-2-
thiol)propyl]miazole-4-carboxylate4 using trifluoroacetic acid (TFA) and then oxidation with MnQ, gave the
expected 2,3-dithiazolyl-6-bithiazolylpyridine derivative (12), by the Shioiri method.® Finally, Pac ester
hydrolysis of 12 with IM LiOH gave the corresponding 6-[4-(carboxy)thiazolyl-2-(4-thiazolyl-2)]pyridine
derivative (1 3)9 almost quantitatively, as shown in Scheme 2.

On the other hand, to synthesize the protected Fragment D, first, the protection of Boc-L-Thr-OBn (14) with
tert-butyldibutylsilyt chloride (TBSCI) gave the corresponding Thr{TBS) derivative, the benzyl (Bn) ester of
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which was hydrogenoclyzed with 10% Pd-C to give Boc-L-Thr(TBS)-OH (15). Next, coupling of 15 with
S-(+)-1-aminopropanol using BOP' as condensing agent gave Boc-L-Thr(TBS)-NH-(5)-(2-
hydroxy)propane (16), the hydroxyl group of which was acetylated with acetic anhydride (Ac,0) to give
the corresponding (2-acetoxy)propane derivative (17) almast quantitatively, Then, deprotection of the Boc
group of 17 with TFA in the presence of MS4A (molecular sieves) proceeded smoothly to give the expected

N-free Thr(TBS)-NH-(2-acetoxy)propane (18), as shown in Scheme 3.
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Scheme 3.

Finally, the protected Fragment D (18) as the precursor was subjected to the coupling with 13 and then -
elimination. Fragment condensation of 13 with 18 by the BOP method gave the protected Fragment A-C
derivative (19). Selective deprotection of only the TBS group of the side chain of 19 with 70% AcOH
was tried successfully to give the corresponding Fragment A-C(20) " containing Thr residue, the hydroxy
group of which was mesylated with methanesulfonyl chloride (MsCl) and then f3-eliminated with

1,8-diazabicyclo[5.4.0]undecene-7 (DBU) to give the protected Fragment A-C-D (21). Then, both ester
and acetyl hydrolyses of 21 with 1M LiOH were carried out to give the corresponding 3-|4-
carboxythiazolyl-2]pyridine derivative (22).12 Furthermore, condensation of the carboxyl group in 22
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with ethyl 2-[(Z)-1-(O-TPS-L-Thr)amino-1-propen- 1-yl]thiazole-4-carbox ylate (23)13 by the BOP method
gave the protected Fragment A-B-C-D (24), " After ester hydrolysis of 24 using 1M LiOH, consecutive
deprotections of the both PTS and Boc groups with a mixture of TFA and CH,Cl, (4 : 6 v/v), and
cyclization by the BOP method gave a crude micrococcin Py, as shown in Scheme 4. The obtained reddish
syrup was purified on a silica gel column using a mixture of CHCl; and MeCH (15: 1 v/v) as the eluent to
give crude crystals. Recrystallization from MeOH-EtOAc gave 1 1 as a colorless powder.
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Scheme 4,

The chemical and physical constants of the synthetic 1 {mp 215-245 °C, [a]’" +40.0° (c 0.50, 90% EtOH,
Amax 324.6 nm} were first obtained. Furthermore, it was found that the '"H and °C NMR spectral data
were identical with all of those of the natural 1.  Accordingly, the configurational structure of 1 could be
clearly confirmed by the identification of the physical constants (NMR) as well as satisfactory elemental
analysis.

In conclusion, the total synthesis of 1 was achieved by the effective selections of the protecting groups and
the cyclization conditions as well as the useful synthesis of the promising 2,3,6-trithiazole-substituted
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pyridine skeleton.
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