EPOXIDATION OF FOUR POSSIBLE CONFORMERS OF HUMULENE 9.10-EPOXIDE: FIRST ISOLATION OF 2R*. 3R*. 6S*, 7S*, 9S*, 10S*-HUMULENE 2,3;6,7;9,10-TRIEPOXIDE

Kivoharu Havano*, Nobue Ito, Makoto Sato, Masavuki Takishima[†], and Katsura Mochizuki[†]

Chemistry Laboratory, Hokkaido College of Education, Ainosato, Sapporo 002-8502, Japan, †Department of Chemistry, Yokohama City University, Kanazawaku, Yokohama, 236-0027, Japan

Abstract-The complete reaction of humulene 9.10-epoxide $\{(2E, 6E)$ **-9.10-epoxy-**3,7,11,11-tetramethylcycloundeca-2,6-diene, (1)} with m-CPBA produced a hitherto unknown $2R^*$, $3R^*$, $6S^*$, $7S^*$, $9S^*$, $10S^*$ -2,3;6,7;9,10-triepoxy-3,7,11,11tetramethylcycloundecane (6) together with three known humulene triepoxides (7, 8 and 9), in the ratio of 6:7:8:9 = 1.3:11.5:22.6:64.6. The configuration of 6 was determined by X-Ray crystallography (C15H24O3: space group $P21/n$ with $a = 14.147(4)$ Å, $b = 8.419(3)$ Å, $c = 12.238(4)$ Å, $\beta = 102.10(3)$ °, $Z = 4$). The new triepoxide (6) maintained configuration corresponding to the TT conformer, one of the four possible conformers of 1.

It has been considered that four configurations, $(2R^*, 3R^*, 6S^*, 7S^*, 9S^*, 10S^*)$, $(2R^*, 3R^*, 6R^*, 7R^*)$ $95*,105*$. $(25*,35*,65*,75*,95*,105*)$ and $(25*,35*,6R*,7R*,95*,105*)$ humulene 2.3:6.7:9.10triepoxides (6, 7, 8 and 9), are derived from $(2E, 6E)$ -humulene 9,10-epoxide (1) by complete epoxidation of 2,3- and 6,7-double bonds *via* (2E)-humulene 6,7;9,10- and (6E)-humulene 2,3;9,10diepoxides $(2, 3, 4, 4)$ and 5), because 1 can take four conformations, TC, CC, CT and TT due to the rotation of the 2,3- and 6,7-double bond planes¹ as shown in Scheme 1. Indeed, we have previously described^{2,3} the existence of the three triepoxides (7, 8 and 9), the configurations of which correspond to the TC, CC and CT conformations, respectively, in the epoxidation reaction of another epoxide, $(6E, 9E)$ humulene 2,3-epoxide, but the last triepoxide (6) derived from the TT conformation, has not been detected and isolated until this work. The TT conformation itself and/or configuration originated from the TT conformation has neither been experimentally isolated nor confirmed in the case of following compounds; humulene,⁴ humulene mono-, di- and triepoxides,⁵ transannular cyclized compounds⁶ of humulene and the monoepoxides, and cyclohumulanoids.⁷ In the present study, we first isolated the new $2R^*$, $3R^*$, $6S^*$, 7S*, 9S*, 10S*-humulene 2,3;6,7;9,10-triepoxide (6) corresponding to the TT conformation as a minor product together with the three known triepoxides $(7, 8, \text{ and } 9),$ ³ from the complete epoxidation of 1 with *m*-chloroperbenzoic acid (m -CPBA). The triepoxide (6) was separated by HPLC and isolated as a

single crystal, and its configuration was first determined by X-Ray crystallography.

crossed and parallel arrangement of 6.7- and 9.10-bonds agaist 2.3-bond, respeclively. For example, first T and second T in **l7 represent parallel and parallel that of 9.10- and 2.3-bonds. and 6.7 and 2,3-bonds, respectively.**

