FIVE N^x -METHYLADENINES: THEIR CHEMISTRY, PHYSICO-CHEMICAL PROPERTIES. AND BIOLOGICAL ACTIVITIES

Tozo Fujii* and Taisuke Itaya

Faculty of *Pharmaceutical Sciences, Kanazawa University, Takaramachi, Kanazawa 920-0934, Japan*

Abstract -Various mono-N-substituted adenines are represented by the corresponding five possible isomers of N^x -methyladenine, namely, 9-methyladenine **(2),** 7-methyladenine **(31,** 3-methyladenine (41, **1** methyladenine (5) , and N^6 -methyladenine (6) . The chemistry, physicochemical properties, and biological activities of these N^x -methyladenines are reviewed with 366 reference citations.

CONTENTS

- I. Introduction
- 11. 9-Methyladenine
- **111.** 7-Methyladenine
- IV. 3-Methyladenine
- V. I-Methyladenine
- VI. N^6 -Methyladenine
- References and Notes

I. INTRODUCTION

Adenine **(I),** a biologically important heterocycle, bears one exocyclic and four endocyclic nitrogen atoms, so that five kinds of mono-N-substitution pattern are possible in principle. Indeed, all these substitution patterns (with a variety of substituents) have been shown to occur in nature as well as by chemical synthesis.¹⁻⁴ The prototypes of such five mono-N-substituted adenines are 9-methyladenine **(21,** 7-methyladenine **(3), 3** methyladenine (4), 1-methyladenine (5), and N⁶-methyladenine (6-methylaminopurine) **(6).** Since they could serve as the standard compounds for the corresponding substitution patterns, expert information on them should be made as readily accessible as possible. Thus, the chemistry, physicochemical properties, and biological activities of N^x -methyladenines have been treated in previous reviews in several forms.¹⁻⁴ It is the intention of the present review article to supplement the previous ones by reorganizing (in part) and updating the literature through the late part of 1997.

1 4 [agelasine F (ageline A)]

II. 9-METHYLADENINE

9-Methyladenine (2) occurs in nature as a partial structure in agelasine (7) (from the sea sponge Agelas dispar).⁵ agelasines A–F $(8, 10-14)$ (from the Okinawan sea sponge A. nakamurai),⁶ ageline A (agelasine F^{6c}) (14) and ageline B (9) (from a Pacific sea sponge Agelas sp.),^{7a} and epi-agelasine C (15) (from the marine sponge Agelas mauritiana).⁸ all with diterpene or modified diterpene units at the 7-position.^{7b} Agelasine (7) has been reported to give 2 on heating in xylene under reflux and to release 2.HC1 by catalytic hydrogenolysis (5% Pd–C/H₂) in EtOH.⁵

As regards the biological activities of 2, it has been reported to be a weak inhibitor of adenosine deaminase;⁹ a weak competitive inhibitor of human erythrocyte membrane phosphatidylinositol 4-kinase;¹⁰ and a weak antagonist of the activation of A_1 adenosine receptor.¹¹ It is devoid of the ability to replace 1-methyladenine (5) in triggering meiosis in the starfish *Marthasterias glacialis* and Asterias rubens oocytes,¹² and it is also devoid of the ability to inhibit the 5-dependent induction of meiosis.¹²

The syntheses of 9-methyladenine (2) so far reported can be classified into four types according to the structures of their starting materials: (i) from imidazole derivatives, (ii) from pyrimidine derivatives, (iii) from purine derivatives, and (iv) from adenine (1).

The syntheses of type-i include the work of Cook and Smith,¹³ who treated the thioureidoimidazole (16) successively with POCl₃ and 1 N NaOH to obtain 6-amino-2-mer**capto-9-methyl-8-methylthiopurine** (17) (Scheme 1). On methylation with dimethyl sulfate and alkali, 17 produced the 2,8-bis(methylthio) derivative (18) , which was also prepared from **5,6-diamino-4-methylamino-2-methylthiopyiidine** (19) through 8-mer**capto-9-methyl-2-methylthioadenine** (20). Reductive desulfurization of 18 with Raney Ni yielded 9-methyladenine (2). Shaw and Butler14 synthesized 2 from 5-amino-1-methylimidazole-4-carbothioamide (21) through the amino nitrile (22) and the ethoxymethylidene derivative (23) (Scheme 1). The synthesis of 2 by Ramsden's group¹⁵ started with the catalytic hydrogenation of **1-methyl-5-nitroimidazole** (24) (Scheme 2). Treatment of the resulting amine (26) with N-cyanoformimidate in dioxane gave the N-condensation product (25) and the C-condensation product (27) in 42% and 4% yields (from 24), respectively. On heating at 200° C for 1 min, 25 produced 2 in 10% yield. Similar treatment of 27 afforded 2-amino-9-methylpurine (28) in 59% yield.

The type-ii syntheses of 2 include that of Howard et al , 16 which started from 4,6-diamino-2-methylthiopyrimidine (29) and proceeded through the D-xylosylamino derivatives (30 and 31) (Scheme **3).** Conversion of 31 into 2 was effected by methylation with Me1 in the presence of NaOEt, followed by glycosidic hydrolysis with dilute sulfuric acid and reductive desulfurization with Raney Ni. Daly and Christensen¹⁷ synthesized 2 from 4-amino-6-chloro-5-nitropyrimidine $(32)^{18}$ via the methylamino derivative (33) and 4,5diamino-6-methylaminopyrimidine (34) (Scheme 4).¹⁰ The synthesis of 2 by Robins and Lin^{19a} started from 4,6-dichloro-5-nitropyrimidine (35) and proceeded through the 6-

Scheme 1

Scheme 2

Scheme 4

Scheme 5

Scheme 6

Me 5 4 hire 55: $X = 1$ $56: X = C1$

Scheme 8

methylamino derivative (36) , the 5-amino derivative (37) , and 6-chloro-9-methylpurine (38) ,^{19b} as depicted in Scheme 4. Beaman and Robins²⁰ obtained 2 by amination of 6fluoro-9-methylpurine (42), prepared from 35 through **4,6-difluoro-5-nitropyrimidine** (39), the 5-amino derivative (40), and 5-amino-4-fluoro-6-methylaminopyrimidine (41) (Scheme 5). Takahashi²¹ prepared 2 from 35 through 32 and 33 by modification of the procedures17 of Daly and Christensen, as shown in Scheme 5.

TABLE I. One-Step Methylation of Adenine (1) to Produce 9-Methyladenine (2)

a) In 0.1 M phosphate buffer. b) Until the whole of the methylating agent was consumed. c) Not specified. The main product was 3-methyladenine (4) . *d*) Under reduced pressure (0.05 mmHg) . *e*) Accompanied by the formation of 4 (20% yield). f **With the by-product (4) (16% yield).** g) With the by-product (4) (15% yield). *h)* With the by-product (4) (31% yield). **i)** With the by-product (4) (18% yield). j R = ClCH₂CH₂OCH₂. k R = (PhCH₂OCH₂)₂(HC=C)C.

The remarkable example, now only of classical importance, of the type-iii syntheses is Fischer's synthesis22 of 2 from uric acid through 2,6,8-trichloropurine **(43),** 2,8-dichloroadenine (44), and 2,8-dichloro-9-methyladenine (45) (Scheme 6). The last compound (45) was alternatively prepared from 46 *uia* 4723 or from the trichloro derivative (48).24 Elion25 methylated 6-chloropurine (49) with dimethyl sulfate to a mixture of 6-chloro-7 methylpurine (103) and 6-chloro-9-methylpurine (38), and the mixture was converted into an easily separable mixture of 7- and 9-methylpurine-6-thiols (50 and 51). The 9 methyl isomer (51) was S-methylated, and the resulting 6-methylthio derivative (53) was converted into 2 by amination (Scheme 7). Barlin and Young²⁶ converted 38^{27} into 2 through **(9-methylpurin-6-yl)trimethylammonium** chloride (52)28a (Scheme 7). They also converted 52 into 6-fluoro-9-methylpurine (42) , an alternative synthetic precursor for 2.²⁰ by treatment with potassium hydrogen difluoride in EtOH at 50°C for 2 h.²⁶ Adamiak et al.28b obtained **1-(9-methylpurin-6-y1)pyridinium** chloride from 9-methylhypoxanthine (80) in 70% yield by treatment in pyridine with 4-chlorophenyl dichlorophosphate and 1,2,4-triazole at rt for 20 h, and the pyridinium salt was quantitatively transformed into 2 by treatment with coned aqueous $NH₃$ at rt for 1 h.

The syntheses of 9-methyladenine (2) from adenine [type-iv (vide supra)] so far reported may be divided into two groups, namely, one-step methylation and multistep synthesis. In the one-step methylation $(1\rightarrow 2)$ of historical importance, reported by Krüger²⁹ in 1894, 1 was treated with Me1 in warm EtOH in the presence of NaOH for 1 h to produce 2 in 40% yield. Since then, many variations $30-44$ in the methylation procedure have appeared, as can be seen from Table I.

The multistep syntheses of 2 from 1 include that of Leonard and Fujii, 45 who treated 1benzyladenine (54) [obtainable from adenosine (143) , 45, 46 and hence from 1] with MeI to give **1-benzyl-9-methyladenine** hydriodide (55) (Scheme 8). The hydriodide salt (55) was then debenzylated by conversion (with AgC1) into the hydrochloride (56) and hydrogenolysis with Pd-C/H₂, yielding 2. Fujii's group⁴⁷ found that the reaction of adenine 1oxide (57), obtainable from 1 in good yield by direct oxidation with 30% aqueous H_2O_2 in AcOH at rt,^{47b,48} with MeI in AcNMe₂ at rt⁴⁷ or with methyl p-toluenesulfonate in AcNMe₂ at 110°C^{47b} resulted in O-methylation, giving the 1-methoxyadenine salt (58 or 59) in 93% or 36% yield, respectively (Scheme 9). The hydriodide (58) was readily converted into the corresponding free base (63) by the use of Amberlite IRA-402 (HCO₃⁻), and 63 afforded **1-methoxy-9-methyladenine** hydriodide (61) when treated with Me1 in AcNMe₂ at rt.⁴⁷ The hydriodide (61) was alternatively prepared from the N(1)-oxide (57) in a one-step manner by methylation with MeI in AcNMe₂ in the presence of 30% aqueous H_2O_2 .⁴⁹ Catalytic hydrogenolysis of the free base (60), prepared from 61 by the use of Amberlite IRA-402 ($HCO₃^-$), produced 2 in 67% overall yield (from 61).⁴⁷ The catalytic hydrogenolysis of the perchlorate (62) over Pd–C was rather slow, but gave 2 in 73% yield.^{47b} Shugar's group⁵⁰ reported that UV irradiation (at 254 nm) of 60 at pH 4.20 or 10.46 resulted in the formation of 2 in 46% or 58% yield, respectively. Fujii's group prepared 2 from 61 through the imidazole derivatives $(64^{51}$ and $65)^{52}$ or through 9-methyladenine 1-oxide $(66)^{53}$ and the 1-(4-nitrobenzyloxy) derivatives (67 and 68)⁵⁴ (Scheme 10). Muravich-Aleksandr et $al.55$ reported that conversions of 3-methyladenine hydriodide (4.HI) and 1-methyladenine hydriodide (5.HI), products from

Scheme 9

Scheme 10

Scheme 11

methylation of adenine (1) with MeI in DMF at 20-30°C, into 2 ^{tHI} occurred at their melting points. The preparation of 2 by Kohda's group⁵⁶ started with reaction of 1 with chloromethyl pivalate in DMF at **rt** for 5 d to give **3-(pivaloyloxymethyl)adenine** (69) in 8% yield. Methylation of 69 with MeI in DMF⁵⁷ at 60°C for 5 h gave a ca. 1:1 mixture of the 9- and 7-methylated derivatives (70 and 71), and subsequent hydrolysis of the mixture with 25% aqueous NH_3 at rt for 2 h afforded 9-methyladenine (2) and 7methyladenine (3) in 15% and 18% yields, respectively.

Table I1 represents the fruits of an additional comprehensive survey of papers describing the physical properties and spectral characteristics of 9-methyladenine (2) .⁵⁸⁻¹²¹

There have been a certain number of papers dealing with molecular interactions between 2 and nitrogenous bases related to nucleic acids or between 2 and other organic compounds: 2-1-methylthymine (72) (in H_2O);¹¹⁵ a crystalline, hydrogen-bonded 1:1 complex of 2 and $72;82,83$ 2-3-methyl-5-bromouracil (73) (a crystalline complex); $88a$ 2-72 $(in\ vacuo);$ ^{117,122,123} 2-1-methyluracil (74) $(in\ vacuo);$ ^{117,122} 2-74-74 $(in\ vacuo);$ ^{117,122} 2-purine (75) (in H₂O at 298.2 K);⁵⁸ 2-72 (in H₂O) (the Watson-Crick hydrogen bonding present was unaffected by the presence of Cp_2VCl_2 ;¹²⁴ 2-1-methylcytosine (76) (in vacuo);^{123,125} 2-2 (in the gas phase);¹²⁶ 2-72 (in the gas phase);¹²⁶⁻¹²⁸ 2-72 (in the solid state);¹²⁷ 2-74 (in CHCl₃);¹²⁶ 2-76 (in the gas phase);¹²⁶ 2-9-methylguanine (77) (in the gas phase);¹²⁶ 2-p-benzoquinone (78) (in H₂O at 293 K);¹²⁹ and 2-2,4-difluoro-1,5-dimethylbenzene (79) (in the gas phase).¹²⁸

Interactions of 2 with the following metal ions or metal complexes have also been investigated: Ni(ClO₄)₂ or Cu(ClO₄)₂ (in H₂O at 298.2 K);⁶⁰ Cu(NO₃)₂ (in D₂O or $H₂O$);^{105a,130} Cu(NO₃)₂-ethylenediamine (in D₂O);¹³⁰ Zn(NO₃)₂ or ZnCl₂ (in D₂O or H₂O);^{105a} Cp₂MoCl₂ (in H₂O);¹³¹ a water-soluble $(\eta^5$ -pentamethylcyclopentadienyl)rhodium aqua complex (in D₂O);¹³² cis- and trans-Pt(NH₃)₂Cl₂ (in H₂O);^{133,134} cis-Pt(ethyleneimine)₂Cl₂ (in H₂O);¹³³ K₂PtCl₄ (in 0.1 N and 3 N aqueous HCl);^{90,135,136} cis-Pt(NH₃)₂Cl₂ and [Pt(diethylenetriamine)Cl]Cl (at pH 6-7.5 and 50°C for 24 h);⁷¹ [(MeHg)₃O]OH (in EtOH);⁶⁶ MeHgOH (in H₂O;^{93,137} in MeCN or DMF^{101,138}). Treatment of Pt(9-methyladenine)Cl₃, prepared according to the literature procedure,⁹⁰ with 25% aqueous NH3 provided **[(NH3)3Pt(9-methyladenine)lC12.2H~O** as a crystalline solid.¹³⁶ Oxidation of the solid with 10% aqueous H₂O₂ gave trans-[(OH)₂(NH₃)₃Pt(9methyladenine)]Cl₂ (in 45% yield), which was also characterized as $[(OH)_2(HH_3)_3Pt$ - $(C_6H_7N_5)[ClO_4)_2$ (58% yield).¹³⁶

Hydrolysis of 2 with concd hydrochloric acid or sulfuric acid (a 1:2 mixture of concd sulfuric acid and H_2O) at 180-200°C for 12 h produced methylamine, ammonia, and glycine (Scheme 11).^{22,29} Alkaline hydrolysis of 2 with 1 N aqueous KOH in a sealed tube at 100°C for 5 h furnished 9-methylhypoxanthine **(80)** (14% yield) and 4,5-diamino-6-methylaminopyrimidine (34) (5%) with 80% recovery of 2.139 Reaction of 2 with bromobenzene in liquid NH₃ containing KNH₂ at -33° C for 2 h afforded 9-methyl-N⁶-phenyladenine (81) in 20% yield.¹⁰³ Deamination of 2 with NaNO₂ in dilute sulfuric acid at

TABLE **11.** 9-Methyladenine (2): Physical and Spectral Characteristics

(continues)

TABLE **I1** (continued)

a) With or without reference number(s) in parentheses. *b)* Reported for an analytical sample. c) In a sealed tube. *d*) With sublimation. *e*) Titrimetric. *f*) Spectral. *g*) In 0.1 M aqueous NaClO₄ at 298.2 K. *h*) At 25^oC. *i*) At 20^oC. *j*) In aqueous DMSO containing Me₄N⁺OH⁻. *k*) Containing Me₄N⁺OH⁻.

