## A NOVEL SYNTHESIS OF *C*-NUCLEOSIDES HAVING PYRROLO[1,2-*f*]PTERIDINE, 6- AND 8-DEAZAPYRROLO[1,2-*f*]-PTERIDINE RING SYSTEMS FROM 6-HYDROXY-6-(2,3,5-TRI-*O*-BENZOYL-β-D-RIBOFURANOSYL)- 2*H*-PYRAN-3(6*H*)-ONE

Natsu Nishimura, Yoshitada Hasegawa, Souhei Mizuno, Misa Yuasa, and Isamu Maeba\*

Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468-8503, Japan

Abstract — A versatile intermediate pyranulose glycoside (1) for *C*-nucleoside synthesis was treated with 4,5-diaminopyrimidine in AcOH to give 1-(2,3,5-tri-*O*-benzoyl- $\beta$ -D-ribofuranosyl)pyrrolo[1,2-f]pteridine (2) in 58% yield. However, treatment of 1 with 4,5,6-triaminopyrimidine in TFA afforded the 4-aminopteridine (4) without formation of the pyrrolo[1,2-f]pteridine. Similar reaction of 2,3- and 3,4-diaminopyridines with 1 in AcOH led to formation of 8-and 6-deazapyrrolo[1,2-f]pteridines (5 and 6), respectively. Removal of the sugar protecting groups in 2, 5, and 6 with sodium carbonate gave the deprotected *C*-nucleosides (7,8 and 9).

During our efforts to develop a general synthetic method for *C*-nucleosides, we have prepared an extremely useful intermediate, *viz*, 6-hydroxy-6-(2,3,5-tri-*O*-benzoyl-β-D-ribofuranosyl)-2*H*-pyran-3(6*H*)-one (1), from which some ring transformations with a variety of amines have been reported.<sup>1</sup> We now describe the preparation of *C*-nucleosides having tricyclic systems, pyrrolo[1,2-*f*]pteridine, pyrido[2,3-*e*]pyrrolo[1,2-*a*]pyrazine (8-deazapyrrolo[1,2-*f*]pteridine), pyrido[3,4-*e*]pyrrolo[1,2-*a*]pyrazine (6-deazapyrrolo[1,2-*f*]pteridine), through the cyclocondensation of 1 with 1,2-diaminoheterocycles (pyrimidines and pyridines). The structure of pyrrolo[1,2-*f*]pteridine is somewhat similar to that of 5,10-methylenetetrahydrofolic acid, which participates in one carbon transfer reaction *in vivo*. The tricyclic *C*-nucleosides may show interesting and / or improved biologocal effects. Two previous syntheses of pyrrolo[1,2-*f*]pteridine derivatives have been reported by different routes,<sup>2,3</sup> and here we also report a facile

one-pot synthesis of this ring system, as a part of our program of synthesis of C-nucleoside.

The starting pyranulose glycoside (1) used in this work was prepared from the furan glycoside by the procedure previously reported.<sup>1a</sup> The cyclocondensation of the pyranulose glycoside (1) with 4,5-diaminopyrimidine in acetic acid at room temperature for 3 days gave 1-(2,3,5-tri-*O*-benzoyl- $\beta$ -D-ribofuranosyl)pyrrolo[1,2-*f*]pteridine (2) as a major reaction product in 58% yield without any formation of the isomeric pyrrolo[1,2-*e*]pteridine isomer (2'). Structural determination of 2 was made by MS and NMR experiments. The <sup>1</sup>H NMR spectrum of 2 showed two doublets at  $\delta$  7.04 (J = 3.1 Hz) and  $\delta$  7.33 (J = 3.1 Hz) characteristic of the pyrrole moiety. The C-5a ( $\delta_{C}$  152.6) shows correlation with H-4 ( $\delta_{H}$  9.11), H-7 ( $\delta_{H}$  9.31), and H-9 ( $\delta_{H}$  9.75) in the <sup>1</sup>H-<sup>19</sup>C long-range COSY spectrum of 2. These data indicate the ring system of pyrrolo[1,2-*f*]pteridine in 2.



Solvent : (a), acetic acid ; (b), TFA. The <sup>1</sup>H-<sup>13</sup>C long range COSY experiments of compounds (2, 4, 5, and 6).