Epoxidation⁸ of one double bond in humulene 9,10-epoxide (1) with m -CPBA (1 eq) in dry dichloromethane (CH₂Cl₂) at 0 $^{\circ}$ C under an argon atmosphere and then chromatographic separation (SiO₂, EtOAc / hexane = 1 / 9) gave an oily mixture (97%) of 2, 3, 4 and 5 $\{(2+3) : (4+5) = 59 : 41$; the ratio was calculated from the HPLC peak areas, Scheme I}, which was separated into an oily mixture (48.4 % from 1) of two 6,7;9,10-diepoxides $(2+3)$ and a crystalline mixture $(33.6 %$ from 1) of two 2,3;9,10-diepoxides (4+5) by HPLC using a 10 x 244 mm column of RP-18 (7 μ m, Merck, H₂O / EtOH = 3 / 7). Furthermore, separation of the two mixtures (2 : $3 = 69$: 31 and 4 : $5 = 85$: 15; the ratios were calculated from the HPLC peak areas) by HPLC using two 10 x 250 mm columns of Inertsil SIL 100-5 (GL Sciences, Inc., EtOAc/hexane = 1/9) gave 2 (30.7 % from 1)⁹, 3 (14.4 % from 1)⁹, 4 (26.3 % from 1)⁹ and 5 $(4.6\%$ from 1).⁹ Although the HRMS of 2 and 3 showed the same molecular formula, C₁₅H₂₄O₂, and their COSY (H-H and C-H) spectra revealed the existence of the same partial structures (Figure 1), the 1 H and 13 C NMR spectra of 2 and 3 were different. From the results of the NOESY spectrum of 2, conformation of 2 was shown to be CT, and therefore, the CC or TT conformation¹⁰ was deduced for 3. The diepoxides (4 and 5) differed from 2 and 3 in the ¹H and ¹³C NMR spectra,⁵ but the HRMS of the diepoxides (4 and 5) also showed the same molecular formula, $C_15H_24O_2$, as that of 2 and 3. Moreover, because the partial structures of 4 revealed by COSY (H-H and C-H) spectra were the same as those of 5 (Figure 2), 4 was thought to be a stereoisomer of 5. From the above results and the results (Figure 2) of the NOESY spectrum of 5 , the structure and conformation of 5 were derived to be TC as depicted in Figure 2, and therefore, the CT or CC conformation 10 was suggested for 4.

Flgure 1. Partial structures **of** 2 **(CT)** and **3,** and results **of NOESY** spectrum **of 2 (CT).**

Flgure 2. Partial structures 4 and 5 **(TC),** and results of **NOESY** spectrum **of 5 (TC)**

The epoxidation of the residual double bond in the above pure diepoxides $(2, 3, 4 \text{ and } 5)$ with m-CPBA (1) eq) in CH₂C₁₂ at 0 [°]C under an argon atmosphere, followed by chromatographic separation (SiO₂, EtOAc / hexane = 3 / 17) yielded quantitatively a triepoxide mixture of 7 and 9 (7 : 9 = 14 : 86), 6 and 8 (6 : 8 = 5 : 95), 8 and 9 (8 : 9 = 15 : 85) and 6 and 7 (6 : 7 = 6 : 94) (Scheme 1). The ratio of these mixtures was calculated from the HPLC peak areas using two 10 x 250 **mm** columns of Inertsil SIL 100-5 (GL Sciences, Inc., EtOAc / hexane = $1 / 3$). Fractional crystallization of the mixture of 6 and 8, and 6 and 7 from benzene, combined with HPLC separation of these filtrates, produced 6 (4.7 % from 3) and 8 (93.8 % from 3), and 6 (4.8 % from 5) and 7 (90.5 % from 5). Fractional crystallization of the mixture of 7 and 9, and 8 and 9 from hexane, followed by HPLC separation of these filtrates, gave 7 (11.1 % from 2) and 9 (77.8 % from 2), and 8 (14.5 % from 4) and 9 (81.1 % from 4). ¹³C and ¹H NMR spectra of 7, 8 and 9 were superimposable on those of known $2R^*$, $3R^*$, $6R^*$, $7R^*$, $9S^*$, $10S^*$ -, $2S^*$, $3S^*$, $6S^*$, $7S^*$, $9S^*$, 1W*- and ZS*, 3S*, *6R*,* 7R*, 9S*, 1W'-humulene **2,3;6,7;9,10-triepoxides?** and therefore, these configurationswere depicted as 7, 8 and 9 in Scheme 1. Although the **HRMS** of 6 showed the same molecular formula, C₁₅H₂₄O₃, as those of 7, 8 and 9, the triepoxide (6) differed from 7, 8 and 9 in these ¹³C and ¹H NMR spectra.^{3,11} In order to determine the configuration of 6, a single crystal of 6 was supplied for X-Ray crystallography,¹² which revealed its configuration, $2R^*$, $3R^*$, $6S^*$, $7S^*$, $9S^*$, $10S^*$ -humulene **2,3;6,7;9,10-triepoxide,** as depicted in Figure 3. Consequently, the complete epoxidation of 1 with m-CPBA (2 eq) gave a mixture (97 % yield) of 6, 7, 8 and 9 in the ratio of 6 : 7 : 8 : 9 = 1.3 : 11.5 : 22.6 : 64.6.