 70° C²³ or in dilute hydrochloric acid at 90°C for 0.5–1 h^{25,44,140} gave 80 in 37–80% yield. Maki's group^{141a} reported the conversion of 2 into the mesoionic imidazopurine derivative (82) (45.5% yield) on treatment with chloroacetic anhydride in boiling toluene (Scheme 11).^{141b,c} Robins' group¹⁴² transformed 2 into the 6-(1,2,4-triazol-4y1)purine derivative (84) (85% yield) by treatment with 1,2-bis[(dimethylamino) methylenelhydrazine dihydrochloride (83.2HCl) in boiling DMF for 66 h (Scheme 12). Separate treatments of 84 at rt in DMF with NaOMeMeOH for 0.5 h, in DMF with NaSMe for 1.5 h, and with 40% aqueous MezNH for 1 h produced 6-methoxy-9-methylpurine (85) (in 97% yield), 9-methyl-6-methylthiopurine (53) $(84%)$, and N^6N^6 , 9-trimethyladenine (86) (99%), respectively.142

Kos and van der Plas¹⁴³ have reported the reductive deamination of 2 to provide 9methylpurine (87) in 46% yield, which was effected with sodium in liquid NH₃ for 1 h (Scheme 13). Oxidation of 2 with 30% aqueous H_2O_2 in AcOH at 30°C for 7 d gave the N(1)-oxide (66) in 51% yield (Scheme 13).¹⁴⁴ Oxidation of the 2-deuterated species¹⁴⁵ of 2 with **m-CPBA** in MeOH at rt for 4 h afforded 9-methyladenine-2-d 1-oxide in 65% yield.^{145b,146} Methylation of 66 with MeI in AcNMe₂ at rt for 36 h furnished the 1methoxy derivative (61) $(98\%$ yield),¹⁴⁴ which was then converted into the monocycle $(64)^{51}$ by heating in aqueous NaOH (Schemes 10 and 13). Treatment of 64 with NaNO₂ in 1 N aqueous HCl at $0-3^{\circ}$ C for 2 h and subsequent basification of the reaction mixture with aqueous Na₂CO₃ to pH 9 gave 5-azido-1-methylimidazole-4-carbonitrile (90) in 86% yield.147 When the primary product from the diazotization of 64 in 1 N aqueous HCl was treated with NaI instead of aqueous Na₂CO₃, 1-methoxy-9-methyl-2-azaadenine hydriodide (89) was isolated in 64% yield, and treatment of 89 with aqueous $Na₂CO₃$ at pH 9 and rt for 1 h gave 90 in 57% yield, completing a five-step conversion of 2 into 90.147 On heating in DMF at 70°C for 10 min, 89 readily underwent C-O bond cleavage to give the N-oxide (88) in 81% yield, thus concluding a five-step conversion of 2 into 88.147

Bromination of 2 with Br₂ in 0.25 M or 0.5 M acetate buffer (pH 4) at rt for ca. 7 h produced the 8-bromo derivative (91) in 75% or 87% yield (Scheme 14).^{148,149} Treatment of 91 with boiling 1 N aqueous NaOH for 1.5 h gave the 8-0x0 derivative (97) in 97% yield.¹⁴⁹ Treatment of 91 with MeONa in boiling MeOH for 2 h provided the 8methoxy derivative (96) in 83% yield.¹⁵⁰ Other reactions of 91 to give 2,¹⁵¹ the 8-sulfinic acid (93), and the 8-sulfonic acid (98) through the 8-mercapto derivative (92), as shown in Scheme 14, were also reported.^{148b} Alkylations of 2 in AcNMe₂ with EtI (75-80°C, 7 h) and with PrI (90-95°C, 8 h) gave the corresponding 1-alkylated products (94 and 95) in 64% and 36% yields, respectively (Scheme 14).^{51b} Methylation of 2 with trimethyl phosphate in H₂O at pH 9.5-10.0 and 37[°]C for 24 h was reported to form 1.9-dimethyladenine (type 193) and N^6 ,9-dimethyladenine (194) in 2% and 3% yields, respectively.34

Kohda's group^{152a} determined the pseudo-first-order rate constant $(k = 1.3 \times 10^{-1} \text{ h}^{-1})$ for deuterium labeling at $C(8)$ of 2 in a phosphate-buffered D_2O solvent at pD 8.26 and 70° C.^{152b} Arce¹⁵³ reported the transient absorption spectrum produced by 266-nm ns laser flash photolysis of an aqueous solution of 2, and a few photochemical intermediates were proposed. Vieira and Steenken 62 studied the reaction of 2 with the OH radical in H_2O at pH 6-8 and 20 $^{\circ}$ C by using pulse radiolysis with optical and conductance detection.

In vitro metabolism of adenine (1), 9-methyladenine (2), and 9-benzyladenine (147) using hepatic microsomes of hamster, mouse, and rat was investigated by Gorrod's group.105b The results indicated that 1 was apparently not susceptible to microsomal N -oxidation. N -Oxidation of 2 was also not detected, whereas N -demethylation (to give 1) was observed with hepatic microsomes derived from hamster and rat but not from mouse. With 9-benzyladenine (147), both $N(1)$ -oxide formation and $N(9)$ -debenzylation occurred with microsomes of all species in various amounts. The metabolic N -oxidation study was then extended to include 9-benzhydryladenine and 9-trityladenine as the substrates and hepatic microsomes from guinea pig, rabbit, and dog.^{105c} Although N(1)oxide formation occurred with 9-benzyladenine (147) and 9-benzhydryladenine using lever preparations of all species examined, that of 1, 2, or 9-trityladenine was not $observed$.^{105c}

III. 7-METHYLADENINE

The existence of 7-methyladenine **(3)** in the form of the 7-methyladenosine structure (type 123) in tRNA's of Bacillus stearothermophilus¹⁵⁴ and B. subtilis¹⁵⁵ has been suggested. The toxicity and anticancerogenic property of 3 against Ehrlich mouse carcinoma and against other transplantable mouse cancers have been studied.156 Young's group¹⁰ reported that 3 was a weak competitive inhibitor of human erythrocyte membrane phosphotidylinositol 4-kinase. Dorée et al , 12 reported that 3 was devoid of the

Scheme 15

Scheme 16

Scheme 17

ability to replace 1-methyladenine (5) in triggering meiosis in the starfish Marthasterias glacialis and Asterias rubens oocytes. No cytokinin activity was observed for 3.157

Prasad and Robins158 synthesized 7-methyladenine (3) from 1-methyl-4-nitroimidazole-5-carbonitrile (99) via the 4-amino derivative (100) or via **4-amino-l-methylimidazole-5** carboxamide (101) , 7-methylhypoxanthine (102) , and 6-chloro-7-methylpurine (103) , as shown in Scheme 15. Taylor and Loeffler's synthesis of 3 started from 99 and proceeded through the 4-hydroxyamino derivative (104) and the N(3)-oxide (105) (Scheme 16).159 An alternative synthesis by them started from 99 and proceeded through 100 (or via 104¹⁵⁹) and the 4-ethoxymethyleneamino derivative (106) ¹⁶⁰

In the synthesis of 3 from a pyrimidine derivative by Denayer's group, 161 4,6-diamino-5-formamidopyrimidine (107) was first treated with NaH in DMF and then methylated with MeI to give the 5-(N-methylformamido) derivative (108) (Scheme 17). Cyclization of 108 to 3 was then effected in HCONH₂ at 200°C for 20 min. Fischer's synthesis²³ of 3 started from **2,6-dichloro-7-methyl-8-oxopurine** (109) and proceeded through the 6 amino-2-chloro derivative (110) and **2,8-dichloro-7-methyladenine** (111) or from 2,6 dichloro-7-methylpurine (113) and through 2-chloro-7-methyladenine (114) (Scheme 18). Uretskaya et al.¹⁶² obtained 113 from the obromine (112) in 25% yield by treating the latter with POCl₃ and PhNMe₂, and they converted 114 , obtainable from 113 by the known procedure, 23,163 into 3 by reduction with red P/HI in 51% yield (Scheme 18). Elion's synthesis²⁵ of 3 started from 7-methylpurine-6-thiol (50), obtainable from 6chloropurine (49) by a two-step route (see Scheme 7), and proceeded via the 6-carboxymethylthio derivative (115), as delineated in Scheme 19.

7-Methyl-2'-deoxyadenosine [type 123 (H for C(2')-OH)] and 7-methyladenosine (type 123) have been assumed to occur, although to a slight extent, as very unstable partial structures in methylated DNA¹⁶⁴ (and deoxyadenylic acid^{164a}) and RNA¹⁶⁵ [and pol $y(A)^{166}$] molecules,¹⁶⁷ respectively, from which 3 has been hydrolyzed and identified. Singer *et al.*¹⁶⁸ reported that 7-methyladenosine [type 123 with unspecified anion (X^-)] was only a by-product of methylation of adenosine (143) in neutral aqueous solution. Thus, these direct methylations of nucleic acids and of adenosine at the nucleotide and nucleoside levels, followed by hydrolysis, are not competent enough to serve as a method for the preparation of 3 because of their low efficiency.

Yamauchi et $al.34$ found that 3 was a by-product (6% yield) from the methylation of adenine (1) with trimethyl phosphate in H₂O (pH 9-12) at 25°C for 48 h. Beasley and Rasmussen38 also found that methylation of 1 with Me1 in DMF at 30°C for 168 h produced a minor amount of 3, and the low efficiency in producing 3 was not improved when the methylation was carried out in the presence of NaH at 30° C for 16 h.³⁹

Leonard's group¹⁶⁹ devised a convenient synthetic route to 3 from adenine (1) by regioselective methylation utilizing blocking/deblocking at the 3-position, as depicted in Scheme 20. Thus, treatment of 1 with PhCH₂Br in AcNMe₂ at 85° C furnished, after

a: R = H **b:R=Me**

Scheme 20

Scheme 21

 124

 125

Scheme 23

basification, 3-benzyladenine (116) in 66% yield. When heated with MeI in AcNMe₂ or acetone, 116 underwent methylation mainly at the 7-position, giving 3-benzyl-7-methyladenine hydriodide $[117 (X = I)]$ in 58% overall yield (from 1). The hydriodide [117 (X = I)] was readily converted into the hydrochloride salt $[117 (X = Cl)]$ or the perchlorate salt $[117 (X = ClO₄)]$. Hydrogenolysis of 117 (X = Cl or ClO₄) using hydrogen and Pd–C catalyst produced 3 in good yield. Alternatively, 117 (X = I or ClO₄) was debenzylated efficiently by treatment with concd sulfuric acid in the presence of toluene at 30°C for 3 h or at 60° C for 30 min, giving 3 in 85% or 93% yield, respectively.^{169c} Deblocking of an allylic group at the 3-position was much less effective than that of the benzyl group. In the cases of catalytic hydrogenolyses of 3-allyl-7-methyladenine salt $(119a)$ $(X = I)$ or ClO_4] and of 3-(3-methyl-2-butenyl)-7-methyladenine perchlorate [119b (X = ClO_4)] [prepared from 1 *via* 118 (Scheme 20)], the major products were the hydrogenated salts $(120a$ and $120b)$, while the hydrogenolyzed product (3) was only detected by paper chromatography.lG9a,b

In another approach utilizing an alkoxy group as a control synthon for alkylation of the adenine ring,¹⁷⁰ Fujii *et al.*¹⁷¹ methylated N^6 -methoxyadenosine (121)^{145,170,172} with MeI in AcNMe₂ at 30°C for 8 h, and methylated products were isolated by means of column chromatography [Amberlite CG-400 (HSO₄⁻ and/or SO₄²⁻), H₂O followed by 0.5 N formic acid], obtaining the 7-methylated product $[122 (X = 1/2SO₄)]$ in 55% yield together with the N^6 -methyl isomer as a minor product (Scheme 21). Removal of the N^6 methoxy group from 122 (X = $1/2SO₄$) was then effected by catalytic hydrogenolysis over Raney Ni catalyst $(H_2O, 1 \text{ atm}, rt, 9 \text{ h})$ to produce 7-methyladenosine sulfate [123] $(X = 1/2SO₄)$, which was converted into the perchlorate [123 (X = ClO₄)] in 53% overall yield [from 122 (X = 1/2SO₄)] by treatment with NaClO₄ in H₂O. On heating in H₂O at 98-100°C for 40 min, 123 (X = ClO₄) afforded 3 in 84% yield. In 0.1 N aqueous HCl at 25°C, 123 (X = ClO₄) was found to undergo glycosidic hydrolysis at a rate of 2.22×10^{-3} min^{-1} (half-life 5.2 h).^{171b,c} On treatment with 1 N aqueous NaOH at 60°C for 3 h, it was also hydrolyzed to give 3 in 44% yield.^{171b,c} Imagawa's group¹⁷³ found that 123 (X) = $ClO₄$) was hydrolyzed in buffer (pH 8.0–8.5) at 37°C by both N-methylnucleoside hydrolase (obtained from tea-leaf extracts) and adenosine nucleosidase, producing 3. However, the enzyme activity of the latter was higher than that of the former.

