Cedric W. Holzapfel* and Renier Crous

Department of Chemistry and Biochemistry, Rand Afrikaans University, P.O. Box 524, Auckland Park, 2006, South Africa

Cedric W. Holzapfel* and Renier Crous

Department of Chemistry and Biochemistry, Rand Afrikaans University, P.O. Box

524, Auckland Park, 2006, South Africa

Abstract- A facile route to chiral cyclic nitrones derived from Their versatility as substrates for 1,3-dipolar cycloadditions and nucleophilic additions is demonstrated.

In the search for effective, non-toxic, antiviral agents a variety of modified nucleoside analogues are currently being developed.¹ Carbonucleosides,² thionucleosides³ and diheterosubstituted nucleosides⁴ have received much attention. As part of an ongoing investigation in our laboratories into the synthesis of analogues of biologically active compounds,⁵ we were interested in synthesising the aza analogues of β -Cnucleosides and β -C-glycosides.⁶ Our strategy involves the synthesis of a carbohydrate derived chiral cyclic nitrone (1) as the key synthon (Scheme 1). The rich chemistry displayed by these $1,3$ -dipoles⁷ makes them attractive targets, but the preparative methods for chiral cyclic nitrones of type (1) remain limited.

Scheme 1

Van den Broek⁸ has described the synthesis of cyclic nitrones *via* the oxidation of 1-deoxynojirimycin using 2,2-dimethyldioxirane. The oxidation was not regiospecific and separation of the isomers proved

to be tedious. Recently, the synthesis of pyrrolidine⁹ and piperidine based nitrones¹⁰ derived from carbohydrates was reported. The nitrone functionality was obtained by intramolecular conjugate addition of an oxime.¹¹ In both cases the nitrones were isolated as a mixture of diastereoisomers. Clearly, a stereospecific synthesis of these highly versatile intermediates is lacking. Herein we wish to report a facile route towards cyclic nitrones starting from suitably protected hemiacetals of D-ribofuranose. Readily available tri-*O*-benzyl-D-ribofuranose¹² was allowed to react with hydroxylamine hydrochloride to afford acyclic **(3).** Selective silylation followed by iodonation at **C-5** (with inversion of configuration) furnished the cyclisation precursor (4). Anhydrous TBAF-mediated desilylation and subsequent intramolecular nucleophilic attack¹³ afforded the cyclic nitrone (5)¹⁴ in an isolated yield of 86% (Scheme 2).

Reagents: i) NH₂OH-HCl / pyridine / rt / 3 h ii) ^tBuPh₂SiCl / pyridine / rt / 12 h iii) PPh₃ / imidazole / I₂ / toluene / reflux / 0.5 h iv) TBAF anhydrous / benzene / reflux / **0.5** h

Scheme **2**

The 1,3-dipolar cycloaddition reaction of a nitrone to an alkene is an extremely powerful synthetic method for the creation of complex heterocyclic structures.¹⁵ For example, the labile nature of the N-O bond under mild reducing conditions in the formed isoxazolidines, makes them suitable precursors of 1,3-amino alcohols. Reaction of nitrone (5) with α, β -unsaturated carbonyl compounds furnished the corresponding cycloadducts (6, **7** and **8)16** in good diastereomeric excess (Table 1). The exo-product was isolated as the major isomer in each case. The structures of all products were confirmed by NMR and MS analysis, and the stereochemistries by means of ROESY-spectra. The high diastereofacial selectivities observed were comparable to results reported by Ishikawa *et al*.⁹ for a different cyclic nitrone. The reaction of a variety of carbon nucleophiles, including a Grignard reagent, with 5 (Table 1) led to the formation of interesting β -Cglycoside analogues $(9, 10, 11 \text{ and } 12)^{17}$ The nitrone (5) was converted into the thymine C- nucleoside

Table I: Reactions of 5 with dipolarophiles and carbon nucleophiles

Nitrone | Reagent

a) Total cycloadduct yield. b) Alkene (2 mmol) and nitrone (1 mmol) in dry benzene (2 mL) were reacted at 60° C for 3 h c) Grignard reagent (1.1 mmol) and nitrone (1 mmol) in dry THF (2 mL) were reacted at 0°C for 10 min. d) Lithiated species (1.1 mmol) and nitrone (1 mmol) in dry THF (2 mL) were reacted at -30°C for 1 h.

analogue (13) using a method reported by Tronchet and co-workers¹⁸ (Scheme 3).