In trifluoroacetic acid (TFA), 2 was obtained in 32% yield as the main product and its  $\alpha$  isomer (3) was obtained in 2 % yield. The stereochemistry of the C-1' position in compounds (2 and 3) was confirmed by NOE experiments. Irragiation of the H-1' ( $\delta$  6.24) in 3 gave a 10.1% enhancement of the signal at  $\delta$  6.35 assignable to the H-2'. This enhancement was not observed for 2.

Next, the cyclocondensation of the pyranulose glycoside (1) with 4,5,6-triaminopyrimidine in TFA at room temperature gave 4-amino-6-[3-(2,3,5-tri-*O*-benzoyl-β-D-ribofuranosyl)-3-oxopropyl]pteridine (4) in 39% yield without formation of the corresponding tricyclic compound. The position of the ribofuranosyl group in 4 was confirmed by a  ${}^{1}$ H- ${}^{13}$ C long-range COSY experiment. The C-8a ( $\delta_{C}$  162.7) shows correlation with H-2 ( $\delta_{H}$  8.91) and H-7 ( $\delta_{H}$  8.69). This data indicated that the ribofuranosyl moiety is linked at the 6 position. A plausible explanation for the formation of 4 involves nucleophilic attack by the more basic 5-amino group of 4,5,6-triaminopyrimidine on the carbonyl carbon of the pyranone moiety of 1 with subsequent formation of a Schiff's base (I), which then isomerizes to give II. Dehydration of II would lead to tricyclic compound (III), which is then opened to give the unstable ring-opened intermediate (IV). IV is converted to 4 by a proton shift (Scheme 2). We think that the formation of 2 proceeds by the same mechanism as that for the formation of pyrroloquinoxaline described in a previous paper.<sup>1a</sup>

The pyranulose glycoside (1) reacted with 2,3-diaminopyridine in acetic acid at room temperature for 3 days, gave  $1-(2,3,5-tri-O-benzoyl-\beta-D-ribofuranosyl)$ pyrido[2,3-*e*]pyrrolo[1,2-*a*]pyrazine (5) in 33% yield. The <sup>1</sup>H NMR spectrum of 5 clearly showed two doublets at  $\delta$  6.90 (J = 4.1 Hz) and  $\delta$  7.05 (J = 4.1 Hz) characteristic of the pyrrole molety. When the similar reaction of 1 with 3,4-diaminopyridine was performed, corresponding tricyclic compound (6),  $1-(2,3,5-tri-O-benzoyl-\beta-D-ribofuranosyl)$ pyrido[4,3-*e*]pyrrolo[1,2-*a*]pyrazine, was obtained in 39% yield.



Structural determination of **5** and **6** was made by MS and <sup>1</sup>H-<sup>13</sup>C long-range COSY experiments (Scheme 1). Roba and his collaborators<sup>4</sup> have synthesized pyrido[2,3-*e*]pyrrolo[1,2-*a*]pyrazine ring system by intramolecular cyclization of 3-(1-pyrrolyl)-2-pycolinyl azide. The ring structure of **6**, pyrido[4,3-*e*]pyrrolo[1,2-*a*]pyrazine, comes into new entry of a novel heterocyclic system. The removel of the sugar protecting groups in compounds (**2**, **5**, and **6**) was readily accomplished with aqueous sodium carbonate to afford the compounds (**7**, **8**, and **9**). The stereochemistry of the C-1' position in compounds (**7**, **8**, and **9**) was confirmed as to be  $\beta$  by NOE experiments (Figure 1). Thus, the NOE indicates that the  $\beta$ -ribofuranoside configuration have been preserved during the reaction sequence.



Figure 1. NOE experiments of compounds (7, 8, and 9).

## ACKNOWLEDGEMENT

This work was partly supported by the Ministry of Education Science, Sports and Culture of Japan (High-Tech Research Center Project).