Thus, the new triepoxide (6) maintained the configuration, $2R^*$, $3R^*$, $6S^*$, $7S^*$, $9S^*$, $10S^*$, originated

Figure 3. Perspective view of 6. Hydrogen atoms were omitted.

from the TT conformation, one of the four possible conformations of 1. It was shown experimentally that the triepoxide (6) was produced as a minor product *via* the TT conformer of 3 and 5 from 1 in the complete epoxidation reaction.

REFERENCES AND NOTES

- 1. H. Shirahama, E. Osawa, and T. Matsumoto, J. Am. Chem. Soc, 1980,102, 3208.
- 2. K. Hayano, T. Shinjo, and K. Mochizuki, *Heterocycles*, 1996, 43, 523.
- 3. K. Hayano and K. Mochizuki, *Heterocycles*, 1997, 45, 1573.
- 4. X-Ray crystallography of humulene AgNO3 complex: R. P. Hildebrand and M. D. Sutherland, Austral. J. Chem., 1961, 14, 272; J. A. Hartsuck and I. C. Paul, Chem. and Ind., 1964, 977; J. M. Greenwood, J. K. Sutherland, and A. Torre, Chem. Comm., 1965, 410; A. T. McPhail and G. A. Sim, *J. Chem. Soc. B*, 1966, 112; F. H. Allen and D. Rogers, *J. Chem. Soc. B*, 1968, 1047.
- 5. **Humulene** Ref. 2; K. Hayano and H. Shirahama, Nippon Kagaku Kaishi, 1995, 291; B. R. Chhabra, H. Shirahama, and T. Matsumoto, *Chem. Ind. (London)*, 1981, 539. 6.7-Epoxide: N. P. Damodaran and S. Dev, Tetrahedron, 1968, 24, 4123. 9.10-Epoxide. 2.3:9.10-diepoxide and 6.7:9.10-diepoxide: A. Sattar, J. Forrester, M. Moir, J. S. Roberts, and W. Parker, Tetrahedron Lett., 1976, 1403; K. C. Lam, R. T. Foster, and M. L. Deinzer, J. Agric. Food Chem, 1986, 34, 763. 2.3:6.7-Diepoxide: Ref. 2; M. E. Cradwick, P. D. Cradwick, and G. A. Sim, J. Chem. Soc., Perkin II, 1973, 404. 2.3:6.7:9.10-Tiepoxide: Ref. 3; F. Sorm, J. Mleziva, Z. Arnold, and J. Pliva, Coll. Czech. Chem. Comm., 1949,14, 699.
- 6. Humulene cyclization with acid: W. G. Dauben, J. P. Hubbell, and N. D. Vietmeyer, *J. Org. Chem.*, 1975, 40, 479; G. Mehta and B. P. Singh, Tetrahedron Lett., 1975, 3961; D. Baines, J. Forrester, and W. Parker, *J.* Chem. Soc., Perkin Trans. 1, 1974, 1598; Y. Naya and Y. Hirose, Chem. Lett., 1973, 133 and 727; J. M. Greenwood, M. D. Solomon, K. I. Sutherland, and A. Torre, *J.* Chem. Soc. C, 1968, 3004; F. H. Allen and D. Rogers, Chem. Comm., 1966, 582. Humulene monoepoxides cyclization: K. Hayano and H. Shirahama, *Bull. Chem. Soc. Jpn.*, 1996, 69, 459; Chem. Lett., 1995, 867; Chem. Lett., 1993, 1151; H. Shirahama, K. Hayano, G. S. Arora, T.