In yet another synthetic approach, Maki's group¹⁷⁴ obtained 3 from the N^6 -benzoyladenosine derivative (124) through the 7-methyl derivative (125) and N^6 -benzoyl-7methyladenine (126) , as depicted in Scheme 22. The synthesis of 3 from 3-(pivaloyloxymethylladenine (69) **via** the 7-methylated derivative (71) in rather low overall yield by Kohda's group56 is referred to in Section 11. Morita *et* a1.77 heated a mixture of HCO-NHMe, HCONH₂, and POCl₃ in a sealed vessel at 120°C for 12 h and obtained 3 in 5% yield.

Table I11 may serve to locate papers describing the physical properties and spectral characteristics of 7-methyladenine (3) , with additional references.¹⁷⁵⁻¹⁸²

TABLE **111.** 7-Methyladenine (3): Physical and Spectral Characteristics

a) With or without reference number(s) in parentheses. *b*) Reported for an analytical sample. *c*) Titrimetric. d) Spectral. *e)* In aqueous DMSO containing tetramethylammonium hydroxide. **f)** Containing tetramethylammonium hydroxide.

As regards the chemical behavior of 3, deamination with $NaNO₂$ in dilute sulfuric acid at 70° C gave 7-methylhypoxanthine (102) in quantitative yield (Scheme 23).²³ Reaction of 3 with 6-chloro-7-methylpurine (103) in boiling EtOH for 48 h afforded the N^6 -substituted product (127) ¹⁵⁸ Heating a mixture of 3, ethylene oxide, and 25% aqueous AcOH in a sealed tube on a steam bath for 12 h produced the N^6 -(2-hydroxyethyl) derivative (128) in 26% yield.162

Leonard's group^{169a,b} found that heating 3 with allyl bromide, 3-methyl-2-butenyl bromide, or benzyl bromide in AcNMe₂ yielded $(71-84%)$ the corresponding 3,7-disubstituted derivative $(129, 130, \text{ or } 131)$ (Scheme 24). Robins' group¹⁸³ methylated 3 with dimethyl sulfate in DMF at 100°C for 2 h to obtain the 3,7-dimethyl derivative $[132 \text{ (X =}$ $MeOSO₃$]. These results determine the preferred site of alkylation of 3 to be the 3-position.

Oxidation of 3 with m-CPBA in 50% aqueous MeOH at rt for 24 h furnished the N(1)oxide (133) (78% yield), and separate alkylations of 133 with MeI, EtI, and PhCH₂Br in AcNMez at rt for 1.25-28 h afforded the corresponding **1-alkoxy-7-methyladenine** salts in 80-90% yields.184,185

The pseudo-first-order rate constant $(k = 1.3 h^{-1})$ for deuterium labeling at C(8) of 3 in a phosphate-buffered D_2O solvent at pD 8.26 and 70°C was determined.^{152a} Arce¹⁵³ reported the transient absorption spectrum produced by 266-nm ns laser flash photolysis of an aqueous solution of 3 and proposed a few photochemical intermediates.

IV. 3-METHYLADENINE

2'-Deoxy-3-methyladenosine (type 162) has been assumed to occur as a partial structure in methylated DNA molecules.¹⁸⁶ As far as DNA sequencing by the original Maxam-Gilbert method¹⁸⁷ is concerned, dimethyl sulfate methylates the 2'-deoxyguanosines in DNA at the 7-position and the 2'-deoxyadenosines at the 3-position, rendering the glycosidic bond of the methylated families labile to hydrolysis on heating at neutral pH. Whereas the methylation of the latter is considerably slower than that of the former, release of 3-methyladenine **(4)** by hydrolysis from the 2'-deoxy-3 methyladenosines in methylated DNA is considerably faster than that of **7** methylguanine from the 2'-deoxy-7-methylguanosines. This forms a basis for distinguishing between the adenines (1) and guanines in DNA.186,187 Both humans and laboratory animals were found to excrete low levels of **4** in the urine when they were not exposed to exogenous methylating agents, indicating that the majority of urinary 3 methyladenine **(4)** was dietary in origin.188 Thus, the analysis of urinary 4 remains a

Although loss of **4** from methylated DNA in uiuo could be explained in terms of chemical depurinylation alone, active enzymic excision has also been suggested.189 This led to the isolations of 3-methyladenine-DNA glycosylase in partially purified form from both bacterial and mammalian sources.^{164g,190,191} The enzymic release of 4 from methylated DNA has been reported to be markedly dependent on the secondary structure of the DNA.^{190,191d}

Murthy and Deorukhakar¹⁹² cultured diploid yeast $(S.$ cerevisiae BZ34) auxotrophic to adenine (1) in synthetic medium supplemented with 3-methyladenine (4) and found that no growth occurred, whereas the 1-supplemented cultures grew to stationary phase over 48-h period. No cytokinin activity was observed for 4.157 Monsees *et* a1.63 found that 4 was a weak inhibitor of 1-methyladenine-induced maturation of the starfish oocytes. Young et al .¹⁰ reported that 4 was a weak competitive inhibitor of human erythrocyte membrane phosphatidylinositol 4-kinase.

In the synthesis of 3-methyladenine (4) from a pyrimidine derivative by Elion,25 4-ami**no-5-formamido-2-mercapto-3-methylpyrimidin-6-one** (134) was heated in HCONH2 to give 2-mercapto-3-methylhypoxanthine (135) (Scheme 25). Dethiolation with Raney Ni transformed 135 into 3-methylhypoxanthine (139). An alternative route to 139 was the dethiolation of 134 to give 138, followed by cyclization to 139. However, difficulties were encountered in obtaining 138 in a pure state because some deformylation as well as cyclization occurred under the alkaline conditions employed for the dethiolation. The thiation of 139 leading to 140 proceeded rather smoothly with P_2S_5 in pyridine. Although 140 would be converted into 4 with concd aqueous NH₃ at 140°C for 24 h, a better synthesis of 4 proved to be the thiation of 135 to give the dithio derivative (136), followed by conversion into 137 and subsequent desulfurization with Raney Ni^{25}

Denayer's group¹⁶¹ synthesized 4 from 107 by alkylation with MeI in DMF in the absence of added base, followed by treatment of the resulting quaternary salt (141) with aqueous K_2CO_3 (Scheme 25). This methylation of 107 at the endocyclic nitrogen presents a sharp contrast with that at the exocyclic nitrogen, 161 carried out in the presence of NaH and utilized for the synthesis of 7-methyladenine (3) (see Scheme 17).

3-Methyladenine (4) has been isolated, although only in a minute amount, from methylated DNA^{164,187b,189-191,193,194} [and 2'-deoxyadenylic acid^{164a,196} or 2'-deoxyadenosine $(154)^{195}$] and RNA^{69,165b,193,194} [and poly(A),¹⁶⁵ adenylic acid,¹⁹⁶ or adenosine $(143)^{168,196}$] molecules.¹⁶⁷ Brookes and Lawley¹⁹⁶ methylated adenosine (143) with dimethyl sulfate in DMF and hydrolyzed the product mixture to obtain 4 (7% yield), 1methyladenine (5) (31%), the imidazole derivative (144) (20%), and 3,7-dimethyladenine salt (132) (6%) (Scheme 26).¹⁹⁷

Scheme 28

Pal30a found that treatment of adenine (1) with dimethyl sulfate, under conditions similar to those employed by Reiner and Zamenhof, 30^b gave 4, 5, and 9-methyladenine (2) in **44%,** 14%, and 5.3% yields, respectively (Scheme 27). Jones and Robins198 prepared 4 uncontaminated with other isomers in good yield by methylation of 1 with methyl p-toluenesulfonate in AcNMe₂ and treatment of the resulting 4 ·TsOH with aqueous NH_3 (Scheme 28). Alternatively, they obtained 4 from 6-mercaptopurine (146) through 3-methyl-6-methylthiopurine $(145).^{198}$ Methylation of 1 with MeI in DMF at 20-30°C was reported to produce 4.HI and $5\cdot$ HI.^{55,199} The main products from a similar reaction at 150°C were 4.HI and the 3,7-dimethyl derivative (132).55 Yamauchi et *al.* methylated 1 in DMF with trimethyl phosphate at 140° C for 2 h²⁰⁰ or with dimethyl methylphosphonate at 140°C for 9 h²⁰⁰ or in H₂O (pH 10-11) with trimethyl phosphate at 60°C for 24 h34 to obtain 4 in 45%, 61%, or 6% yield, respectively. Ogilvie et *al.* methylated 1 in THF with $Me₂SO₄/Bu₄NF$ at 22°C for 0.5 h³⁷ (or for 16 h³⁶) or with Me₂- SO_4/Bu_4NOH at 22°C for 0.5 h³⁷ (or for 16 h³⁶) or with (MeO)₃PO/Bu₄NF in THF at 25°C for 1 h^{35a} (or at 22°C for 16 h³⁶), or with MeSO₃Me/Bu₄NF in THF at 22°C for 0.5 h^{36} to obtain 3-methyladenine (4) and 9-methyladenine (2) in 15% and 84%³⁷ (or 20% and 80%36), or in 31% and 57%,36,37 or in 20% and 80%35a (or 16% and 84%36), or in 18% and 81% yields,³⁶ respectively. Beasley and Rasmussen³⁸ reported that methylation of 1 with Me1 in DMF at 30°C for 168 h gave a mixture of methylated products (63% yield), which included 4 (56%) and 2 (30%). When the methylation was effected in the presence of NaH at 30°C for 16 h, the products included 4 (17%), 3 (6%), and 2 (77%).³⁹ The enzymic conversion of 1 into 4 has been reported by Axelrod and Daly.^{67a} They incubated a mixture of a dialyzed soluble supernatant fraction obtained from rabbit lung, S-adeno $sv1[Me-14C]$ methionine, adenine (1), and phosphate buffer (pH 7.9) at 37°C for 90 min and found that the enzymically formed metabolite had the same R_f values as 4 in six solvent systems.

Scheme 29

A multistep synthesis of 4 from 9-benzyladenine (147) was reported by Fujii's group (Scheme 29):201 Treatment of **9-benzyl-1-ethoxyadenine** hydriodide (149), obtainable from 147 through the N(1)-oxide (148) , 144 in H₂O at pH 10-11 and 60°C gave the formamidoimidazole derivative (150), which was then led to **9-benzyl-N6-ethoxy-3-methyl**adenine perchlorate (152) *via* the methylaminoimidazole (153). Hydrogenolysis of 152 using 10% Pd-C catalyst and hydrogen in MeOH resulted in debenzylation to form 4 (25% ~ield) and **NG-ethoxy-3-methyladenine** (151) (38%).201

Multistep syntheses of 4 from adenosine (143) *via* 3-methyladenosine p-toluenesulfonate (161) and from 2'-deoxyadenosine (154) *via* 2'-deoxy-3-methyladenosine p-toluenesulfonate (162) were also accomplished by Fujii's group (Scheme 30):²⁰² Methylation of the formamidoimidazole (159) , prepared from 143 through the N(1)-oxide (155) and 1-benzyloxyadenosine perchlorate (157) , with MeI in DMF in the presence of anhydrous K_2CO_3 at rt for 9 h gave the N-methylformamido derivative (165) in 86% yield. Next 165 was hydrogenolyzed with Raney Ni catalyst and hydrogen (1 atm, rt, 70 min) in $H₂O$ containing 1 molar equiv. of TsOH, and crude 163 that resulted was treated with a little Et₃N in MeOH at rt for 48 h, producing 161 in 53% yield (from 165).^{202a,c} A parallel sequence of conversions starting from 154 and proceeding through 156, 158, 160, 166, and 164 afforded 162.^{202b,c} On treatment with 0.1 N aqueous HCl at 27^oC for 1 h, 161 furnished 4 in 92% yield.^{202a,c} Treatment of 162 with H₂O at pH 3.34 and 20°C for

45 min or with boiling MeOH for 30 min gave 4 in 60% or 99% yield, respectively. $202b,c$ At pH 1 and 25° C, 161 (half-life 17 min) underwent glycosidic hydrolysis (depurinylation) some thousand times faster than did adenosine (143) itself.^{202a,c} At pH 3.34 and 25 $^{\circ}$ C, the 2-deoxyribosyl analogue (162) (half-life 2.7 min) was depurinylated 370 times more rapidly than the ribosyl analogue (161) (half-life 1010 min).^{202b,c} Imagawa's group¹⁷³ reported that 161 was hydrolyzed in buffer (pH 8.0–8.5) at 37°C by N-methylnucleoside hydrolase obtained from tea-leaf extracts, giving 4.

Scheme 30

For papers describing the physical properties and spectral characteristics of 3-methyladenine (4) , the reader is referred to Table IV, which includes additional references.203-211

As regards molecular interactions between 3-methyladenine (4) and other organic or inorganic molecules, Gliisenkamp *et* al.209 reported high specificity and affinity of the monoclonal antibody EM-6-47 for 4. Yamagata *et* $al.^{212}$ have found by means of X-ray crystallographic analysis that 4 strongly stacks with the indole ring of tryptophan. Sakaguchi and Ishino²⁰⁶ confirmed the existence of $N(9)$ -Co(II) binding in the complex $[Co(H₂O)₂(C₆H₇N₅)₂](NO₃)₂·3H₂O$ obtained from 4 and $Co(NO₃)₂·6H₂O$ in H₂O. Orbell et al.¹²¹ synthesized *cis*-diamminebis(3-methyladenine)platinum(II) nitrate trihydrate $[cis-[(NH₃)₂Pt(4)₂](NO₃)₂·3H₂O]$ by heating a mixture of 4 and cis- $(NH₃)₂Pt(NO₃)₂$ in

TABLE IV. 3-Methyladenine (4): Physical and Spectral Characteristics

a) With or without reference number(s) in parentheses. b) Reported for an analytical sample. *c)* For a sample that contained 7.0% H₂O. d) Titrimetric. *e*) Spectral.

aqueous DMF at 80° C for 1 h. Sheldrick and Gross²¹¹ synthesized several methylmercury(II) complexes of 4 by treating a mixture of 4 and methylmercury(II) hydroxide in HzO at various pH's and **rt.**

Scheme 31

Although Jones and Robins198 reported that 4 could not be changed to 3-methylhypoxanthine (139) under the standard diazotization conditions, Itaya and Matsumoto²¹³ were able to realize this conversion under the reaction conditions as shown in Scheme 31. Pal and Horton^{88b} showed by paper chromatographic analysis that 4 gave 139 and the imidazolecarboxamide (167) on heating with 1 N aqueous NaOH at 100 $^{\circ}$ C for 2-4 h. Fujii's group²¹⁴ treated 4 with boiling 1 N aqueous NaOH for 50 min and isolated 139 (12% yield) and 167 (12%) from the reaction mixture.