Reagents: i) a: (EtCO) $_2$ O / H⁺ b: Thymine / HMDS / TMSCI / SnCI4

Scheme 3

Following the same protocol as for the synthesis of 5, 2,3-isopropylidene-5-O-trityl-D-ribofuranose (14)¹⁹ was converted to the corresponding nitrone (15).²⁰ The reaction of 15 with N -benzylmaleimide afforded cycloadduct $(16)^{21}$ in a yield of 95% (diastereomeric excess 83%).

This work clearly shows that the construction of chiral cyclic nitrones from D-ribose derivatives is an extremely efficient and simple procedure. Furthermore, 1,3-dipolar cycloadditions of the nitrones to appropiate olefins proceed smoothly in high yielding diastereoselective reactions.

ACKNOWLEDGEMENTS

We thank the FRD (South Africa), AECI and SASOL for funding.

REFERENCES

1. For reviews, see: E. De Clercq, *AIDS Res. Humn. Retroviruses*, 1992, **8**, 119; V. Nair and T.S. Jahnke, Antimicrob. Agents Chemother., 1995, 39, 1017; E. De Clercq, *Nucleosides Nucleotides*, 1994, *12,* 1271.

- 2. L. Agrofoglio, E. Suhas, A. Farese, R. Condom, S.R. Challand, R.A. Earl, and R. Guedji, *Tetrahedron,* 1994,50, 106 11
- 3. M.R. Dyson, O.L. Coe, andR.T. Walker, *J Med. Chem.,* 1991,34,2782.
- 4. D.W. Norbeck, S. Spanton, S. Border, and H. Mitsuya, *Tetrahedron Lett.,* 1989, 30, 6263; B.R. Belleau, C.A. Evans, H.L.A. Tse, H. Jin, D.M. Dixit, and T.S. Mansour, *Tetrahedron Lett.,* 1992,33, 6949.
- 5. C.W. Holzapfel and M. Portwig, *Heterocycles,* 1997, 45, 1433.
- 6. M. Yokoyama, T. Akiba, Y. Ochiai, A. Momotake, and H. Togo, *J Org. Chem.,* 1996, 61, 6079; G. Just and P. Donnini, *Can. J. Chem.*, 1977, 55, 2998; B.A. Horenstein, R.F. Zabinski, and V.L. Schramn, *Tetrahedron Lett.,* 1993, 34, 7213.
- 7. K.B.G. Torssell, *'Nitrile Oxides. Nitrones, and Nitronates in Organic Synthesis',* Chapter 3, VCH Publishers, New York, 1988, pp. 75-89.
- 8. L.A.G.M. Van den Broek, *Tetrahedron,* 1996,52,4467.
- 9. T. Ishikawa, Y. Tajima, M. Fukui, and S. Saito, *Angew. Chem.. Int. Ed Engl.,* 1996, 35, 1863
- 10. P. Herczegh, I. Kovacs, L. Szilaqyi, T. Varga, 2. Dinya, and F. Sztaricskai, *Tetrahedron Left.,* 1993, 34, 1211.
- 11. P. Armstrong, R. Grigg, S. Surendrakumar, and W.J. Warnock, J. *Chem. Soc., Chem. Commun.,* 1987, 1327.
- 12. R. Barker and H.G. Fletcher Jr., *J. Org. Chem.,* 196 1,26, 4605.
- 13. N.A. LeBel and N. Balasubramanian, *Tetruhedron Lett.,* 1985, 26, 4331.
- 14. 5: colourless oil; $[\alpha]_D +8.21^\circ$ (c=2.1, CHCl₃), ¹H NMR (300 MHz, CDCl₃); δ 7.31-7.27 (15H, m), 6.91 (1H, s), 4.69-4.36 (7H, m), 4.43 (1H, t, $J=5.4$ Hz), 4.12 (1H, dd, $J=10.7$ and 2.5 Hz), 4.08 (1H, m), 3.61 (1H, dd, $J=10.7$ and 2.1 Hz), ¹³C NMR (300 MHz, CDCl₃): δ 137.61, 137.41, 137.23, 133.43, 128.63, 128.16, 12811, 127.86, 127.68, 76.34, 75.35, 74.46, 73.41, 72.41, 72.06, 6472, MS: m/z 418 $(M⁻¹)$.