## EXPERIMENTAL

MS spectra were taken on a Hitachi M-80 instrument by direct insertion at 70 eV; fast-atom bombardment MS spectra (FABMS) were run on a JMS-HX 110 spectrometer. The <sup>1</sup>H and <sup>13</sup>C NMR spectra were measured with a JNM-A-400 or an A-600 (JEOL) spectrometer, with tetramethylsilane as an internal standard. Optical rotations were measured with a Jasco DIP-370 polarimeter (10-cm cell) at 25 °C. Analytical TLC was performed on glass plates coated with a 0.5-mm layer of Silica Gel GF<sub>254</sub> (E. Merck). The compounds were detected by UV light (254 nm).

**1-(2,3,5-Trl-***O*-**benzoyl**-β-**D**-**ribofuranosyl)pyrrolo**[**1,2-***f*]**pteridine** (**2**): To a solution of 1 (103.2 mg, 0.185 mmol) in acetic acid (5 mL) was added 4,5-diaminopyrimidine (24.1 mg, 0.221 mmol) and the mixture was stirred at n for 3 days. The reaction mixture was neutralized with saturated NaHCO<sub>3</sub> solution and then extracted with CHCl<sub>3</sub>(3X10 mL). The extracts were combined, washed with water, dried over MgSO<sub>4</sub>, and evaporated to dryness. The residual syrup was purified by PTLC with CHCl<sub>3</sub>-MeOH (49:1) as eluent. This afforded 65.9 mg (58%) of **2** as a pale yellow foam; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 4.56 (dd, 1 H, *J* = 3.5, 12.3 Hz, H-5'a), 4.77 (dd, 1 H, *J* = 3.5, 12.3 Hz, H-5'b), 4.94 (m, 1 H, H-4'), 5.79 (d, 1 H, *J* = 6.6 Hz, H-1'), 6.03 (dd, 1 H, *J* = 3.7, 4.6 Hz, H-3'), 6.43 (dd, 1 H, *J* = 4.6, 6.6 Hz, H-2'), 7.04 (d, 1 H, *J* = 3.1 Hz, H-2), 7.33 (d, 1 H, *J* = 3.1 Hz, H-3), 7.26-8.02 (m, 15 H, Ph), 9.11 (s, 1H, H-4), 9.31 (s, 1 H, H-7), 9.75 (s, 1 H, H-9); <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ 63.6 (C-5'), 72 6 (C-3'), 73.0 (C-2'), 74.4 (C-1'), 81.0 (C-4'), 110.6 (C-2), 115.3 (C-3), 123.0-133.7 (C-1, 3a, 9a, Ph), 147.8 (C-9), 152.6 (C-5a), 153.6 (C-7), 155.1 (C-4), 165.1, 165.5, 165.8 (C=O). HRFABMS Found: MH\* 615.1855 Calcd for C<sub>38</sub>H<sub>z7</sub>N<sub>4</sub>O<sub>7</sub>; MH 615.1880 Nitrobenzyl alcohol (NBA) as matrix.

1-(2,3,5-Tri-*O*-benzoy1- $\alpha$ -D-ribofuranosyl)pyrrolo[1,2-f]pteridine (3): In the same manner (reaction solvent was used TFA) as described above for 2, 5.5 mg (2%) of 3 was obtained as a foam from 218.4 mg (0.391 mmol) of 1 and 4,5-diaminopyrimidine together with 76.8 mg (32%) of 2. Compound 3: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4 76 (dd, 1 H, *J* = 4.4, 12.1 Hz, H-5'a), 4.84 (dd, 1 H, *J* = 3.7, 12.1 Hz, H-5'b), 4.93 (m, 1 H, H-4'), 6.07 (dd, 1 H, *J* = 5.4 Hz, H-3'), 6.24 (d, 1 H, *J* = 5.4 Hz, H-1'), 6.35 (dd, 1 H, *J* = 5.4 Hz, H-2'), 7.08 (d, 1 H, *J* = 4.4 Hz, H-2), 7.26-8.12 (m, 16 H, H-3, Ph), 9.11 (s, 1H, H-4), 9.23 (s, 1 H, H-7), 9.72 (s, 1 H, H-9); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  64.0 (C-5'), 72 9 (C-3'), 73.1 (C-2'), 75.4 (C-1'), 79.3 (C-4'), 110.6 (C-2), 117 7 (C-3), 123.3-133.7 (C-1, 3a, 9a, Ph), 147.3 (C-9), 152.9 (C-5a), 153.3 (C-7), 155.0 (C-4), 164.8, 165.3, 166.2 (C=0).

