SYNTHESES OF FLUORINE-CONTAINING 1,2-DIHYDRO-PYRIMIDINES AND PYRIDINES FROM B,B -BIS(TRIFLUORO-ACETYL)VINYLAMINE, KETONES AND AMMONIA

Etsuji Okada,* Tatsuhiko Kinomura, and Yukio Higashiyama

Department of Chemical Science and Engineering, Faculty of Engmeering, Kobe University, Kobe 657-8501, Japan

Abstract - β , β -Bis(trifluoroacetyl)vinylamine (1) reacted easily with various ketones in the presence of aqueous ammonia under mild conditions to give tnfluoroacetylated **4-trifluommethyl-1,2-dihydropyrimidmes (4),** a -tnfluoromethylpyridines (5) , and γ -trifluoromethylpyridines (6) in moderate yields.

Much attention has been focused on the development of new methodologies for the synthesis of vanous fluorine-containing heterocycles, since these compounds are now widely recognized as important organic materials showing interesting biological activities for their potential use in mehcinal and agricultural scientific fields.¹ In the course of our systematic research program on the simple syntheses of CF_3 containing heterocyclic compounds, thus far we have found that fluorine-containing pyrroles, $2a$ pyrazoles,^{2b} pyridines,^{2c} and 3,4-dihydro-2H-pyrans^{2d,e} can be synthesized efficiently by making good use of the nucleophilic substitutions3 at the olefinic carbon atoms and hetero Diels-Alder reaction24e of trifluoroacetylated alkenes. Recently, we have set about the investigations on utilization of β , β **his(tnfluoroacetyl)vinylamine (1), which can be easily prepared in two steps, bis(trifluoroacetylation)^{2e} and** subsequent i -BuO-NH₂ exchange reaction^{3d} starting from isobutyl vinyl ether, as a new and convenient building block for construction of fluorine-containing heterocyclic compounds. In our preceding paper it was found that 5-trifluoroacetyl-4-trifluoromethyl-1,2-dihydropyrimidines **(2)** and pyrimidines **(3)** can be very easily synthesized by the reaction of 1 with aldehydes in the presence of ammonia and subsequent dehydrogenation.⁴ As an extension of these works we report here the reaction of 1 with ketones, instead of aldehydes, in the presence of ammonia to give new trifluoroacetylated 4-trifluoromethyl-1,2-dihydropyrimidines **(4).** α -trifluoromethylpyridines **(5)**, and γ -trifluoromethylpyridines **(6)**, which are expected to exhibit interesting pharmacological activities.5

Table 1. Reaction of 1 with Ketones in the Presence of Aaueous Ammonia **a)**

a) Reactions were caried out for 24 h in MeCN

Reaction of β , β -bis(trifluoroacetyl)vinylamine (1) with acetone, a symmetrical acyclic ketone, in the presence of ammonia proceeded easily under mild conditions, similarly to that with aldehydes,⁴ gave the expected 5-tnfluoroacetyl-4-trifluoromethyl-2,2-dimethyl-1,2-dihydropyrimidine (4a) in 46% yield without being accompanied by any other product (Table 1). 5-Trifluoroacetyl-4 tritluoromethyl-2,2-diethyl-1,2-dihydropyrimidine (4b). however, was obtained in 49% yield with 7% of α -tnfluoromethylpyridine (5b) in the reaction with diethyl ketone. Next, we tried the reactions of 1 with cyclic ketones such as cyclopentanone, cyclohexanone, and cycloheptanone. In all cases, spiro 1,2-dihydropyrimidines $(4c-e)$ and cycloalkane-ring fused pyridines $(5c-e)$ both were formed in 13-53% yields. Separation of the 4b-e and 5b-e mixtures was easily

carried out by column chromatography. Further, the present reaction was applicable to some unsymmetrical ketones. In analogy with acetone, 1 reacted with 2-butanone to provide only 1,2-dihydropynmidine (4f) in 36% yield. However, 3-methyl-2-butanone afforded the mixture of 1,2-dihydropyrimidine (4g) and γ -tnfluoromethylpyridine (6g) in 47 and 11% yields, respectively. There was no detectable amount of the expected α -trifluoromethylated regioisomer (5g). Interestingly, the reaction of 1 with acetophenone gave γ -trifluoromethylpyridine (6h) as a sole product in 42% yield without any formation of 1,2-dihydropyrimidine (4h), in striking contrast to the case of acetone mentioned above. It was unsuccessful replacing ammoma by other bases such as **N,N-diisopropylethylamine** for the sake of avoiding the formation of 1,2-dihydropyrimidines (4) and of obtaining pyridines (5, 6) exclusively.