Robins' group¹⁸³ methylated 4 (0.4 g) with MeI in MeOH containing KOH for 36 h and obtained the 3,7-dimethyl derivative $[132 (X = I)] (0.2 g)$ (Scheme 31). Fujii's group²¹⁵ obtained 132 $(X = I)$ in 67% yield from 4 by methylation with MeI in AcNMe₂ at 27^oC for 5 h. A similar alkylation of 4 with EtI gave the 7-ethyl-3-methyl derivative (168) in 50% yield.²¹⁵ Benzylation of 4 with PhCH₂Br in AcNMe₂ at 80°C for 1.5 h afforded the 7benzyl-3-methyl derivative (169) (61% yield) and the 9-benzyl-3-methyl isomer (170) (9%) .²¹⁵ Yamauchi *et al.*³⁴ treated 4 with trimethyl phosphate in H₂O (pH 9.5-10.0) at 60 \degree C for 24 h and found the formation of 132 in 14% yield with 70% recovery of 4. The preferential 7-alkylation of 4 has now been successfully applied by Ohba *et al.* to the racemic²¹⁶ and chiral²¹⁷ syntheses of agelasimine-A and agelasimine-B, novel 7-substituted 3-methyladenine-related bicyclic diterpenoids isolated 218 from the orange sponge *Agelas mauritiana.*

Oxidation of 4 with m-CPBA in MeOH-acetate buffer (pH 5.5) at 30°C for 15 h was found to give the N(7)-oxide (173) in 25% yield with 43% recovery of 4 (Scheme 32).²¹⁹ Alternatively, treatment of 4 in MeOH with magnesium monoperoxyphthalate hexahydrate (MMPP.6H₂O) at 30°C for 2 h afforded 173 in 15% yield with 54% recovery of 4.²¹⁹ The reactions of 3-methyladenine 7-oxide (173) so far investigated^{219,220} are illustrated in Scheme 32.

Wong and Keck221 determined the pseudo-first-order rate constants for deuterium labeling at C(2) ($k = 2.51 \times 10^{-5}$ s⁻¹) and at C(8) ($k = 5.58 \times 10^{-7}$ s⁻¹) of 4 in D₂O at pD 6-7 and 100° C. At pD 8.26 and 70°C, however, Kohda's group^{152a} observed no labeling at C(8) and determined the rate constant for deuterium labeling at C(2) to be 4.4×10^{-3} h⁻¹ $(1.22 \times 10^{-6} \text{ s}^{-1})$.

V. 1-METHYLADENINE

A purine base $(C_6H_7N_5)$ isolated from a giant siliceous sponge (genus Geodia) has been named "spongopurine" and identified as 1-methyladenine (5).222 Kanatani *et* al. isolated a meiosis-inducing substance from ovaries of the starfish Asterias amrensis and identified it to be 5.223 Later on, Cimino et al. 224 found 5, together with 6-imino-1,9-dimethyl-8-oxopurine, in the 1-butanol extracts of the English channel sponge H ymeniacidon sanguinea Grant and identified it in the form of acetylspongopurine. It has been reported that 5 was among the urinary methylated purines in both normal and tumor-bearing mice.²²⁵ The existence of 1-methyladenine (5) in the form of the 1methyladenosine structure in RNA's from a number of sources has also been reported.226

Dorée et al ¹² have investigated the specificity of the 1-methyladenine receptors, which are localized on the cell membrane of starfish oocytes in *Marthasterias glacialis* and Asterias rubens, using various substituted adenines. Yoshikuni et al.²²⁷ prepared 1-[3H]methyladenine and studied its binding to cortics isolated from full-grown prophasearrested oocytes of the starfish Asterina pectinifera. Monsees et al.⁶³ reported that the EC_{50} value (the concentration for inducing 50% oocyte maturation in Asterias rubens) for 5 was 0.01 μ M; 0.08 \pm 0.01 μ M (in Asterina pectinifera).²²⁸

Murthy and Deorukhakar¹⁹² cultured diploid yeast (S. cerevisiae BZ34) auxotrophic to adenine (1) in synthetic medium supplemented with 5 and found that no growth occurred, whereas the 1-supplemented cultures grew to stationary phase over 48-h period. In the tobacco callus bioassay for cytokinin activity, 5 was found to be inactive.²²⁹ In the competitive inhibitory assay for human erythrocyte membrane phosphatidylinositol 4-kinase, 5 was found to be inactive.10

In a synthetic approach to 1-methyladenine (5) from an imidazole derivative, Grozinger and Onan²³⁰ treated the aminoimidazolecarbonitrile (178) with methyl isothiocyanate in pyridine to obtain **1-methyl-6-imino-2-thioxopurine** (179), which was isolated in the form of the hydrochloride salt (179.HCl) (Scheme 33). Desulfurization of 179.HCl with Raney Ni in boiling H₂O gave 5. Suzuki and Kumashiro²³¹ obtained 5 from the methoxymethyleneamino derivative (180) and methylamine. Mornet's group²³² cyclized 1-**(3-methoxybenzyl)-4-ethoxymethyleneaminoimidazole-5-carbonitrile** (181) with methylamine to prepare the 1,7-disubstituted adenine (182) , which produced 5 in 65% yield when subjected to photolysis (Scheme 33).

The formation of 1-methyladenine (5) by methylation of DNA^{164a,c,193,233} [and deoxyadenylic acid164a,193,196,233 or deoxyadenosine (154)193,195] and RNA69,193-195,233-235 [and poly(A),¹⁶⁶ adenylic acid,^{196,233} or adenosine (143)^{168,196,236}] molecules, followed by hydrolysis of the resulting products, has been known.167

As mentioned in Section IV, methylation of adenosine (143) with dimethyl sulfate in DMF, followed by acid hydrolysis, gave several products, among which 5 was the main product $(31\% \text{ yield})$.¹⁹⁶ See also Section IV for the formation of 5 in the methylation of adenine (1) with dimethyl sulfate carried out by Pal^{30a} and by Reiner and Zamenhof:^{30b} with MeI in DMF by the Russian research group.^{55,199}

Jones and Robins237 treated adenosine (143) in DMF with methyl p-toluenesulfonate at rt for 24 h or in AcNMez with Me1 at 28°C for 18 h to isolate 1-methyladenosine.TsOH [183 (X = TsO)] or 1-methyladenosine HI [183 (X = I)] in good yield (Scheme 34). The free crystalline base prepared from 183 ($X = I$) was then hydrolyzed in 0.5 N aqueous HCl at 100°C for 45 min to produce 5. Similar methylations of 2'-deoxyadenosine (154) gave 2' deoxy-1-methyladenosine^TsOH $[184 (X = TsO)]$ and $184 (X = I)$, respectively, in good yields, and treatment of 184 (X = I) with H₂O at 100°C for 20 min or with boiling MeOH for 30 min yielded 5^{237} Yoshikuni *et al.*²²⁷ prepared 1-^{[3}H]methyladenine from 143 in 70% yield by treating the latter with [3Hlmethyl iodide in a mixture of HMPA and toluene at 28°C for 20 d and hydrolyzing the resulting 1- $[3H]$ methyladenosine with 1methyladenosine ribohydrolase in phosphate buffer (pH 7). Toraya et al.²²⁸ have recently reported the synthesis of 1-methyl- $[2-3H]$ adenine, which involves methylation of $[2-3H]$ adenosine with MeI in AcNMe₂ at rt for 66 h and hydrolysis of the methylated product with 0.5 N aqueous HCl at 96°C for 10 min.

In a multistep synthesis of 5 from 1, Leonard and Fujii⁴⁵ methylated 9-benzyladenine (147) (obtainable³² from 1 in 61% yield by benzylation with $PhCH₂Cl/AcNMe₂$ in the presence of K_2CO_3) with MeI in AcNMe₂ to obtain 9-benzyl-1-methyladenine hydriodide (185) (Scheme 35). The hydriodide (185) was then debenzylated by conversion (with AgC1) into the hydrochloride (186) and catalytic hydrogenolysis using Pd-C and hydrogen, producing 5 in good overall yield. The multistep synthesis of 5 from 1 by Montgomery and Thomas²³⁸ proceeded through 9-allyladenine (187) , 9- $(1$ -propenyl)adenine (188), **1-methyl-9-(1-propeny1)adenine** (189), and the unstable intermediate (1921, as shown in Scheme 36. Lira's synthesis239 included cyanoethylation of 1 to form 9-(2-cyanoethyl)adenine $(190)^{240}$ methylation of 190 with MeI, and retro-Michael reaction of the resulting **9-(2-cyanoethy1)-1-methyl** derivative (191) (Scheme 36).

Scheme 34

Scheme **35**

Scheme **36**

à,

TABLE V. 1-Methyladenine (5): Physical and Spectral Characteristics

a) With or without reference number(s) in parentheses. b) Reported for an analytical sample. c) Spectral. *d)* Titrimetric.

Scheme 37

The following reactions of 5 have been reported. On treatment with concd aqueous NH_3 at 100 $\rm{^{\circ}C}$ for 18 h,¹⁹⁶ 5 underwent Dimroth rearrangement²⁴⁹ to give N⁶-methyladenine (6) in over 80% yield (Scheme 37) (see also Section **VI).** Action of boiling 6 N aqueous HC1 on 5 resulted in the ring opening in the pyrimidine moiety, giving 5-amino-N' methylimidazole-4-carboxamidine dihydrochloride (144.2HC1), which afforded 5-aminoimidazole-4-carboxamide (195) in 40% yield when heated in concd aqueous NH₃ at 100°C for 18 h.¹⁹⁶ Robins' group¹⁸³ methylated 5 with methyl p-toluenesulfonate in AcNMe₂ to obtain 1,9-dimethyladenine p-toluenesulfonate [193 (X = TsO)], and 193 (X = TsO) was heated in 0.1 N aqueous NaOH for 5 min. The UV spectrum of the resulting solution was found to be identical to that of N^6 , 9-dimethyladenine (194). Methylation of 5 with MeI in AcNMe₂ and treatment of the resulting 193.HI with NH₄ClO₄ gave the perchlorate $[193 (X = ClO₄)]$ in 27% overall yield.^{51b} The Dimroth rearrangement²⁴⁹ of 193 (X = ClO₄) was effected by treating it with Amberlite IRA-402 (HCO₃⁻) and heating the resulting free base in boiling H₂O for 3 h, providing 194 in 54% yield.^{51b} Cimino *et* aL^{224} acetylated a mixture containing 5 with Ac₂O in boiling pyridine for 1 h and have recorded the MS and 1 H NMR spectral data for the resulting acetylspongopurine.

VI. N⁶-METHYLADENINE

The last positional isomer N^6 -methyladenine (6) was isolated, together with N^6 -(3-methyl-2-buteny1)adenine (a potent cytokinin) and nicotinamide, first from Corynebacterium *fascians* growing in a medium to which adenine (1) had been added.²⁵⁰ Subsequently, the same three compounds were obtained when 1 was not added to the medium.250 The compound (6) has also been reported to occur in blue coral (code No. NIO-156) in the form of the 2-hydroxy derivative **(2-hydroxy-NG-methyladenine)** possessing cytokinin activity.²⁵¹ The existence of 6 in the form of 2'-deoxy- N^6 -methyladenosine structure in $~NNA's^{252-256}$ and in the form of N^6 -methyladenosine structure in RNA's^{226a,c,257} from a number of sources has been known.

 N^6 -Methyladenine (6) has been reported to have very weak or no cytokinin activity in certain test systems.^{229,258,259} Dorée et al.¹² reported that 6 was devoid of the ability to replace 1-methyladenine (5) in triggering meiosis in the starfish Marthasterias glacialis and Asterias rubens oocytes. The toxicity and anticancerogenic property of 6 against Ehrlich mouse carcinoma and against other transplantable mouse cancers have been studied.¹⁵⁶ The N^6 -methyl compound (6) was an effective inhibitor of azaserine-induced formylglycinamide ribonucleotide accumulation in both sensitive and resistant H.Ep. No. **2** cells in culture.260 It was also reported to be an inhibitor of adenine uptake into nucleotides of guinea pig cortical slices;²⁶¹ and to be an inhibitor of nonspecific adenosine deaminase [EC 3.5.4.4, adenosine aminohydrolase, Aspergillus oryzae] from Takadiastase.262 Love and Remy263 examined various methylated purines for their effects on growth of purine-requiring mutants of *Escherichia coli*, strains W-11 and B-96, and for their effects on purine biosynthesis. They found that 6 stimulated the accumulation of purine precursor derivatives (the ribosides of 5-aminoimidazole and 5-aminoimidazole-4-carboxamide) beyond its ability to support growth. **A** vasodilator composition containing 6 has been applied for a patent.²⁶⁴

Scheme **38**

In a synthetic approach to 6 from a pyrimidine derivative, Mano et $al.^{265a}$ prepared 6 from phenylazomalononitrile (196) via 197 or via 200 (which was also obtainable from

198 uia 199), 201, and 197 (Scheme 38). Alternatively, 6 was obtained from 200 by reduction and subsequent cyclization with ethyl orthoformate.^{265b}

In an approach from a purine derivative, Elion *et* a1.266 heated a mixture of 6-methylmercaptopurine (202) and 25% aqueous MeNH₂ in a sealed tube at 130°C for 17 h. obtaining 6 in 72% yield (Scheme 39). Okumura *et al.* 267 and Sakata *et al.* 268 separately obtained 6 in 74% and 81% yields, respectively, from similar reactions of 202 effected at 130-140°C for 14 h and for 18 h. Reaction of purine (75) with MeNHLi in MeNH2 under argon in the presence of KNO₃ at 133^oC for 47 h has been reported to produce 6 in 31% (weight) yield.²⁶⁹ In an attempt to prepare the 1-methyl isomer (5) , Elion²⁵ treated 1methylhypoxanthine (204) with P_2S_5 in boiling pyridine to obtain 1-methylpurine-6thione (205) in 54% yield. Subsequent treatment of 205 with ethanolic NH₃ at 155°C for 24 h resulted in the formation of a small amount of 6, which was presumed to have occurred through the Dimroth rearrangement²⁴⁹ of 5 once formed $(5\rightarrow 203 \rightarrow 6)$ (Scheme 39). In an open vessel, reaction of MeNH₂.HCl with 6-chloropurine (49) in boiling 1butanol containing Et₃N for 2 h produced 6 in 72% yield.²⁷⁰ A similar procedure utilizing 40% aqueous MeNH₂ has been reported.¹⁸³

The formation of N^6 -methyladenine (6) by methylation of DNA^{164a,193} [and deoxyadenylic acid^{164a,193} or deoxyadenosine (154)^{164a,193}] and RNA^{69,193,271} [and poly(A),¹⁶⁶ adenylic acid,¹⁹⁶ or adenosine (143) ^{168,183,196,272}] molecules and hydrolysis of the resulting products has been known. Jones and Robins²³⁷ subjected 2 -deoxy-1-methyladenosine hydriodide [184 (X = I)], prepared by methylation of 2'-deoxyadenosine (154) (Section V and Scheme 34), to Dimroth rearrangement under alkaline conditions and hydrolyzed the resulting N^6 -methyl isomer (206) with 0.1 N aqueous HCl to obtain 6 (Scheme 40), which was alternatively prepared^{273a} in 65% yield from 1-methyladenine

(5) by heating with 0.2 N aqueous NaOH at $95-100^{\circ}$ C for 4 h (see also Section V and Scheme 37). Incubation of 5 in H₂O at pH 7.2 and 100°C for 18 h resulted in 96% conversion into 6 with 4% recovery of 5, as analyzed by means of paper chromatography.^{273b} Katritzky *et al.*²⁷⁴ prepared 6 from adenine (1) through the N^6 -(benzotriazol-1y1)methyl derivative (207)274b in 75% overall yield (Scheme 40).