Ohtsuka, Y. Murata, and T. Matsumoto, *Chem. Lett.,* 1982, 1417; H. Shirahama, S. Murata, T. Fujita, B. R. Chhabra, R. Noyori, and T. Matsumoto, Bull. *Chem. Soc. Jpn.,* 1982, *55,* 2691; H. Shirahama, K. Hayano, Y. Kanemoto, S. Misumi, T. Ohtsuka, N. Hashiba, A. Fumsaki, S. Murata, R. Noyori, and T. Matsumoto, *Tetrahedron Lett.*, 1980, 21, 4835; I. Bryson, J. A. Mlotkiewics, and J. S. Roberts, *TetrahedronLett.,* 1979,3891.

- 7. H. Set0 and H. Yonehara, J. *Antibiotics,* 1980, 33, 92; D. E. Cane, T. Rossi, and J. P. Pachlatko, *Tetrahedron Lett.,* 1979, 3639; *A.* Matsuo, H. Nozaki, M. Nakayama, Y. Kushi, S. Hayashi, T. Komori, and N. Kamijo, J. *Chem. Soc., Chem. Comm.,* 1979, 174; H. Shirahama, E. Osawa, and T. Matsumoto, *TetrahedronLett.,* 1978, 1987; D. E. Cane and B. R. Nachhar, J. *Am. Chem. Soc.,* 1978, **100,** 3208; errata, 1979, **101,** 1908; F. Bohlmann and C. Zdero, *Phytochem.,* 1978, **17,** 1669; H. Shirahama, Y. Ohfune, S. Misumi, and T. Matsumoto, J. *Synth. Org. Chem. Jpn.,* 1978, *36,* 569; B. Tursh, **J.** C. Braekman, D. Daloze, P. Pritz, **A.** Kelccom, R. Karlsson, and D. Losman, *Tetrahedron Len.,* 1974, 747; *W.* Parker, **J.** S. Roberts, and R. Rarnage, Quart. *Rev.,* 1967, **21,** 331.
- 8. It is possible that the epoxidation reaction of **1** gives the triepoxides as a minor product.
- **9. 2:** $\text{oil};~^{1}$ H NMR (CDCl₃, 400 MHz), δ 0.64 (1H, dd, J=10.3, 12.9 Hz, 8 β H), 0.78, 1.10, 1.39, 1.69 (each3H, s), 1.35 (lH, m, 5H), 1.96 (lH, brd, J=14.9 Hz, laH), 2.16 (lH, dd, J=7.3, 13.3 Hz, 4α H), 2.22 (1H, d, J=3 Hz, 10H), 2.24 (1H, dd, J=10.6, 14.9 Hz, 1 β H), 2.26 (1H, m, 4 β H), 2.30 $(1H, m, 5H), 2.48$ (1H, dd, J=4.6, 10.3 Hz, 6H), 2.68 (1H, dd, J=3, 12.9 Hz, 8 α H), 2.80 (1H, dt, J=3, 10.3 Hz, 9H), 5.2 (1H, br d, J=10.6 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 400 MHz) δ 15.2 (q, 3Me), 17.3 (q), 19.3 (q), 24.8 (t, 5C), 28.5 (q), 34.1 (s, llC), 36.2 (t, 4C), 39.1 (t, lC), 43.6 (t, 8C), 53.0 (d, 9C), 57.8 (s, 7C), 61.7 (d, 6C), 66.1 (d, 10C), 122.8 (d, 2C), 133.7 (c, 3C) ppm; HRMS (EI): m/z 236.1752 (M⁺, C₁₅H₂₄O₂ requires 236.1777).