In the present pyrimidine ring synthesis, β , β -bis(trifluoroacetyl)vinylamine (1), ketone, and ammonia will probably be the source of N_1 -C₆-C₅-C₄ fragment, of C₂, and of the other mtrogen atom (N_3) , respectively. On the other hand, in the pyridine ring formation, 1 and ketone constitute the unit of C_{α -C_g-C_T and of C_{α}⁻-C_B['], respectively. It is not certain} at present whether the nitrogen atom (N_1) of the ring, especially of α -trifluoromethylpyndine, denves from ammonia or from 1.

The structures of new compounds $(4-6)$ were determined on the basis of their ¹H-NMR and IR spectra, together with elemental analyses. As representative cases, 1.2-dihydropyrimidine (4a). α -trifluoromethylpyridine (5c), and γ -trifluoromethylpyridines (6g,h) were further confirmed by 13C-NMR spectral data. The structural distinction between 1,2-dihydropyrimidines (4) and its tautomenc form 2,3-dihydropyrimidines $(4')$ was clearly confirmed, similarly to the cases of $2,4$ by the multiplicity (doublet or broad singlet) of the olefinic proton at the 6-position in the $1H\text{-NMR}$ spectra. Moreover, $1H\text{-}$ and 13C-NMR spectra provided diagnostic information for the discrimination between α -tnfluoromethylpyridines (5) and its regioisomeric form γ -trifluoromethylpyridines (6). In ¹H-NMR spectra, the chemical shifts of H- α in 6g, h appeared in the downfield with respect to those of H- γ in 5b-e by *ca.* 1.3-1.4 ppm. In ¹³C-NMR spectrum of α -trifluoromethylpyridine (5c), there appeared two

characteristic signals for C- α bearing a trifluoromethyl group appeared at 144.6 ppm as quartet (J_{CF} =35.4 Hz) and unsubstituted C- γ at 131.9 ppm as doublet. In contrast to this, 13C-NMR spectra of γ -trifluoromethyl-pyridines (6g, h) showed double quartet $(J_{\text{CF}}=3.7 \text{ Hz})$ for unsubstituted C- α at 149.2 and 150.0 ppm and quartet $(J_{\text{CF}}=35.4 \text{ A}$ and 34.2 Hz) for C- γ bearing a trifluoromethyl group at 138.2 and 138.8 ppm.

Thus, the present synthetic method provides a simple access to 12-dihydropyrimidines and pyridines having both trifluoromethyl and trifluoroacetyl groups which are not easily obtained by other methods. Further utilization of 1 as a useful synthetic block and investigations from the mechanistic standpornt of view are now in progress in our laboratory.

EXPERIMENTAL

Melting points were determined on an electrothermal digital melting point apparatus and are uncorrected. IR spectra were recorded on a Hitachi EPIG3 spectrophotometer. 1H- and 13C-NMR spectra were obtained with JEOL PMX 60SI and FX 90Q instruments using CDCI $_3$ as a solvent unless otherwise indicated. All chemical shifts are reported in ppm downfield from internal tetramethylsilane; coupling constants (J) are given in Hz. Elemental analyses were taken with a Yanaco CHN Corder MT-5 analyzer and were performed by the Microanalyses Center of Kyoto University. Chromatographic separations were carried out on a silica gel column (Fuji Silysia Chemical BW-127ZH; 100-270 mesh). All reagents were obtained commercially and used without further purification. Final purification of all products for elemental analyses was done by Kugelrohr distillation or recrystallization.