4-Amino-6-[3-(2,3,5-tri-*O*-benzoyl-β-D-ribofuranosyl)-3-oxopropyl]pteridine (4): In the same manner (TFA as the solvent) as described above for 2, 170.9mg (39%) of 4 was obtained as a yellow foam from 373.7mg (0.669 mmol) of 1 and 4,5,6-triaminopyrimidine: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.12-3.45 (m, 4 H, CH<sub>2</sub>CH<sub>2</sub>), 4.61 (dd, 1 H, *J* = 4.2, 12.3 Hz, H-5'a), 4.76 (m, 1 H, H-4'), 4.83 (d, 1 H, *J* = 5 1 Hz, H-1'), 4.90 (dd, 1 H, *J* = 3.1, 12.3 Hz, H-5'b), 5.69 (dd, 1 H, *J* = 5.4 Hz, H-3'), 5 85 (dd, 1 H, *J* = 5.4 Hz, H-2'), 7 27-8.04 (m, 15 H, Ph), 8.69 (s, 1 H, H-7), 8.91 (s, 1 H, H-2); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  28.2. 35.7 (CH<sub>2</sub>CH<sub>2</sub>), 63.5 (C-5'), 72.3 (C-3'), 72.7 (C-2'), 80.5 (C-1'), 85.4 (C-4'), 123 0-133.7 (C-4a, Ph), 152.2 (C-7), 152 4 (C-4), 154.4 (C-6), 158.1 (C-2), 162.7 (C-8a), 165.3, 165.5, 166.1, 205 5 (C=O). HRFABMS Found: MH\* 648.2119 Calcd for C<sub>3</sub>H<sub>3</sub>N<sub>5</sub>O<sub>8</sub>; MH 648.2094. NBA as matrix.

1-(2,3,5-Tri-*O*-benzoyl-β-D-ribofuranosyl)pyrido[2,3-*e*]pyrrolo[1,2-*a*]pyrazine (5): This compound was prepared from 1 and 2,3-diaminopyridine as described above for 2: colorless oil, 33%; <sup>1</sup>H NMR (CDCl<sub>2</sub>):  $\delta$  4.60 (dd, 1 H, J= 2.9, 12.1 Hz, H-5'a), 4.79 (dd, 1 H, J= 2.9, 12.1 Hz, H-5'b), 4.91 (m, 1 H, H-4'), 5 83

(d, 1 H, J = 7.0 Hz, H-1'), 6.02 (dd, 1 H, J = 3.7, 5.5 Hz, H-3'), 6.39 (dd, 1 H, J = 5.5, 7.0 Hz, H-2'), 6.90 (d, 1 H, J = 4.1 Hz, H-2), 7.05 (d, 1 H, J = 4.1 Hz, H-3), 7.28-8.00 (m, 16 H, H-8, Ph), 8.78 (d, 1 H, J = 4.4 Hz, H-7), 8.85 (d, 1 H, J = 8.1 Hz, H-9), 8.97 (s, 1 H, H-4); <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  63.6 (C-5'), 72.6 (C-3'), 73.3 (C-2'), 74.9 (C-1'), 80.7 (C-4'), 108.0 (C-2), 114.8 (C-3), 122.4 (C-8), 125.6 (C-9), 125.1, 128.4-133.7 (C-1, 3a, 9a, Ph), 146.8 (C-7), 148.2 (C-5a), 149.1 (C-4), 165.2, 165.5, 165.9 (C=O); HRFABMS Found: MH<sup>\*</sup> 614.1927 Calcd for C<sub>38</sub>H<sub>a8</sub>N<sub>3</sub>O<sub>7</sub>; MH 614.1935. NBA as matrix.