3: mp 69-71 ^oC; ¹H NMR (CDCl₃, 400 MHz), δ 0.77, 1.13, 1.20 (each 3H, s), 1.44(1H, dddd, $J=2.4$, 7.2, 10.0, 14.5 Hz, 5H), 1.54 (1H, dd, $J=8.3$, 13.7 Hz, 8H), 1.61 (3H, br s, 3Me), 1.92 $(1H, br d, J=15 Hz, 1H), 2.00 (1H, ddd, J=3.7, 7.2, 14.5 Hz, SH), 2.16 (1H, dd, J=5.5, 13.7 Hz,$ 8H), 2.22 (2H, ddddd, J=3.7, 7.0, 7.2, 9.7, 10.0 Hz, 4H2), 2.39 (1H, dd, J=11.0, 15.0 Hz, 1H), 2.48 (lH, d, J=2.7 Hz, 10H), 2.80 (lH, d, J=2.4 Hz, 6H), 2.82 (lH, ddd, J=2.7, 5.5, 8.3 Hz, 9H), 5.15 (1H, br d, J=11 Hz, 2H) ppm; ¹³C NMR (CDCl3, 270 MHz) δ 16.1 (q, 3Me), 18.0 (q), 20.3 (q), 25.0 (t, 5C), 29.5 (q), 34.4 (s, llC), 36.6 (t, 4C), 38.8 (t, lC), 41.9 (t, 8C), 51.7 (d, 9C), 58.6 (s, 7C), 61.4 (d, 6C), 63.2 (d, 10C), 122.9 (d, 2C), 133.7 (s, 3C) ppm; HRMS (EI): m/z 236.1752 (M+, C15H2402 requires 236.1777).

4: mp 66-69 °C; ¹H NMR (CDCl₃, 270 MHz), δ 0.84, 1.09, 1.25, 1.71 (each 3H, s), 1.15 (1H, dd, $J\approx$ 14.0, 115.0 Hz, 4 β H), 1.57 (1H, dd, J=7.6, 15.2 Hz, 1 β H), 1.63 (1H, dd, J=9.9, 12.9 Hz, 8 β H), 1.68 (1H, dd, J=1.3, 15.2 Hz, 1 α H), 2.07 (1H, ddd, J=5.2, 7.9, 13.6 Hz, 5 β H), 2.12 (1H, ddd,J=1.8,5.2, 15.0 Hz, 4aH), 2.30 (lH, dddd, J=1.8, 7.9, 13.6, 14.0 Hz, 5aH), 2.36 (lH, d, 3~2.3 Hz, 10H), 2.58 (lH, dd, J=1.3, 7.6 Hz, 2H), 2.68 **(lH,** dd, J=3.6, 12.9 Hz, 8aH), 3.01 $(1H, ddd, J=2.3, 3.6, 9.9 Hz, 9H), 5.28 (1H, t, J=7.9 Hz, 6H) ppm;$ ¹³C NMR (CDCl₃, 270 MHz) 6 16.4 (q), 17.79 (q), 18.2 (q),23.4 (t, 5C), 29.0 (q), 33.2 (s), 38.3 (t, 4C), 38.7 (t, lC), 41.5 (t, 8C), 56.5 (d, 9C), 61.0 (s), 61.6 (d, ZC), 65.4 (d, 10C), 125.5 (d, 6C), 132.6 (s, 7C) ppm; HRMS

 (El) : m/z 236.1766 (M⁺, C₁₅H₂₄O₂ requires 236.1777).