- 15. For review, see: M. Frederickson, *Tetruhedron,* 1997, 53, 403.
- 16. 6: mp 63-64°C (ethyl acetate/hexane); $\alpha|_{D} + 0.58$ ° (c=2.4, CHCl₃), ¹H NMR (300 MHz, CDCl₃): δ 7.32-7.27 (15H, m), 4.87 (IH, dt, J=57 and 2.0 Hz), 4.68-4.46 (6H, m), 4.34 (2H, d, J=2.1 Hz), 4 23 (1H, dd, $J=6.3$ and 2.4 Hz), 4.11 (1H, dd, $J=6.3$ and 4.5 Hz), 3.94 (1H, dd, $J=6.0$ and 2.4 Hz), 3.85 (1H, t, J=4.2 Hz), 3.56-3.41 (3H, m), ¹³C NMR (300 MHz, CDCl₃): δ 177.47, 137.91, 137.72, 137.56, 128.51, 128.47, 128.42, 127.96, 127.89, 127.81, 78.66, 78.32, 76.68, 73.44, 72.74, 72.56, 71.14, 70.75, 69.92, 69.77, 50.57, MS: **m/z** 501 (M').
- 17. 11: mp 84-8S°C (ethyl acetateihexane); *[aID* +5.93' (c=1.8, CHCI2), 'H **NMR** (300 *MHz,* CDCI,): 6 7.41 (IH, dd, J=75 and 1.8 Hz), 7.31-7.26 (16H, m), 6.88 (2H, m), 5.29 (lH, br s) 4.68 (IH, d, $J=4.8$ Hz) 4.65-4.43 (6H, m), 3.91 (1H, dd, $J=7.5$ and 5.7 Hz), 3.81 (1H, t, $J=5.5$ Hz), 3.77 (3H, s), 3.76 (lH, dd, J=10.2 and 3.9 **Hz),** 3.67 (IH, dd, J=10.2 and 4.2 Hz), 3.61 (IH, m), I3c NMR (300 MHz, CDC13): 6 157.49, 138.48, 138.36, 138.23, 128.32, 128.25, 12817, 127.99, 127.83, 12759, 120.66, 110.63, 80.05, 75.29, 73.21, 71.62, 71.13, 71.04, 70.35, 69.11, 55.29, MS: m/z 525 (M⁺).
- 18. J.M.J. Tronchet, G. Zosimo-Landolfo, M. Balkadjian, **A.** Ricca, M. Zdly, F. Barabalt-Rey, D. Cabrini, P. Lichtle, and M. GeofFroy, *Tetrahedron Lett.,* 1991, **32,** 4129.
- 19. N. Katagiri, K. Takashima, and T. Kato, *.I Chem. Soc., Perkin Trans. I,* 1983, 201
- 20. 15: colourless oil; $[\alpha]_D$ +2.22° (c=2.6, CHCl₃), ¹H NMR (300 MHz, CDCl₃): δ 7.33-7.24 (15H, m), 7.09 (1H, s), 5.34 (1H, d, $J=6.3$ Hz), 4.52 (1H, d, $J=6.3$ Hz), 4.07 (1H, dd, $J=10.2$ and 2.7 Hz), 4.02 (1H, m), 3.13 (1H, dd, $J=10.2$ and 2.1 Hz), 1.42 (3H, s), 1.31 (3H, s), ¹³C NMR (300 MHz, CDCl₃): 6 143.26, 133.31, 128.46, 12811, 127.43, 111.79, 86.99, 7919, 79.14, 77.32, 59.48, 27.26, 25.81, MS: m/z 430 (M^{+1}) .
- 21. 16: colourless oil; $\alpha|_D$ +0.45° (c=1.2, CHCl₃), ¹H NMR (300 MHz, CDCl₃): δ 7.31-7.21 (20H, m), 4.81, (1H, t, J=5.1 Hz), 4.73 (2H, s), 4.70 (1H, d, J=7.5 Hz), 4.69 (1H, d, J=5.1 Hz), 4.19 (1H, d, $J=5.1$ Hz), 3.94 (2H, m), 3.24 (1H, dd, $J=9.9$ and 4.2 Hz), 3.14 (1H, dd, $J=9.9$ and 4.2 Hz), 1.42 (3H, **s),** 1.26 (3H, s), I3C NMR (300 MHz, CDCI,): 6 175.82, 175.11, 143.35, 135.27, 128.78, 128.59, 128.53, 127.99, 127.26, 113.08, 87.47, 85.94, 82.86, 75.68, 72.84, 71.59, 63.53, 50.24, 42.55, 26.31, 24.06., MS: m/z 616 (M⁺).

Received, 9th March, 1998