1-(2,3,5-Tri-*O*-benzoyl-β-D-ribofuranosyl)pyrido[3,4-*e*]pyrrolo[1,2-*a*]pyrazine (6): This compound was prepared from 1 and 3,4-diaminopyridine as described above for 2: colorless oil, 39%; <sup>1</sup>H NMR (CDCl<sub>9</sub>): δ 4.60 (dd, 1 H, J= 3.5, 12.2 Hz, H-5'a), 4.75 (dd, 1 H, J= 3.5, 12.2 Hz, H-5'b), 4.94 (m, 1 H, H-4'), 5.93 (d, 1 H, J= 7.8 Hz, H-1'), 6.02 (dd, 1 H, J= 3.4, 5.6 Hz, H-3'), 6.40 (dd, 1 H, J= 5.6, 7.8 Hz, H-2'), 6.97 (d, 1 H, J= 4.2 Hz, H-2), 7.05 (d, 1 H, J= 4.2 Hz, H-3), 7.30-8.06 (m, 15 H, Ph), 7.84 (d, 1 H, J= 5.4 Hz, H-6), 8.69 (d, 1 H, J= 5.4 Hz, H-7), 8.89 (s, 1 H, H-4), 9.87 (s, 1 H, H-9); <sup>19</sup>C NMR (CDCl<sub>9</sub>): δ 63.9 (C-5'), 72.7 (C-3'), 73.2 (C-2'), 74.6 (C-1'), 80.9 (C-4'), 109.4 (C-2), 114.5 (C-3), 122.8 (C-6), 125.7-133.6 (C-1, 3a, 9a, Ph), 140.2 (C-9), 141.8 (C-5a), 145.7 (C-7), 150.1 (C-4), 165.2, 165.5, 167.0 (C=O). HRFABMS Found: MH\* 614.1924 Calcd for C<sub>38</sub>H<sub>28</sub>N<sub>3</sub>O<sub>7</sub>; MH 614.1935. NBA as matrix.

. General Procedure for the Deprotection. Sufficient amount of methanolic sodium carbonate (0.5 mL, 0.4 mmol) was added to the protected *C*-nucleoside (0.04 mmol) in MeOH (2 mL). The mixture was kept at room temperature for 5 h, and evaporated under reduced pressure. The residue was purified by PTLC to afford the corresponding deprotected free *C*-nucleoside.

1-(β-D-Ribofuranosyl)pyrrolo[1,2-f]pteridine (7): colorless solid, mp 247 °C (decomp) (from methanol); 41%; [α]<sub>D</sub>-37.0° (c0.4, Me<sub>2</sub>SO); <sup>1</sup>H NMR [(CD<sub>3</sub>)<sub>2</sub>SO]: δ 3.49 (m, 2 H, H-5'), 4.05 (m, 2 H, H-3', 4'), 4.12, 4.86, 5.34 (each br, 3 H, OH exchanges with D<sub>2</sub>O), 4.44 (dd, 1 H, J = 4.8, 7.1 Hz, H-2'), 5.28 (d, 1 H, J = 7.1Hz, H-1'), 7.26 (d, 1 H, J = 4.2 Hz, H-2), 7.33 (d, 1 H, J = 4.2 Hz, H-3), 9.20, 9.28 (each s, 2 H, H-4, 7), 9.75 (s, 1 H, H-9); <sup>13</sup>C NMR (CD<sub>3</sub>)<sub>2</sub>SO): δ 61.6 (C-5'), 71.2 (C-3'), 73.8 (C-2'), 75.6 (C-1'), 85.4 (C-4'), 111.1 (C-2), 115.6 (C-3), 122.9, 128.1, 134.4 (C-1, 3a, 9a), 148.1 (C-9), 152.3 (C-5a), 153.9 (C-7), 154.5 (C-4). HRFABMS Found: M-H 301.0937 Calcd for C<sub>14</sub>H<sub>13</sub>N<sub>4</sub>O<sub>4</sub>; M-H 301.0966. Triethanolamine as matrix.