Reaction of 1-aminoadeninium mesitylenesulfonate $[209 (X = 2, 4, 6 \text{-Me}_3C_6H_2SO_3)]$ with MeNHz in MeOH at 100°C for 17 h was found to produce 6 in 40% yield (Scheme 41).275 Similar treatment of 6-hydrazinopurine (208) gave 6 $(25\%$ yield), purine (75) (10%) , and adenine (1) (15%).²⁷⁵ Perlberger and Duc²⁷⁶ claimed that 6 was obtained in 60.9% yield by "exchange amination" of 1 with excess $MeNH₂$ and $MeNH₂·HCl$ in hexanol in an autoclave at 170 \degree C. Similar exchange amination of 1 with MeNH₂ in the presence of HCl has also been reported.277

References to the physical properties and spectral characteristics of $N⁶$ -methyladenine (6) are indicated by number in Table VI, with some additions. $278-293$

TABLE VI. N^6 -Methyladenine (6): Physical and Spectral Characteristics

TABLE VI (continued)

a) With or without reference number(s) in parentheses. *b*) Reported for an analytical sample. *c*) Potentiometric. *d*) UV spectral. *e*) ¹H NMR spectral.

Interactions of 6 with the following substances have been reported: iodine (in H_2O);²⁹⁴ riboflavin [in aqueous buffer (pH 4)];²⁹⁴ cis-Pt(NH₃)₂Cl₂ and trans-Pt(NH₃)₂Cl₂ (in $H₂O$).¹³⁴

Chheda's group^{295a} prepared the urethane derivative (210) and the carbamoyl derivatives (212, 213, and 214) from 6 by the reactions illustrated in Scheme 42. Oxidation of 6 with m-CPBA in MeOH was found to afford the N(1)-oxide (211) in 36% yield, with 21% recovery of 6.270 Fujii's group^{273a} found that treatment of 6 with 3 molar equiv. of MeI in AcNMe₂ at 38-42°C for 6 h gave N^6 , 3-dimethyladenine (215) (82% yield), N^6 , 3, 7trimethyladenine (216) (1.8%), N^6 , 9-dimethyladenine (194) (1.3%), and N^6 , 1.9-trimethyladenine (217) (0.3%) (Scheme 43).^{295b-d} Kohda's group⁵⁶ reported that amination of 6 with hydroxylamine-0-sulfonic acid in alkaline medium furnished the 7-amino (218) (31% yield), 9-amino (219) (3%), 3-amino (220) (3%), and 1-amino (221) (in very low yield) derivatives (Scheme 43). The 1-amino derivative (221) was alternatively prepared from 6 in 11% yield by amination with 2,4-dinitrophenoxyamine in DMF at 95°C for 2 h.56

Scheme 44

Leonard's group²⁹⁶ has shown that 6 reacts with chloroacetaldehyde in H₂O at pH 4.0-4.5 to give **7,8-dihydro-8-hydroxy-9-methylimidazo[2,1-ilpurinium** chloride (222) in 90% yield and that 222 is dehydrated with PPA to afford **9-methylimidazo[2,1-ilpurinium** chloride (223) in over 90% yield (Scheme 44).

The reaction of 6 with the OH radical in H₂O at pH 6-8 and 20 \degree C has been investigated by Vieira and Steenken62 by using pulse radiolysis with optical and conductance detection. The following biochemical transformations of 6 have been reported: demethylation by rat liver microsomal enzymes;297 metabolism to the nucleoside monophosphate level by intact Ehrlich ascites cells;²⁹⁸ deoxyribosylation utilizing thymidine and the nucleoside deoxyribosyltransferase (EC 2.4.2.6) from Lactobacillus leichmannii.299