5: mp 85-87 'C; IH NMR (CDC13, 270 MHz), *6* 0.71,1.14, 1.30, 1.77 (each3H, s), 1.18 (lH, dd, $J=4.7, 12.8$ Hz, 4β H), 1.49 (1H, dd, $J=5.2, 15.8$ Hz, 1α H), 1.53 (1H, dd, $J=3.0, 15.8$ Hz, 1β H), 1.63 (1H, dd, J=9.9, 12.0 Hz, 8 β H), 2.12 (1H, dd, J=3.3, 12.8 Hz, 5 β H), 2.17 (1H, dt, J=12.8, 3.3 Hz, 4α H), 2.32 (1H, dddd, J=3.3, 4.7, 11.9, 12.8 Hz, 5α H), 2.66 (1H, dd, J=3.3, 12.0 Hz, 8 α H), 2.67 (1H, d, J=2.7 Hz, 10H), 2.79 (1H, dd, J=3.0, 5.2 Hz, 2H), 2.90 (1H, ddd, J=2.7, 3.3, 9.9 Hz, 9H), 5.10 (1H, brd, J=11.9 Hz, 6H) ppm; ¹³C NMR (CDCl3, 270 MHz) δ 17.0 (q), 17.7 (q, 7Me), 22.9 (q), 24.6 (t, 5C), 26.8 (q), 32.5 (s, llC), 38.4 (t, 4C), 40.9 (t, lC), 43.3 (t, 8C), 54.8 (d, 9C), 60.2 (s, 3C), 60.4 (d, 2C), 64.7 (d, IOC), 127.9 (d, 6C), 131.2 (s, 7C) ppm; HRMS **@I):** rnfz 236.1781 (Mf, C15H2402 requires 236.1777).

- 10. The preliminary X-Ray crystallography suggested that3 and 4 held the CC and **CT** conformations in the crystalline state, respectively.
- 11. 6: mp 147-149 "C; IH NMR (CDCl3, 400 **MHz) 6** 0.72, 1.15, 1.32, 1.35 (each 3H, s), 1.37 (lH, m, 5H), 1.43 (lH, dd, J=11.0, 14.2 Hz, lH), 1.49 (lH, dd, J=9.6, 14.0 Hz, 8H), 1.83 (lH, m, 5H), 1.85 (lH, m, 4H), 2.01 (lH, m, 4H), 2.07 (lH, dd, J=3.1, 14.2 Hz, lH), 2.35 (lH, dd, $J=4.3, 14.0$ Hz, 8H), 2.72 (1H, d, J=2.5 Hz, 10H), 2.77 (1H, ddd, J=2.5, 4.3, 9.6 Hz, 9H), 2.92 (lH, dd, J=3.1, 11.0 Hz, 2H), 2.94 (lH, m, 6H) ppm; 13~ NMR (CDC13, 400 MHz) *6* 18.3 (q), 20.2 (q), 20.9 (q), 21.0 (t, 5C), 28.3 (q), 32.7 (s, llC), 34.3 (t, 4C), 38.5 (t, 8C), 39.9 (t, lC), 53.2 (d, 9C), 58.8 (s), 59.2 (d, 2 or 6C), 60.1 (s), 61.7 (d, 6 or 2C), 63.8 (d, 10C) ppm; HRMS (EI): m/z 252.1722 (M⁺, C₁₅H₂₄O₃: requires 252.1726). Anal. Calcd for C₁₅H₂₄O₃: C 71.39; H 9.59. Found: C 71.29, H 9.57.
- 12. The X-Ray crystallography of a single crystal of 6 obtained by recrystallization from 20 % (v / v) EtOAc / hexane was canied out on a MAC Science MXC3k four-circle diffractometer with graphite monochromatized MoK α radiation (λ =0.71073 Å) using the ω scan technique. A total of 3281 independent reflections was collected for compounds **(6),** and the structure was solved by direct methods. Crystal data 6: C15H24O3, F.W.=252.40, monoclinic, space group $P21/n$, $a = 14.147(4)$ Å, $b =$ 8.419(3) Å, $c = 12.238(4)$ Å, $\beta = 102.10(3)$, $V = 1425.3(9)$ Å³, $Z = 4$, $D_{\text{calc}} = 1.176$ g/cm³, $\mu(MoK\alpha) = 0.075$ cm⁻¹, $R = 0.060$, $Rw = 0.069$, 1793 observed reflections $[I \ge 2\sigma(I)]$ used in the refinement.

Received, 28th May, 1998