Reaction of **B, B -Bis(trifluoroacetyl)vinylamine** (1) with Ketones in the Presence of Ammonia; General Procedure: To a solution of 13d (235 mg, 1 mmol) in MeCN (5 mL) were added the appropriate ketone $(2 - 30 \text{ mmol})$ and aqueous ammonia $(28 \text{ wt.}\%), 1 - 5 \text{ mmol})$. The mixture was stirred at rt or **50** "C for 24 h and the solvent was evaporated and the crude product was chromatographed using benzene/EtOAc (3:2) for $4a$, benzene/EtOAc (4:1) for $4b - g$, benzene for $5c - e$ and $6g$, h, benzene h exane (1:1) for **5b** as eluent.

4a: yield 46%; mp 165-166 "C (CHC13); IR (KBr) 3220, 1655, 1630, 1535 cm-1; 1H-NMR (CDC13 $\langle CD_3CN \rangle$ 7.81 (d, 1H, J=6, H-6), 7.95-7.12 (br, 1H, NH), 1.49 (s, 6H, CH₃); ¹³C-NMR (CD₃COCD₃) 171.2 (q, J_{CF}=33.0), 154.7 (dq, J_{CF}=6.1), 150.4 (q, J_{CF}=35.4), 120.6 (q, J_{CF}=275.9), 118.5 (q, J_{CF} =291.8), 96.8 (s), 71.8 (s), 28.7 (q). Anal. Calcd for C₉H₈N₂OF₆: C, 39.43; H, 2.94; N, 10.22; F, 41.58. Found: C, 39.45; H, 2.82; N, 10.20; F, 41.55.

4b: yield 49%; mp 143-144 °C (hexane/CHCl₃); IR (KBr) 3243, 1637, 1541 cm-¹; ¹H-NMR 8.41-7.09 (br, 1H, NH), 8.03 (br s, lH, H-6), 2.17-1.42 **(m,** 4H, CH2), 0.94 (t, 6H, J=7, CH3). Anal. Calcd for $C_{11}H_{12}N_2OF_6$: C, 43.72; H, 4.00; N, 9.27. Found: C, 43.84; H, 3.83; N, 9.32.

4c: yreld 13%; mp 166-167 "C (hexaneiCHCI3); IR (KBr) 3243, 1634, 1535 cm-1; 1H-NMR (CDCI3 I (CD₃CN) 8.37-6.83 (br, 1H, NH), 7.89 (br s, 1H, H-6), 2.23-1.63 (m, 8H, CH₂). Anal. Calcd for $C_{11}H_{10}N_2$ OF₆: C, 44.01; H, 3.36; N, 9.33. Found: C, 43.99; H, 3.25; N, 9.13.

8.47-6.61 (br, lH, NH), 7.87 (br **s,** lH, H-6), 1.81-1.61 (m, 10H. CH2). Anal. Calcd for $C_{12}H_{12}N_2OF_6$: C, 45.87; H, 3.85; N, 8.92. Found: C, 45.80; H, 3.66; N, 8.94.

4e: yield *25%;* mp 181-182 'C (hexane/CHC13); IR (KBr) 3240, 1652, 1638, 1539 cm-1; IH-NMR $(CDCl₃/CD₃CN) 8.60-7.12$ (br, 1H, NH), 7.72 (br s, 1H, H-6), 2.15-1.65 (m, 12H, CH₂). Anal. Calcd for $C_{13}H_{14}N_2$ OF₆: C, 47.57; H, 4.30; N, 8.53. Found: C, 47.37; H, 4.08; N, 8.48.

4f: yield 36%; mp 149-150 °C (hexane/CHCl₃); IR (KBr) 3250, 1635, 1529 cm-1; 1H-NMR (CDCl₃) $ICD₃CN$) 8.27-6.94 (br, 1H, NH), 7.83 (br s, 1H, H-6), 2.03-1.47 (m, 5H, CH₂CH₃, CH₃-2), 0.92 (t, 3H, J=7, CH₂CH₃). Anal. Calcd for C₁₀H₁₀N₂OF₆: C, 41.68; H, 3.50; N, 9.72. Found: C, 41.50; H, 3.43; N, 9.81.