REFERENCES AND NOTES

- 1. J. H. Lister, 'Fused Pyrimidines. Part **11:** Purines,' ed. by D. **J.** Brown, Wiley-Interscience, New York, 1971.
- 2. G. Shaw, 'Rodd's Chemistry of Carbon Compounds,' 2nd ed., Vol. IV, Part L, ed. by S. Coffey, Elsevier Scientific Publishing Co., Amsterdam, 1980, Chapter 57, pp. 1-1 15.
- 3. G. Shaw, 'Comprehensive Heterocyclic Chemistry,' Vol. 5, ed. by K. T. Potts, Pergamon Press, Oxford, 1984, Chapter 4.09, pp. 499-994.
- 4. Atta-ur-Rahman and M. I. Choudhary, 'The Alkaloids,' Vol. 38, ed. by A. Brossi, Academic Press, New York, 1990, Chapter 3, pp. 225-323.
- 5. E. Cullen and **J.** P. Devlin, *Can.* **J.** *Chem.,* 1975, 53, 1690.
- 6. (a) H. Nakamura, H. Wu, Y. Ohizumi, and Y. Hirata, *Tetrahedron Len.,* 1984, 25, 2989; (b) H. Wu, H. Nakamura, **J.** Kobayashi, Y. Ohizumi, and Y. Hirata, ibid., 1984, 25, 3719; (c) H. Wu, H. Nakamura, **J.** Kobayashi, M. Kobayashi, Y. Ohizumi, and Y. Hirata, *Bull. Chem. Soc. Jpn.,* 1986, 59, 2495.
- 7. (a) R. J. Capon and D. **1.** Faulkner, **J.** *Am. Chem. Soc.,* 1984, *106,* 1819; (b) The 4-bromo-2 pyrrolecarboxylate analogue of ageline B (9) has been isolated from the Okinawan marine sponge *Agelas* sp. and named agelasine G: K. Ishida, M. Ishibashi, H. Shigemori, T. Sasaki, and J. Kobayashi, *Chem. Pharm. Bull.,* 1992,40,766.
- 8. (a) T. Hattori, K. Adachi, and Y. Shizuri, **J.** *Nar. Prod.,* 1997, 60, 41 1; (b) T. Hattori and Y. Shizusato, **Jpn. Kokai Tokkyo Koho JP** 09,301,977 197 301,9771 (25 Nov 1997) *(Chem.* Abstr., 1998, 128, 11127).
- 9. H. J. Schaeffer and D. Vogel, **J.** *Med. Chem.,* 1965,8, 507.
- 10. R. C. Young, M. Jones, K. **J.** Milliner, K. K. Rana, and **J.** G. Ward, J. *Med. Chem.,* 1990, 33, 2073.
- 11. R. D. Thompson, S. Secunda, **J.** W. Daly, and R. A. Olsson, J. *Med. Chem.,* 1991, 34, 2877.
- 12. M. Dorée, P. Guerrier, and N. J. Leonard, *Proc. Natl. Acad. Sci. U. S. A.*, 1976, 73, 1669.
- 13. A. H. Cook and E. Smith, J. *Chem. Soc.,* 1949,3001.
- 14. G. Shaw and D. N. Butler, **3.** *Chem. Soc.,* 1959,4040.
- 15. (a) A. H. Al-Shaar, D. W. Gilmour, D. **J.** Lythgoe, I. McClenaghan, and C. A. Ramsden, **J.** *Chem. Soc., Chem. Commun.,* 1989, 551; (b) A. H. M. Al-Shaar, R. K. Chambers, D. W. Gilmour, D. **1.** Lythgoe, I. McClenaghan, and C. A. Ramsden, *J. Chem. Soc.. Perkin Trans. 1,* 1992, 2789.
- 16. G. A. Howard, B. Lythgoe, and A. R. Todd, **3.** *Chem. Soc.,* 1945,556.
- 17. **J.** W. Daly and B. E. Christensen, J. *Org. Chem.,* 1956, **21,** 177.
- 18. The synthetic precursors of 32 were 4.6-dihydroxypyrimidine and **4,6-dihydroxy-5-nitropyrimi**dine, and their improved preparations were reported: A. R. Katritzky, R. G. Shepherd, and A. J. Waring, *Rec.* Trav. *Chim.* Pays-Bas, 1962,81,443.
- 19. (a) R. K. Robins and H. H. Lin, *J. Am. Chem. Soc.,* 1957, 79,490; (b) For the formation of **2** in a small amount in the reaction of 38 in liquid NH_3 containing KNH_2 , see ref. 103.
- 20. A. G. Beaman and R. K. Robins, *J. Med. Chem.*, 1962, 5, 1067.
- 21. T. Takahashi, *Yakugaku Zusshi,* 1969,89,591.
- 22. *E.* Fischer, *Ber. Drsch. Chem. Ges.,* 1897, 30, 2226.
- 23. E. Fischer, *Ber. Dtsch. Chem. Ges.,* 1898, 31, 104.
- 24. E. Fischer, Ber. *Dtsch. Chem. Ges.,* 1899, 32, 267.
- 25. G. B. Elion, *J. Org. Chem.,* 1962, 27, 2478.
- 26. G. B. Barlin and A. C. Young, J. *Chem. Soc., Perkin Trans. 1,* 1972, 1269.
- 27. G. B. Barlin and N. B. Chapman, *J. Chem. Soc.,* 1965, 3017.
- 28. (a) G. B. Barlin and A. C. Young, *J. Chem. Soc. (B),* 1971, 821; (b) R. W. Adamiak, E. Biala, and B. Skalski, *Nucleic Acids Res.,* 1985, 13, 2989.
- 29. M. Kriiger, *Hoppe-Seyler's Z. Physiol. Chem.,* 1894, 18,423.
- 30. (a) B. C. Pal, *Biochemistry,* 1962,1, 558; (h) A similar methylation in 0.1 M sodium citrate buffer (pH 7.35-7.5) at 23.2"C for 6 h has been reported: B. Reiner and S. Zamenhof, *J. Biol. Chem.,* 1957, 228, 475.
- 3 1. T. C. Myers and L. Zeleznick, *J. Org. Chem.,* 1963, 28,2087.
- 32. T. Fujii, S. Sakurai, and T. Uematsu, *Chem. Pharm. Bull.,* 1972,20, 1334.
- 33. G. Wenska and S. Paszyc, *Can. J. Chem.,* 1984,62, 2006.
- 34. K. Yamauchi, T. Tanabe, and M. Kinoshita, *J. Org. Chem.,* 1976,41, 3691.
- 35. (a) K. K. Ogilvie, S. L. Beaucage, and M. F. Gillen, *Tetrahedron Lett.,* 1978, 1663; (b) K. K. Ogilvie, S. L. Beaucage, M. F. Gillen, D. Entwistle, and M. Quilliam, *Nucleic Acids Res.,* 1979, 6, 1695.
- 36. K. K. Ogilvie, S. **L.** Beaucage, M. F. Gillen, and D. W. Entwistle, *Nucleic Acids Res.,* 1979, *6,* 2261.
- 37. K. K. Ogilvie, S. L. Beaucage, and M. F. Gillen, *Tetrahedron Lett.,* 1978,3203.
- 38. A. E. Beasley and M. Rasmussen, *Aust.* J. *Chem.,* 1981,34, 1107.
- 39. M. Rasmussen and J. M. Hope, *Aust. J. Chem.,* 1982, 35, 525.
- 40. M. Hedayatullah, J. *Heterocycl. Chem.,* 1982, 19, 249.
- 41. (a) J. Bergman and P. Sand, *Tetrahedron Lett.,* 1984, 25, 1957; (b) J. Bergman, P.-0. Norrby, and P. Sand, *Tetrahedron,* 1990,46, 6113.
- 42. A. Holy, I. Rosenherg, and H. Dvorikov6, *Collect. Czech. Chem. Commun.,* 1989,54. 2190.
- 43. Z:Q. Xu, R. V. Joshi, and I. Zemlicka, *Tetrahedron,* 1995, 51, 67.
- 44. E. G. Talman, W. Brüning, J. Reedijk, A. L. Spek, and N. Veldman, *Inorg. Chem.*, 1997, 36, 854.
- 45. N. J. Leonard and T. Fujii, *Proc. Natl. Acad. Sci.* **U.** *S. A.,* 1964, 51, 73.
- 46. T. Itaya, F. Tanaka, T. Fujii, and N. J. Leonard, *Chem. Pharm. Bull.,* 1977, 25, 1449.
- 47. (a) T. Fujii, T. Itaya, and S. Yamada, *Chem. Pharm. Bull.,* 1965, 13, 1017; (b) T. Fujii and T. Itaya, *Tetrahedron,* 1971, 27, 351.
- 48. (a) M. A. Stevens, D. I. Magrath, H. W. Smith, and G. B. Brown, *J. Am. Chem. Soc.,* 1958, 80, 2755; (h) M. A. Stevens and G. B. Brown, *ibid.,* 1958, 80, 2759.
- 49. T. Fujii, S. Kawakatsu, and T. Itaya, *Chem. Pharm. Bull.,* 1974, 22, 2466.
- 50. Z. Kazimierczuk, J. Giziewicz, and D. Shugar, *Acta Biochim. Pol.,* 1973.20, 169.
- 51. (a) T. Fujii, T. Itaya, C. C. Wu, and F. Tanaka, *Tetrahedron,* 1971, 27, 2415; (h) T. Itaya, F. Tanaka, and T. Fujii, *ibid.,* 1972,28, 535.
- 52. T. Fujii, T. Itaya, T. Saito, and M. Kawanishi, *Chem. Pharm. Bull.,* 1978, 26, 1929.
- 53. T. Fujii, T. Itaya, and S. Moro, *Chem. Pharm. Bull.,* 1972,20, 958.
- 54. T. Fujii, T. Itaya, T. Saito, and S. Kawakatsu, *Chem. Pharm. Bull.,* 1984, 32, 4842.
- 55. Kh. L. Muravich-Aleksandr, V. G. Pernikoza, M. Z. Girshovich, and T. N. Ragozina, *Zh. Org. Khim.,* 1983, 19, 2395 *(Chem. Abstr.,* 1984,100, 191638e).
- 56. T. Saga, T. Kaiya, S. Asano, and K. Kohda, *Nucleosies Nucleoiides,* 1996, 15, 219.
- 57. In ref. 56, Saga *et al.* inconsistently described in its note 31 that the solvent used was MeOH.
- 58. H. Lonnberg, J. Ylikoski, J. Arpalahti, E. Ottoila, and A. Vesala, *Acta Chem. Scand., Ser. A,* 1985, A39, 171.
- 59. N. 1. Leonard and J. A. Deymp, *J. Am. Chem. Soc.,* 1962, 84, 2148.
- 60. J. Arpalahti and E. Ottoila, *Inorg. Chim. Acia,* 1985, 107, 105.
- 61. R. L. Benoit, D. Boulet, L. Stguin, and M. Frkchette, *Can. J. Chem.,* 1985,63, 1228.
- 62. A. J. S. *C.* Vieira and S. Steenken, *J. Phys. Chem.,* 1987,91, 4138.
- 63. T. Monsees, L. Meijer, and B. Jastorff, *Eur. J. Biochem.,* 1993,213, 155.
- 64. F. Jordan and B. Y. McFarquhar, *J. Chem. Soc., Chem. Commun.,* 1973, 485.
- 65. R. Stewart and M. G. Harris, *Can. J. Chem.,* 1977.55, 3807.
- 66. S. E. Taylor, E. Buncel, and A. R. Norris, **J.** *Inorg. Biochem.,* 1981, 15, 131.
- 67. (a) J. Axelrod and **1.** Daly, *Biochim. Biophys. Acta,* 1962, 61, 855; (b) K. Fink, R. E. Cline, and R. M. Fink, *Anal. Chem.,* 1963, 35, 389.
- 68. L. B. Townsend, R. K. Robins, R. N. Loeppky, and N. J. Leonard, *J. Am. Chem. Soc.,* 1964, 86, 5320.
- 69. E. S. McFarlane, *Biochem. J.,* 1972, 129, 513.
- 70. 2. Kazimierczuk, E. Darzynkiewicz, and D. Shugar, *Biochemistry,* 1976, 15, 2735.
- 71. **1.** H. J. den Hartog, H. van den Elst, and J. Reedijk, **J.** *Inorg. Biochem.,* 1984,21, 83.
- 72. J. Deutsch, Z. Neiman, and F. Bergmann, *Jerusalem Symp. Quantum Chem. Biochem.,* 1972, 4, 402.
- 73. L. F. Sukhodub and I. K. Yanson, *Tezisy Dok1.-Vses. Konf. Spektrosk. Biopolim., 2nd,* 1974, 97 *(Chem. Abstr.,* 1977.86, 5415).
- 74. **1.** M. Gulland and E. R. Holiday, *J. Chem. Soc.,* 1936, 765.
- 75. L. B. Clark, G. G. Peschel, and I. Tinoco, Jr., **J.** *Phys. Chem.,* 1965, 69, 3615.
- 76. K. R. Damall and L. B. Townsend, *J. Heierocycl. Chem.,* 1966,3, 371.
- 77. K. Morita, S. Kobayashi, H. Shimadzu, and M. Ochiai, *Tetrahedron Lett.,* 1970, 861.
- 78. G. C. Magnin, 1. Dauvergne, A. Burger, and 1.-F. Biellmann, *Tetrahedron Lett.,* 1996,37, 7833.
- 79. M. J. Nowak, K. Szczepaniak, A. Barski, and D. Shugar, *Z. Naiurjorsch., C, Biosci.,* 1978, 33c, 876.
- 80. E. D. Radchenko, A. M. Plokhotnichenko, G. G. Sheina, and Yu. P. Blagoi, *Biofizika,* 1984, 29, 553 *(Chem. Absir.,* 1984, 101, 190980).
- 81. J. Lin, **C.** Yu, S. Peng, I. Akiyama, K. Li, L. K. Lee, and P. R. LeBreton, *J. Am. Chem. Sot.,* 1980, 102, 4627.
- 82. R. F. Stewart and N. Davidson, *J. Chem. Phys.,* 1963, 39, 255.
- 83. R. F. Stewart and N. Davidson, *Biopolymers, Symp. No. 1,* 1964, 465 *(Chem. Ahstr.,* 1964, 60, 12779e).
- 84. L. B. Clark, **J.** *Phys. Chem.,* 1989, 93, 5345.
- 85. L. B. Clark, *J. Phys. Chem.,* 1990, 94, 2873.
- 86. B. 1. Cohen and L. Goodman, *J. Am. Chem. Soc.,* 1965, 87, 5487.
- 87. R. C. Lord and G. J. Thomas, Jr., *Specirochim. Acta, Part A,* 1967,23A, 2551.
- 88. (a) Yu. D. Kanaskova, L. I. Shabarchina, and B. I. Sukhomkov, *Zh. Fiz. Khim.,* 1972, 46, 3108 *(Chem. Absir.,* 1973,78,77547); (b) B. *C.* Pal and C. A. Horton, *J. Chem. Soc.,* 1964, 400.
- 89. J:P. Le Rolland and R. Freymann, *C.* R. *Acad. Sci., Ser. C,* 1973, 276, 827 *(Chem. Abstr.,* 1973, 78, 147187).
- 90. N. Hadjiliadis and T. Theophanides, *Inorg. Chim. Acta,* 1976,16, 67.
- 91. A. B. Tepliskii and I. K. Yanson, *Zh. Prikl. Spektrosk.,* 1977, 26, 150 *(Chem. Abstr.,* 1977, 86, 130341).
- 92. N. Hadjiliadis, *Chim. Chron.,* 1977, 6, 479.
- 93. R. Savoie, D. Poirier, L. Prizant, and A. L. Beauchamp, *J. Raman Spectrosc.,* 1981,11,481.
- 94. S. G. Stepanian, G. G. Sheina, E. D. Radchenko, and Yu. P. Blagoi, *J. Mol. Struct.,* 1985, 131, 333.
- 95. R. Letellier, M. Ghomi, and E. Taillandier, *Eur. Biophys. J.,* 1987, 14, 243.
- 96. Yu. P. Blagoi, E. D. Radchenko, S. G. Stepanian, and G. G. Sheina, *Stud. Phys. Theor. Chem.,* 1987, 45(Laser Scattering Spectrosc. Biol. Objects), 161 *(Chem. Absfr.,* 1987, 107, 149692).
- 97. **J.** Wi6rkiewicz-Kuczera and M. Karplus, *J. Am. Chem. Soc.,* 1990, 112, 5324.
- 98. V. B. Pivovarov, S. G. Stepanian, I. D. Reva, G. G. Sheina, and Yu. P. Blagoi, *Spectrochim. Acta, Part A,* 1995,51A, 843.
- 99. M. Majoube, Ph. Milli6, P. Lagant, and G. Vergoten, *J. Raman Spectrosc.,* 1994, 25, 821.
- 100. M. E. Moseley and P. Stilbs, *Can. J. Chem.,* 1979,57, 1075.
- 101. J:P. Charland, M. T. Phan Viet, M. St-Jacques, and A. L. Beauchamp, *J. Am. Chem. Soc.,* 1985, 107, 8202.
- 102. L. Schenetti, A. Mucci, and B. Longato, *J. Chem. Soc., Dalton Trans.,* 1996,299.
- 103. N. J. Kos, H. C. van der Plas, and W. J. F. Blees, *J. Org. Chem.,* 1983, 48, 850.
- 104. F. Bergmann, D. Lichtenberg, and 2. Neiman, *Jerusalem Symp. Quantum Chem. Biochem.,* 1972, 4, 264.
- 105. (a) R. Tauler, M. J. A. Rainer, and B. M. Rode, *Inorg. Chim. Acta,* 1986, 123, 75; (b) S. P. Lam, F. Devinsky, and J. W. Gorrod, *Eur. J. Drug Mefab. Pharmacokinet.,* 1987, 12, 239; (c) S. P. Lam, D. J. Barlow, and J. W. Gorrod; **J.** *Pharm. Pharmacol.,* 1989,41,373.
- 106. M:T. Chenon, R. J. Pugmire, D. M. Grant, R. P. Panzica, and L. B. Townsend, *J. Am. Chem. SOC.,* 1975, 97, 4627.
- 107. Th. Zeegers-Huyskens, *Bull. Soc. Chim. Belg.,* 1988, 97, 23.
- 108. R. F. Stewart and L. H. Jensen, **J.** *Chem. Phys.,* 1964, 40, 2071.
- 109. R. Taylor and 0. Kennard, *J. Mol. Struct.,* 1982, 78, 1.
- 110. C. Bartzsch, H:J. Hofmann, and C. Weiss, *Stud. Biophys.,* 1983, 93, 197.
- 11 1. C. Bartzsch, C. Weiss, and H. J. Hofmann, *J. Prakt. Chem.,* 1984, 326, 407.
- 112. H. Berthod and A. Pullman, *Compt. Rend.,* 1963, 257, 2738.
- 113. C. Nagata, A. Imamura, and H. Fujita, *Advan. Biophys.,* 1973, 4, 1.
- 114. T. Sato, K. Fukuzaki, and T. Fujii, *Bull. Chem. Soc. Jpn.,* 1986, 59, 1599.
- 115. S. I. Gill, D. B. Martin, and M. Downing, *J. Am. Chem. Soc.,* 1963, 85, 706.
- 116. P. M. Cullis and R. Wolfenden, *Biochemistry,* 1981, 20, 3024.
- 117. I. K. Yanson, A. B. Teplitsky, and L. F. Sukhodub, *Biopolymers,* 1979, 18, 1149.
- 118. E. L. Stewart, *C.* K. Foley, N. L. Allinger, and **J.** P. Bowen, *J. Am. Chem. Soc.,* 1994, 116, 7282.
- 119. J. S. Kwiatkowski, *Izv. Fiz. Inst. ANEB (At. Nauchnoeksp. Baza), Bulg. Akad. Nauk.,* 1971, 21, 327 *(Chem. Abstr.,* 1972, 77, 40766).
- 120. C. Nagata, A. Imamura, Y. Tagashira, and M. Kodama, *Bull. Chem. Soc. Jpn.,* 1965, 38, 1638.
- 121. J. D. Orbell, C. Solorzano, L. G. Marzilli, and T. J. Kistenmacher, *Inorg. Chem.,* 1982, 21, 2630.
- 122. I. K. Yanson and L. F. Sukhodub, *Dokl. Akad. Nauk SSSR,* 1977, 232, 699 *(Chem. Abstr.,* 1977, 86, 116214).
- 123. V. I. Poltev, N. V. Shulyupina, V. I. Bmskov, A. B. Teplitsky, L. F. Sukhodub, and I. K. Galetich, J. Biomol. Struct. Dyn., 1991, 9, 101.
- 124. **5.** H. Toney, C. P. Brock, and T. 1. Marks, J. Am. Chem. Soc., 1986, 108, 7263.
- 125. A. B. Teplitsky and L. F. Sukhodub, Biofizika, 1990, 35, 876 (Chem. Abstr., 1991, 114, 42381).
- 126. J. Pranata, S. G. Wierschke, and W. L. Jorgensen, J. Am. Chem. Soc., 1991, 113, 2810.
- 127. M. C. Etter, S. M. Reutzel, and C. G. Choo, J. Am. Chem. Soc., 1993, 115, 4411.
- 128. T. A. Evans and K. R. Seddon, Chem. Commun., 1997,2023.
- 129. A. A. Malevskii, V. L. Rapoport, and A. N. Tret'yakov, Mol. Biol. (Moscow), 1981, 15, 447 (Chem. Abstr., 1981, 94, 204014).
- 130. G. V. Fazakerley, G. E. Jackson, M. A. Phillips, and J. C. Van Niekerk, Inorg. Chim. Acta, 1979, 35, 151.
- 131. L. Y. Kuo, M. G. Kanatzidis, M. Sabat, A. L. Tipson, and T. **J.** Marks, J. Am. Chem. Soc., 1991, 113, 9027.
- 132. **D.** P. Smith, E. Baralt, B. Morales, M. M. Olmstead, M. F. Maestre, and R. H. Fish, *J.* Am. Chem. Soc., 1992, 114, 10647.
- 133. I. A. G. Roos, A. J. Thomson, and J. Eagles, *Chem.-Biol. Interact.*, 1974, 8, 421.
- 134. V. Kleinwächter, Stud. Biophys., 1975, 51, 35.
- 135. For similar coordination with the deuterated species $[N(6)-D_2, C(8)-D,$ and $N(9)-CD_3]$ of 2 in 3 N DC1 solution, see ref. 92.
- 136. R. Beyerle-Pfniir, S. Jaworski, B. Lippert, H. Schollhorn, and U. Thewalt, Inorg. Chim. Acta, 1985, 107, 217.
- 137. L. Prizant, M. **1.** Olivier, R. Rivest, and A. L. Beauchamp, *J.* Am. Chem. Soc., 1979, 101, 2765.
- 138. 1.-P. Charland, M. Simard, and A. L. Beauchamp, Inorg. Chim. Acta, 1983,80, L57.
- 139. A. M. Mian and R. T. Walker, J. Chem. Soc. (C), 1968, 2577.
- 140. K. Ogawa, M. Nishii, F. Nohara, T. Saito, T. Itaya, and T. Fujii, Chem. Pharm. Bull., 1992, 40, 612.
- 141. (a) Y. Maki, Mi. Suzuki, Mu. Suzuki, K. Kameyama, and M. Sako, J. Chem. Soc., Perkin Trans. 1, 1981, 3239; (b) Acylation of 2 with aroyl chloride in pyridine at rt to form N^6 , N^6 -diaroyl-9methyladenine has been reported: K. Anzai and M. Matsui, Bull. Chem. Soc. Jpn., 1973, 46, 3228; (c) N^6 -Monoacylation of 2 with Ac₂O (in boiling toluene for 1 h) or with chloroacetic anhydride (in toluene at rt for 20 min) or with **N-benzyloxycarbonylglycine** p-nitrophenyl ester (in DMF-DMSO at 95°C for 4 h and then at rt for 18 h) and N(1)-alkylation of **2** with iodoacetic acid (in DMSO at 70°C for 1 h and then at rt for 48 h) or with tert-butyl bromoacetate (in DMSO at 65° C for 24 h) have been reported: G. B. Chheda and R. H. Hall, J. Org. Chem., 1969, 34, 3492.
- 142. (a) V. Samano, R. W. Miles, and M. J. Robins, J. Am. Chem. Soc., 1994, 116, 9331; (b) R. W. Miles, V. Samano, and M. J. Robins, ibid., 1995, 117, 5951.
- 143. N. J. Kos and H. C. van der Plas, *J.* Org. Chem., 1981,46, 5000.
- 144. (a) T. Fujii, C. C. Wu, T. Itaya, and S. Yamada, Chem. Ind. (London), 1966, 1598; (b) T. Fujii, C. C. Wu, and T. Itaya, Chem. Pharm. Bull., 1971,19, 1368.
- 145. (a) T. Fujii, T. Saito, K. Kizu, H. Hayashibara, Y. Kumazawa, and S. Nakajima, *Heterocycles*, 1986, 24, 2449; (b) T. Fujii, T. Saito, K. Kizu, H. Hayashihara, Y. Kumazawa, S. Nakajima, and T. Fujisawa, Chem. Pharm. Bull., 1991, 39, 301.
- 146. T. Saito, H. Hayashibara, Y. Kumazawa, T. Fujisawa, and T. Fujii, Heterocycles, 1990, 31, 1593.
- 147. (a) T. Saito, Y. Asahi, S. Nakajima, and T. Fujii, *Heterocycles*, 1990, 30, 329; (b) *Idem, Chem.* Pharm. Bull., 1994, 42, 2263.
- 148. (a) M. Ikehara and M. Kaneko, *Tetrahedron,* 1970, 26, 4251; (b) M. Ikehara and Y. Ogiso, J. *Carbohydr., Nucleosides, Nucleotides,* 1974, 1,401.
- 149. (a) T. Fujii, T. Saito, and S. Mori, *Heterocycles,* 1988, 27, 1145; (b) *Idem, Chem. Pharm. Bull.,* 1990, 38, 2146. In that paper, the name of the starting material (10) that appeared in the 14th line from the bottom of the left column on page 2148 should read "9-Methyladenine".
- 150. T. Itaya, Y. Takada, T. Kanai, and T. Fujii, *Chem. Pharm. Bull.,* 1997,45, 1867.
- 151. M. Ikehara and Y. Ogiso, **Japan Kokai** 73 14,694 (23 Feh 1973) *(Chem. Abstr.,* 1973, 78, 148193).
- 152. (a) W. Wu, T. Saga, I. Terashima, K. Saeki, K. Kohda, and Y. Kawazoe, *Heterocycles,* 1997,45, 157; (b) Treatment of 2 with 2,4-dinitrophenoxyamine in aqueous EtOH-DMF at 37°C for 4 d was found to give I-amino-9-methyladenine in 86% yield: G.-F. Huang, M. Maeda, T. Okamoto, and Y. Kawazoe, *Tetrahedron,* 1975,31, 1363.
- 153. R. Arce, *Photochem. Photobiol.,* 1987, 45, 713.
- 154. P. F. Agris, H. Koh, and D. SOH, *Arch. Biochem. Biophys.,* 1973, 154, 277.
- 155. B. Vold, *J. Bacterial.,* 1976, 127, 258.
- 156. M. A. Novikova, Tr. *Inst. Eksperim. i Klinoch. Onkol., Akad. Med. Nauk SSSR,* 1960, 2, 180 *(Chem. Abstr.,* 1963,59, 4457f).
- 157. G. Beauchesne and R. Goutarel, *Physiol. Plantarum,* 1963, 16, 630 *(Chem. Abstr.,* 1964, 60, 12593e).
- 158. R. N. Prasad and R. K. Robins, *J. Am. Chem. Soc.,* 1957, 79, 6401.
- 159. E. C. Taylor and P. K. Loeffler, *J. Org. Chem.,* 1959,24, 2035.
- 160. E. C. Taylor and P. K. Loeffler, *J. Am. Chem. Soc.,* 1960, 82, 3147.
- 161. (a) R. Denayer, A. Cavt, and R. Goutarel, *Compt. Rend.,* 1961,253, 2994; (b) R. Denayer, *Bull. Soc. Chim. Fr.,* 1962, 1358; (c) *Idem, Belg.* 609,114 (13 Apr 1962) *(Chem. Abstr.,* 1963, 58, 536c).
- 162. G. Ya. Uretskaya, E. I. Rybkina, and G. P. Men'shikov, *Zhur. Obshchei Khim.,* 1960, 30, 327 *(Chem. Abstr.,* 1960, 54, 22658b).
- 163. R. R. Adams and F. C. Whitmore, *J. Am. Chem. Soc.,* 1945,67, 1271.
- 164. (a) P. D. Lawley and P. Brookes, *Biochem. J.,* 1964, 92, 19c; (b) P. D. Lawley, D. J. Orr, S. **A.** Shah, P. B. Farmer, and M. Jarman, *ibid.,* 1973, 135, 193; (c) P. D. Lawley, D. J. On, and M. Jarman, *ibid.,* 1975, 145, 73; (d) P. D. Lawley and W. Warren, *Chem.-Biol. Interact.,* 1976, 12, 211; (e) *A.* E. Bednyak, *Dokl. Akad. Nauk SSSR,* 1970, 195, 715 *(Chem. Abstr.,* 1971, 74, 4961 1); **(f) A.** E. Pegg and G. Hui, *Cancer Res.,* 1978,38,2011; (g) L. Thomas, C.-H. Yang, and D. A. Goldthwait, *Biochemistry,* 1982, 21, 1162; (h) T. Platzek, G. Bochert, U. Rahm, and D. Neubert, Z. *Naturforsch.,* 1987, 42c, 613.
- 165. (a) P. D. Lawley and S. *A.* Shah, *Biochem. J.,* 1972, 128, 117; (h) W. S. Walerych, S. Venkataraman, and B. Connor Johnson, *Biochem. Biophys. Res. Commun.,* 1966,23, 368.
- 166. A. M. Serebryanyi, V. Tutlyte, and J. Slavenas, *Bioorg. Khim.,* 1976, 2, 912 *(Chem. Abstr.,* 1977,86, 43947).
- 167. For a review, see K. Yamauchi, *Kagaku No Ryoiki,* 1979, 33, 523.
- 168. B. Singer, L. Sun, and H. Fraenkel-Conrat, *Biochemistry,* 1974, 13, 1913.
- 169. (a) N. J. Leonard and T. Fujii, *J. Am. Chem. Soc.,* 1963, 85, 3719; (b) T. Fujii, G. C. Walker, N. J. Leonard, D. C. DeLong, and K. Gerzon, *J. Med. Chem.,* 1979,22, 125: (c) N. 1. Leonard, T. Fujii, and T. Saito, *Chem. Pharm. Bull.,* 1986, 34, 2037.
- 170. For a recent review, see T. Fujii and T. Itaya, *Rev. Heteroat. Chem.,* 1997, 16, 257. (In that