**1**- (β-D-Ribofuranosyl)pyrido[2,3-*e*]pyrrolo[1,2-*a*]pyrazine (8): colorless solid, mp 239 °C (decomp) (from methanol); 36%; [α]<sub>D</sub> -96.5° (*c* 0.4, Me<sub>2</sub>SO); <sup>1</sup>H NMR [(CD<sub>3</sub>)<sub>2</sub>SO]: δ3.50 (m, 2 H, H-5'), 4.05 (m, 2 H, H-3', -4'), 4.43 (m, 1 H, H-2'), 4.84, 5.21 (each br, 3H, OH exchanged with D<sub>2</sub>O), 5.19 (d, 1 H, *J* = 7.3 Hz, H-1'), 7.13 (d, 1 H, *J* = 4.2 Hz, H-2), 7.17 (d, 1 H, *J* = 4.2 Hz, H-3), 7.66 (dd, 1 H, *J* = 4.5, 8.4 Hz, H-8), 8.70 (dd, 1 H, *J* = 1.5, 4.5 Hz, H-7), 8.82 (dd, 1 H, *J* = 1.5, 8.4 Hz, H-9), 9.09 (s, 1 H, H-4); <sup>19</sup>C NMR [(CD<sub>3</sub>)<sub>2</sub>SO]: δ61.6

(C-5'), 71.1 (C-3'), 73.7 (C-2'), 75.4 (C-1'), 85.3 (C-4'), 108.1 (C-2), 115.0 (C-3), 122.5 (C-8), 126.0 (C-9), 124.5, 127.4, 132.5 (C-1, 3a, 9a), 146.3 (C-7), 147.7 (C-5a), 149.1 (C-4). HRFABMS Found: MH<sup>+</sup> 302.1141 Calcd for  $C_{15}H_{16}N_3O_4$ ; MH302.1186. NBA as matrix.

1- (β-D-Ribofuranosyl)pyrido[3,4-*e*]pyrrolo[1,2-*a*]pyrazine (9): colorless solid, mp 271 °C (decomp) (from methanol); 22%; [α]<sub>D</sub>-32.1° (*c*0.3, Me<sub>2</sub>SO); <sup>1</sup>H NMR [(CD<sub>3</sub>)<sub>2</sub>SO]: δ 3.50 (m, 2 H, H-5'), 4.06 (m, 2 H, H-3', 4'), 4.45, 5.26 (each br, 3 H, OH exchanged with D<sub>2</sub>O), 4.83 (dd, 1 H, J = 5.5 Hz, H-2'), 5.21 (d, 1 H, J = 5.5 Hz, H-1'), 7.19 (d, 1 H, J = 4.8 Hz, H-2), 7.22 (d, 1 H, J = 4.8 Hz, H-3), 7.82 (d, 1 H, J = 5.1 Hz, H-6), 8.64 (d, 1 H, J = 5.1 Hz, H-7), 9.07 (s, 1 H, H-4), 9.66 (s, 1 H, H-9); <sup>13</sup>C NMR [(CD<sub>3</sub>)<sub>2</sub>SO]: δ 61.6 (C-5'), 71.1 (C-3'), 73.7 (C-2'), 75 6 (C-1'), 85.3 (C-4'), 109.6 (C-2), 114.6 (C-3), 122.2 (C-6), 125.2, 128.1, 132.2 (C-1, 3a, 9a), 140.2 (C-9), 141.3 (C-5a), 145.4 (C-7), 150.3 (C-4). HRFABMS Found: M-H 300.0894 Calcd for C<sub>15</sub>H<sub>14</sub>N<sub>3</sub>O<sub>4</sub>; M-H 300.0994. Triethanolamine as matrix.

## REFERENCES

- (a) I. Maeba, T. Takeuchi, T. lijima, and H. Furukawa, J. Org. Chem., 1988, 5 3, 1401; (b) I. Maeba, K. Osaka, and C. Ito, *Heterocycles*, 1990, 3 1, 2225; (c) I. Maeba, K. Osaka, and C. Ito, J. Chem. Soc., Perkin Trans. 1, 1991, 939; (d) M. Hayashi, A. Araki, and I. Maeba, *Heterocycles*, 1992, 3 4, 569.
- 2. M.Hori, T. Kataoka, H. Shimizu, E. Imai, Y. Matsumoto, and M. Kawachi, Heterocycles, 1982, 19, 1845.
- 3. A. Kaiser and H P Wessel, Helv. Chim. Acta, 1987, 70, 766.
- 4. J. C. Lancelot, D. Laduree, and M. Roba, Chem. Pharm. Bull., 1985, 3 3, 3122.

Received, 31st July, 1998