4g: yield 47%; mp 178-179 "C (hexane/CHC13); IR (KBr) 3250, 1634, 1529 cm-1; IH-NMR (CDCI3 \langle CD₃CN) 8.50-6.91 (br, 1H, NH), 7.88 (d, 1H, J=7, H-6), 2.32-1.68 (m, 1H, CH), 1.41 (s, 3H, CH₃-2), 1.31 (d, 3H, J=7, CH₃), 1.26 (d, 3H, J=7, CH₃). Anal. Calcd for C₁₁H₁₂N₂OF₆: C, 43.72; H, 4.00; N, 9.27. Found: C, 43.85; H, 3.81; N, 9.34.

5b: yield 7%; mp 164-165 °C (hexane/CHCh); IR (KBr) 1763, 1614, 1568 cm⁻¹; 1H-NMR 7.58 (br s, 1H, H- γ), 2.90 (q, 2H, J=8, CH₂CH₃), 2.42 (s, 3H, CH₃- β), 1.30 (t, 3H, J=8, CH₂CH₃). Anal. Calcd for $C_{11}H_9NOF_6$: C, 46.33; H, 3.18; N, 4.91. Found: C, 46.58; H, 3.23; N, 5.10.

5c: yield 33%; oven temperature 90 °C/3 mmHg; IR (film) 1746, 1601, 1554 cm $^{-1}$; 1H-NMR 7.64 (br s, 1H, H- γ), 3.26-2.95 (m, 4H, CH₂), 2.49-1.95 (m, 2H, CH₂). ¹³C-NMR 184.3 (q, J_{CF}=37.8), 171.1 (s), 144.6 (q, J_{CF}=35.4), 141.9 (s), 131.9 (d), 126.5 (s), 122.0 (q, J_{CF}=274.7), 116.4 (q, J_{CF}=290.5), 34.7 (t), 31.0 (t), 23.5 (t). Anal. Calcd for C₁₁H₇NOF₆: C, 46.66; H, 2.49; N, 4.95; F, 40.25. Found: C, 46.82; H, 2.42; N, 5.18; F, 40.32.

5d: vield 15%; oven temperature 100 °C/3 mmHg; IR (film) 1749, 1599, 1558 cm⁻¹; ¹H-NMR 7.60 (br s, lH, H-r), 3.19-2.71 (m, 4H, CHz), 2.13-1.68 (m, 4H, CH2). Anal. Calcd for C12H9NOF6: C, 48.50; H, 3.05; N, 4.71. Found: C, 48.44; H, 3.00; N, 4.82.

5e: y~eld **23%;** oven temperature 110 "C13 mmHg; IR (film) 1746, 1591, 1540 cm-1; 1H-NMR 7.53 (br **s,** 1H, H- γ), 3.23-2.82 (m, 4H, CH₂), 1.85-1.57 (m, 6H, CH₂). Anal. Calcd for C₁₃H₁₁NOF₆: C, 50.17; H, 3.56; N, 4.50. Found: C, 50.46; H, 3.78; N, 4.63.

6g: vield 11%; oven temperature 50 °C/3 mmHg; IR (film) 1740, 1590, 1551 cm⁻¹; ¹H-NMR 8.96 (s, 1H, $H-\alpha$), 7.60 (s, 1H, H- β [']), 3.26 (heptuplet, 1H, J=7, CH), 1.37 (d, 6H, J=7, CH₃). ¹³C-NMR 180.2 (q, J_C=36.6), 174.2 (s), 149.2 (dq, J_C=3.7), 138.2 (q, J_C=35.4), 123.1 (s), 122.1 (q, J_C=274.7), 118.8 (dq, J_{CF} =4.9), 115.9 (q, J_{CF} =290.5), 37.2 (d), 22.0 (q). Anal. Calcd for C₁₁H₉NOF₆: C, 46.33; H, 3.18; N, 4.91. Found: C, 46.23; H, 3.09; N, 5.10.