paper, pages 274 and 275 were mistakenly interchanged owing to a printing error.)

- 171. (a) T. Fujii, F. Tanaka, K. Mohri, T. Itaya, and T. Saito, *Tetrahedron Lett.,* 1973, 4873; (b) T. Fujii and T. Saito, *Heterocycles,* 1982, 17, 117; (c) *Idem, Chem. Pharm. Bull.,* 1990, 38, 1886.
- 172. (a) A. Giner-Sorolla, S. A. O'Bryant, C. Nanos, M. R. Dollinger, A. Bendich, and J. H. Burchenal, J. *Med. Chem.,* 1968, 11,521; (b) T. Fujii, C. *C.* Wu, T. Itaya, S. Moro, and T. Saito, *Chem. Pharm. Bull.,* 1973, 21, 1676; (c) K. Miura and T. Ueda, *ibid.,* 1975, 23, 2064; (d) T. Fujii, T. Itaya, F. Tanaka, T. Saito, K. Mohri, and K. Yamamoto, *ibid.,* 1983, 31, 3149; (e) T. Fujii, T. Saito, T. Itaya, K. Kizu, Y. Kumazawa, and S. Nakajima, *ibid.,* 1987, 35, 4482.
- 173. 0. Negishi, T. Ozawa, and H. Imagawa, *Agric. Biol. Chem.,* 1988.52, 169.
- 174. (a) Y. Maki, K. Kameyama, M. Suzuki, M. Sako, and K. Hirota, *J. Chem. Res. (S),* 1984, 388; (b) *Idem,* J. *Chem. Res. (M),* 1984, 3601.
- 175. S. P. Assenza and P. R. Brown, *J. Chromatogr.,* 1984,289, 355.
- 176. J. Deutsch, Z. Neiman, and F. Bergmann, *Org. Mass Spectrom.,* 1970, 3, 1219.
- 177. R. W. Wilson and P. R. Callis, *Photochem. Photobiol.,* 1980, 31, 323.
- 178. H. *C.* Borresen, *Acta Chem. Scand.,* 1967, 21, 2463.
- 179. M. Dreyfus, G. Dodin, 0. Bensaude, and J. E. Dubois, J. *Am. Chem. Soc.,* 1977,99, 7027.
- 180. A. B. Reitz, D. W. Graden, A. D. Jordan, Jr., and B. E. Maryanoff, J. *Org. Chem.,* 1990, 55, 5761.
- 181. M. Ishino, T. Sakaguchi, I. Morimoto, and T. Okitsu, *Chem. Pharm. Bull.,* 1981.29, 2403.
- 182. (a) T. J. Kistenmacher, T. Shigematsu, and H. Weinstein, J. *Mol. Struct.,* 1975, 25, 125; (b) T. J. Kistenmacher and T. Shigematsu, *Acta Cryst.,* 1975, B31, 21 1.
- 183. A. D. Broom, L. B. Townsend, **I.** W. Jones, and R. K. Robins, *Biochemistry,* 1964, 3, 494.
- 184. T. Itaya, N. Ito, and T. Fujii, *Chem. Pharm. Bull.,* 1996, 44, 594.
- 185. For a recent study on the Dimroth rearrangement, hydrolytic deamination, and pyrimidine-ring breakdown of 1-alkoxy-7-alkyladenines, see T. Itaya, N. Ito, T. Kanai, and T. Fujii, *Chem. Pharm. Bull.,* 1997, 45, 832.
- 186. J. Hindley, 'DNA Sequencing,' Elsevier Biochemical Press, Amsterdam, 1983.
- 187. A. M. Maxam and W. Gilbert, *Proc. Natl. Acad. Sci.* U. *S. A,,* 1977,74,560.
- 188. (a) M. D. Friesen, L. Garren, V. Prevost, and D. E. G. Shuker, *Chem. Res. Toxicol.,* 1991, 4, 102; (b) D. E. G. Shuker and P. B. Farmer, *ibid.,* 1992,5, 450; (c) V. Prevost, D. E. G. Shuker, M. D. Friesen, G. Eberle, M. F. Rajewsky, and H. Bartsch, *Carcinogenesis,* 1993, 14, 199.
- 189. G. P. Margison and P. J. O'Connor, *Biochim. Biophys. Acta,* 1973,331, 349.
- 190. S. Riazuddin and T. Lindahl, *Biochemistty,* 1978,17,2110.
- 191. (a) J. Laval, *Nature (London),* 1977, 269, 829; (b) P. E. Gallagher and T. P. Brent, *Biochern. Biophys. Res. Commun.,* 1981, 101, 956; (c) *Idem, Biochemistry,* 1982, 21, 6404; (d) *Idem, Biochim. Biophys. Acta,* 1984,782, 394; (e) B. Singer and T. P. Brent, *Proc. Natl. Acad. Sci.* U. *S. A.,* 1981, 78, 856; **(f)** B. Singer, A. Antoccia, A. K. Basu, M. K. Dosanjh, H. Fraenkel-Conrat, P. E. Gallagher, J. T. Kuimierek, Z:H. Qiu, and B. Rydberg, *ibid.,* 1992, 89, 9386.
- 192. M. S. S. Murthy and V. V. Deorukhakar, J. *Biosci.,* 1985, 9, 223.
- 193. P. D. Lawley and P. Brookes, *Biochem.* J., 1963,89, 127.
- 194. E. Kriek and P. Emmelot, *Biochim. Biophys. Acta,* 1964, 91, 59.
- 195. A. Coddington, *Biochim. Biophys. Acta,* 1962.59, 472.
- 196. P. Brookes and P. D. Lawley, *J. Chem. Soc.,* 1960, 539.
- 197. The last product was initially assigned the 1,3-dimethyladenine structure,¹⁹⁶ but has now been shown to be 3,7-dimethyladenine.¹⁸³
- 198. J. W. Jones and R. K. Robins, *J. Am. Chem. Soc.,* 1962,84, 1914.
- 199. Kh. L. Aleksandr, V. G. Pernikoza, and M. Z. Girshovich, **U.S.S.R. SU** 1,100,276 (30 Jun 1984) *(Chem. Abstr.,* 1984,101, 171282).
- 200. K. Yamauchi, M. Hayashi, and M. Kinoshita, *J. Org. Chem.,* 1975,40, 385.
- 201. T. Fujii, T. Itaya, T. Saito, K. Mohri, M. Kawanishi, and T. Nakasaka, *Chem. Pharm. Bull.,* 1989, 37, 1504.
- 202. (a) T. Saito and T. Fujii, *J. Chem. Soc., Chem. Commun.,* 1979, 135; (b) T. Fujii, T. Saito, and T. Nakasaka, *ibid.,* 1980,758; (c) *Idem, Chem. Pharm. Bull.,* 1989,37, 2601.
- 203. C.-j. Chang, **1.** DaSilva Gomes, and S. R. Bym, *J. Org. Chem.,* 1983,48, 5151.
- 204. B. Porcelli, E. Marinello, R. Pagani, 0. Curcumto, S. Fontana, and P. Traldi, *Org. Mass Spectrom.,* 1992, 27, 1225.
- 205. B. Porcelli, L. F. Muraca, B. Frosi, E. Marinello, R. Vernillo, A. De Martino, S. Catinella, and P. Traldi, *Rapid Commun. Mass Spectrom.,* 1997, 11, 398.
- 206. T. Sakaguchi and M. Ishino, *Nippon Kagaku Kaishi,* 1974, 1480.
- 207. D. L. Boger, R. M. Garbaccio, and Q. Jin, J. *Org. Chem.,* 1997, 62, 8875.
- 208. Y. Yamagata and K. Tomita, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.,* 1987, C43, 1195.
- 209. K.-H. Gliisenkamp, K. Kriiger, G. Eberle, W. Drosdziok, E. Jahde, 0. Griindel, A. Neuhaus, R. Boese, P. Stellberg, and M. F. Rajewsky, *Angew. Chem., Int. Ed. Engl.,* 1993, 32, 1640.
- 210. E. Palecek, **1.** Osteryoung, and R. A. Osteryoung, *Anal. Chem.,* 1982,54, 1389.
- 211. W. S. Sheldrick and P. Gross, *Inorg. Chim. Acta,* 1989, 156, 139.
- 212. Y. Yamagata, M. Kato, and S. Fujii, *Chem. Phan. Bull.,* 1994, 42, 2385.
- 213. T. Itaya and H. Matsumoto, *Chem. Phan. Bull.,* 1985, 33, 2213.
- 214. T. Fujii, T. Saito, I. Inoue, Y. Kumazawa, and K. Tamura, *Chem. Phann. Bull.,* 1988.36, 107.
- 215. T. Fujii, **T.** Saito, I. Inoue, Y. Kumazawa, and N. J. Leonard, *Chem. Pharm. Bull.,* 1986, 34, 1821. [See also ref. 215 for the cases of the preferential N(7)-benzylation of 3-ethyladenine and N(7)-methylation of 3-benzyladenine (116) where the 9-position has been found to be another, but much less favored site of alkylation.]
- 216. (a) M. Ohba, N. Kawase, T. Fujii, K. Aoe, K. Okamura, R. Fathi-Afshar, and T. M. Allen, *Tetrahedron Lett.,* 1995,36, 6101; (b) M. Ohba, N. Kawase, and T. Fujii, *J. Am. Chem. Soc.,* 1996, 118, 8250.
- 217. M. Ohba, K. Iizuka, H. Ishihashi, and T. Fujii, *Tetrahedron,* 1997, 53, 16977.
- 218. R. Fathi-Afshar and T. M. Allen, *Can.* J. *Chem.,* 1988,66,45.
- 219. T. Itaya, Y. Takada, and T. Fujii, *Chem. Phann. Bull.,* 1996.44, 2025.
- 220. (a) T. Fujii, K. Ogawa, T. Saito, K. Kobayashi, and T. Itaya, *Heterocycles,* 1994, 38,477; (h) T. Fujil, K. Ogawa, T. Saito, K. Kobayashi, T. Itaya, T. Date, and K. Okamura, *Chem. Phann. Bull.,* 1995, 43, 53.
- 221. J. L. Wong and J. H. Keck, Jr., J. *Chem. Soc., Chem. Commun.,* 1975, 125.
- 222. (a) D. Ackermann and P. H. List, *Naturwissenschajien,* 1961,48,74; (b) *Idem, Hoppe-Seyler's* Z. *Physiol. Chem.,* 1961, 323, 192.
- 223. (a) H. Kanatani, H. Shirai, K. Nakanishi, and T. Kurokawa, *Nature (London),* 1969, 221, 273; (b) T. Kishimoto and H. Kanatani, *ibid.,* 1976, 260, 321; (c) H. Kanatani, *Kagaku (Tokyo),* 1970, 40, 576.
- 224. G. Cimino, A. De Giulio, S. De Rosa, S. De Stefano, R. Puliti, C. A. Mattia, and L. Mazzarella, *J. Nut. Prod.,* 1985, 48, 523.
- **225.** (a) L. R. Mandel, P. R. Srinivasan, and E. Borek, *Nature (London),* **1966, 209, 586;** (b) W. Kreis, S. B. Piepho, and H. V. Bemhard, *Experientia,* **1966, 22, 431.**
- **226.** (a) **D.** B. Dunn, *Biochim. Biophys. Acta,* **1961, 46, 198;** (b) D. B. Dunn, J. H. Hitchborn, and A. T. Trim, *Biochem.* J., **1963, 88, 34P;** (c) **P.** A. Limbach, P. F. Crain, and **J.** A. McCloskey, *Nucleic Acids Res.,* **1994, 22, 2183.**
- **227.** M. Yoshikuni, K. Ishikawa, M. Isobe, T. Goto, and Y. Nagahama, *Proc. Natl. Acad. Sci. U. S. A,,* **1988, 85, 1874.**
- **228.** T. Toraya, T. Kida, S. Tanaka, M. Matsushita, T. Tsumkai, and H. Shiotsuka, *Biosci. Biotechnol. Biochem.,* **1998, 62, 72.**
- **229.** F. Skoog, H. Q. Hamzi, A. M. Szweykowska, N. J. Leonard, K. L. Carraway, T. Fujii, **J.** P. Helgeson, and R. N. Loeppky, *Phytochemistry.* **1967,6, 1169.**
- **230. K.** G. Grozinger and K. D. Onan, **J.** *Heterocycl. Chem.,* **1986,23, 737.**
- **231.** K. Suzuki and I. Kumashiro, **Brit. 1,134,974 (27** Nov **1968)** *(Chem. Abstr.,* **1969, 70, 58231).**
- **232.** A. Er-Rhaimini, N. Mohsinaly, and R. Momet, *Tetrahedron Lett.,* **1990,31,5757.**
- **233.** P. **D.** Lawley, **J.** *Chim. Phys.,* **1961, 58, 1011.**
- **234.** C. Bollack, G. Keith, and J. P. Ebel, *Bull. Soc. Chim. Biol.,* **1965, 47, 765** *(Chem. Abstr.,* **1965, 63, 18532e).**
- **235. L.** Taraseviciene, **I.** Glinskaite, R. Marcisauskas, and S. Kanopkaite, 'Poiski Izuch. Protivoopukholevykh, Protivovospalitel'nykh Mutagennykh Veshchestv,' ed. by S. Kanopkaite, Akad. Nauk Lit. SSR, Inst. Biokhim., Vilnius, USSR, **1977,** pp. **354-365** *(Chem. Abstr.,* **1978, 88, 33328).**
- **236.** A. Wacker and M. Ebert, Z. *Naturforsch.,* **1959, 14b, 709.**
- **237.** J. W. Jones and R. K. Robins, J. *Am. Chem. Soc.,* **1963,85, 193.**
- **238.** J. A. Montgomery and H. **J.** Thomas, J. *Org. Chem.,* **1965, 30, 3235.**
- **239.** E. P. Lira, *J. Heterocycl. Chem.,* **1968,** *5,* **863.**
- **240.** E. P. Lira and C. W. Huffman, **J.** *Org. Chem.,* **1966,31, 2188.**
- **241.** E. R. Garrett and P. **1.** Mehta, *J. Am. Chem. Soc.,* **1972, 94, 8532.**
- **242.** I. A. Muni, C. H. Altschuler, and J. *C.* Neicheril, *Anal. Biochem.,* **1972, 50, 354.**
- **243.** C. *C.* Nelson and **1.** A. McCloskey, **J.** *Am. Chem. Soc.,* **1992, 114, 3661.**
- **244.** A. **I.** Raznoshinskii, S. N. Shcherbo, and V. I. Yuzhakov, *Zh. Fiz. Khim.,* **1990, 64, 1266** *(Chem. Abstr.,* **1990, 113, 171764).**
- **245.** A. Bertoluzza, C. Fagnano, R. Tosi, M. A. Morelli, and D. A. Long, **J.** *Raman Spectrosc.,* **1987, 18, 83.**
- **246.** K. Schoone, L. Houhen, **J.** Smets, **L.** Adamowicz, and G. Maes, *Spectrochim. Acta, Part A,* **1996, 52A, 383.**
- **247.** A. Bertoluzza, C. Fagnano, G. Fini, and M. A. Morelli, *Croat. Chem. Acta,* **1988,61,413.**
- 248. H. Klukanová, M. Studnicková, J. Kovár, J. Turánek, and V. Kahle, *Bioelectrochem. Bioenerg.*, **1986, 15, 317.**
- **249.** For a recent review on the Dimroth rearrangement in the adenine series, see T. Fujii and T. Itaya, *Heterocycles,* **1998, 48, 359.**
- **250. J.** P. Helgeson and N. J. Leonard, *Proc. Natl. Acad. Sci. U. S. A,,* **1966, 56, 60.**
- **251.** (a) A. H. A. Farooqi, Y. N. Shukla, A. Shukla, and D. S. Bhakuni, *Phytochemistry,* **1990, 29, 2061;** (b) T. Fujii, M. Ohba, H. Kawamura, T. Haneishi, and S. Matsubara, *Chem. Pharm. Bull.,* **1993,41, 1362;** (c) The presence of **2-hydroxy-N6-methyladenine** and other cytokinins in methanolic extracts of the leaves (at the vegetative bud stage) of *Rosa damascena* Mill. has also been reported:

A. H. A. Farooqi, Y. N. Shukla, S. Sharma, and R. P. Bansal, Plant Growth Regul., 1994,14, 109.

- 252. J. Doskocil and Z. Sormová, *Biochem. Biophys. Res. Commun.*, 1965, 20, 334.
- *253. B. F. Vanyushin, N. A. Kokurina, and A. N. Belozerskii, Dokl. Akad. Nauk SSSR, 1965, 161, 1451 (Chem. Abstr., 1965,63, 3336h).*
- *254. G. Unger and H. Venner, Hoppe-Seyler's Z. Physiol. Chem., 1966, 344, 280.*
- *255. M. Gough and S. Lederberg, J. Bacteriol., 1966, 91, 1460.*
- *256. T. Lindahl and B. Nyberg, Biochemistry, 1972,11,3610.*
- *257. M. T. Tuck, Int. J. Biochem., 1992.24, 379.*
- *258. H:R. Chen and A. W. Galston, Plant Cell Physiol. (Tokyo), 1965, 6, 365.*
- *259. (a) G. Shaw and B. M. Smallwood, Phytochemistry, 1971, 10,2329; (b) For a pertinent review on structure-activity relationships of cytokinins, see S. Matsubara, Crit. Rev. Plant Sci., 1990, 9, 17.*
- *260. R. W. Brockman and S. Chumley, Biochim. Biophys. Acta, 1965,95, 365.*
- *261. H. D. Mah and J. W. Daly, Biochim. Biophys. Acfa, 1975,404,49.*
- *262. S. Minato, T. Tagawa, and K. Nakanishi, J. Biochem. (Tokyo), 1966,60, 352.*
- *263. S. H. Love and C. N. Remy, J. Bacteriol., 1966,91, 1037.*
- *264. Ishihara Sangyo Kaisha, Ltd., Jpn. Kokai Tokkyo Koho JP 60 06,616 [85 06,6161 (14 Jan 1985) (Chem. Abstr., 1985, 102, 172658).*
- *265. (a) M. Mano, T. Seo, and K. Imai, Chem. Pharm. Bull., 1983, 31, 3454;* (b) *K. Imai and M. Mano, Eur. Pat. Appl. EP 52,959 (02 Jun 1982) (Chem. Abstr., 1982, 97, 162709).*
- *266. G. B. Elion, E. Burgi, and* **G.** *H. Hitchings, J. Am. Chem. Soc., 1952, 74, 411.*
- *267. F. S. Okumura, N. Enishi, H. Itoh, M. Masumura, and S. Kuraishi, Bull. Chem. Soc. Jpn., 1959, 32, 886.*
- *268. Y. Sakata, H. Higuchi, K. Doyama, T. Higashi, M. Mitsuoka, and S. Misumi, Bull. Chem. Soc. Jpn., 1989, 62, 3155.*
- *269. Takeda Chemical Industries, Ltd., Jpn. Kokai Tokkyo Koho JP 82 50,991 (25 Mar 1982) (Chem. Abstr., 1982, 97, 92035).*
- *270. T. Itaya, K. Ogawa, Y. Takada, and T. Fujii, Chem. Pharm. Bull., 1996,44,967.*
- *271. A. R. Davis and D. P. Nierlich, Biochim. Biophys. Acta, 1974, 374, 23.*
- *272. M. F. Zady and J. L. Wong, J. Org. Chem., 1980,45, 2373.*
- *273. (a) T. Fujii, T. Saito, and T. Muramoto, Chrm. Pharm. Bull., 1983, 31, 4270; (b) A, Segal, U. Mate, and* J. *J. Solomon, Chem.-Biol. Interact., 1979, 28, 333.*
- *274. (a) A. R. Katritzky, S. Rachwal, and B. Rachwal, J. Chem. Soc., Perkin Trans. 1, 1987, 805; (b) Idem, ibid., 1987, 799.*
- 275. N. J. Kos, H. Jongejan, and H. C. van der Plas, Gazz. Chim. Ital., 1987, 117, 369.
- *276. J. C. Perlherger and L. Duc, Patentschrift (Switz.) CH 646,169 (15 Nov 1984) (Chem. Abstr., 1985, 102, 95475).*
- *277. Kohjin Co., Ltd.,* **Belg. BE** *894,474 (17 Jan 1983) (Chem. Abstr., 1983, 99, 53483).*
- *278. A. Albert and D. J. Brown, J. Chem. Soc., 1954, 2060.*
- *279. G. Fraenkel and Y. Asahi, Takeda Kenkyusho Nempo, 1965,24, 209 (Chem. Abstr., 1966,64, 4909~).*
- *280. P. Grippo, M. Iaccarino, M. Rossi, and E. Scarano, Biochim. Biophys. Acta, 1965,95, 1.*
- *281. R. F. Dem, C. S. Alexander, and H. T. Nagasawa, J. Chromatogr., 1966,21, 146.*
- *282. P.-0. Bjorkman and E. Tillberg, Phytochem. Anal., 1996, 7, 57.*
- *283. 1. S. Shannon and D. S. Letham, N. Z. J. Sci., 1966.9, 833.*
- 284. **I.** M. Rice and G. 0. Dudek, *J. Am. Chem. Sac.,* 1967, 89, 2719.
- 285. N. Seiler, H. Schneider, and K.-D. Sonnenberg, *Fresenius'* Z. *Anal. Chem.,* 1970, 252, 127.
- 286. M. Saha, G. M. Kreshach, R. W. Giese, R. S. Annan, and P. Vouros, *Biomed. Environ. Mass Spectrom..* 1989, 18, 958.
- 287. D. S. Letham, J. S. Shannon, and I. R. C. McDonald, *Tetrahedron,* 1967,23,479.
- 288. J. Drobnik and L. Augenstein, *Photochem. Photobiol.,* 1966,5, 83.
- 289. J. D. Engel and P. H. von Hippel, *Biochemistry,* 1974,13,4143.
- 290. M. C. Thorpe, W. **C.** Cohurn, Jr., and J. A. Montgomery, *J. Magn. Resonance,* 1974,15,98.
- 291. H. Stemglanz and *C.* E. Bugg, *Science,* 1973, 182, 833.
- 292. T. Dahl and B. Riise, *Acta Chem. Scand.,* 1989,43,493.
- 293. *Y.* Liu, J. Pan, and X. Kong, *Fenxi Huaxue,* 1992, 20, 329 *(Chem. Abstr.,* 1992, 117, 111354).
- 294. M. A. Slifkin, *Biochim. Biophys. Acta,* 1965, 103, 365.
- 295. (a) S. P. Dutta, C. I. Hong, G. L. Tritsch, C. Cox, R. Parthasarthy, and *G.* B. Chheda, *J. Med. Chem.,* 1977,20, 1598; (b) Alkylation of the Na salt of **6** with 2-fluorohenzyl bromide in DMSO at rt for 24 h to give **9-(2-fluorohenzyl)-N6-methyladenine** (44% yield) has been reported: J. L. Kelley and E. W. McLean, *J. Heterocycl. Chem.*, 1986, 23, 1189; (c) Alkylation of 6 with 2-chloro-6-fluorobenzyl chloride in AcNMe₂ containing K₂CO₃ at 110^oC for 6 h afforded 9-(2-chloro-6-fluorobenzyl)- N^6 -methyladenine in 62% yield, whereas a similar alkylation carried out at 110–120°C for 8 h but in the absence of K2CO3 furnished **3-(2-chloro-6-fluorohenzy1)-N6-methyladenine** in 39% yield: K. Imai and T. Seo, *Eur. J. Med. Chem.-Chim. Ther.,* 1980, 15, 207; (d) Sakata *et al.*²⁶⁸ reported that alkylation of 6 with excess 1.4-dibromobutane in DMSO in the presence of K_2CO_3 for 18.5 h produced **9-(4-bromobutyl)-N6-methyladenine** in 30% yield.
- 296. P. D. Sattsangi, **I.** R. Barrio, and N. J. Leonard, .I. *Am. Chem. Sac.,* 1980, 102, 770.
- 297. P. Mazel, A. Kerza-Kwiatecki, and J. Simanis, *Biochim. Biophys. Acta,* 1966, 114, 72.
- 298. H. T. Shigeura, S. D. Sampson, and M. L. Meloni, *Arch. Biochem. Biophys.,* 1966,115,462.
- 299. M.-C. Huang, K. Hatfield, A. W. Roetker, J. A. Montgomery, and R. L. Blakley, *Biochem. Pharmacol.,* 1981, 30, 2663.

Received, 21st April, 1998