6h: yleld 42%; oven temperature 120 "Cl3 mmHg; IR (film) 1741, 1598, 1548 cm-1; 1H-NMR 8.96 (s, 1H, H- α), 8.08-7.90 (m, 3H, H- β ⁺ or/and C₆H₅), 7.53-7.33 (m, 3H, H- β ⁺ or/and C₆H₅). 13C-NMR 181.6 (q, J_{CF}=37.8), 162.5 (s), 150.0 (dq, J_{CF}=3.7), 138.8 (q, J_{CF}=34.2), 136.5 (s), 131.8 (d), 129.4 (d), 127.9 (d), 123.6 (s), 122.5 (q, J_C $=$ 274.7), 117.6 (dq, J_C $=$ 4.9), 116.3 (q, J_C $=$ 290.5). Anal. Calcd forC14H7NOF6: C, 52.68; H, 2.21; N, 4.39. Found: C, 52.93; H, 2.13; N, 4.38.

REFERENCES

- 1. a) R. Filler, 'Organofluorine Chemicals and Their Industrial Applications,' ed. by R. E. Banks, Ellis Horwood, London, 1979; b) R. Filler and Y. Kobayashi, 'Biomedicinal Aspects of Fluorine Chemistry, 'Kodansha & Elsevier Biomedical, Tokyo, 1982; c) J. T. Welch, *Tetrahedron,* 1987, 43, 3123; d) R. Filler, Y. Kobayashi, and L. M. Yagupolskii, 'Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications,' Elsevier, Amsterdam, 1993.
- 2. a) E. Okada, R. Masuda, M. Hojo, and R. Yoshida, *Heterocycles,* 1992, 34, 1435; b) E. Okada, R. Masuda, and M. Hojo, *Heterocycles,* 1992, 34, 791; c) E. Okada, R. Masuda, and M. Hojo, *Heterocycles,* 1992,34, 1927; d) M. Hojo, R. Masuda, and E. Okada, *Synthesis,* 1989, 215; e) M. Hojo, R. Masuda, and E. Okada, *Synthesis,* 1990,347.
- 3. a) M. Hojo, R. Masuda, E. Okada, S. Sakaguchi, H. Narumiya, and K. Morimoto, *Tenahedron Lett.,* 1989, 30, 6173 ; b) M. Hojo, R. Masuda, E. Okada, H. Yamamoto, K. Morimoto, and K. Okada, *Synthesis,* 1990, 195; c) M. Hojo, R. Masuda, and E. Okada, *Chem. Lett.,* 1990, 2095; d) M. Hojo, R. Masuda, E. Okada, and Y. Mochizuki, *Synthesis,* 1992, 455; e) E. Okada, R. Masuda, M. Hojo, and R. Inoue, *Synthesis,* 1992,533.
- 4. E. Okada, T. Kinomura, H. Takeuchi, and M. Hojo, *Heterocycles,* 1997,44,349.
- 5. a) D. J. Brown, 'The Pyrimidines,' Wiley-Interscience, New York, 1970; b) D. T. Hurst, 'An Introduction to the Chemistry and Biochemistry of Pyrimidines, Purines, and Ptendines,' Wiley, Chichester, 1980; c) R. A. Abramovitch, 'Pyridine and Its Derivatives,' Supplement, John Wily & Sons, New York, 1974; d) D. M. Smith, 'Comprehensive Organic Chemistry,' Vol. 4, ed. by P. G. Sammes, Pergamon Press, Oxford, 1979; e) U. Eisner and J. Kuthan, *Chem. Rev.,* 1972, 72, 1; **f)** D. M. Stout and A. I. Meyers, *Chem. Rev.,* 1982,82,223; g) J. S. Glasby, 'Encyclopediaof the Alkaloids,' Vols. 1-3, Plenum Press, New York, 1975; h) M. F. Grudon, 'The Chemistry of the Alkaloids,' Vol. 7, Chemical Society, London, 1977; i) F. S. Yates, 'Comprehensive Heterocyclic Chemistry,' Vol. 2, eds. by A. J. Boulton and A. Mckillop, Pergamon Press, Oxford, 1984.