STEREOSELECTIVE SYNTHESIS OF ANTIFUNGAL SULFOXIMINES, NOVEL TRIAZOLES II[†]

Hiroyuki Kawanishi, Hiroshi Morimoto, Takao Nakano, Tatsuya Watanabe, Kuniyuki Oda, and Kenji Tsujihara* Discovery Research Laboratory, Tanabe Seiyaku Co., Ltd. 2-2-50 Kawagishi, Toda, Saitama 335-8505, Japan

Abstract -Novel triazole derivatives with N-substituted sulfoximine moiety were synthesized and evaluated for antifungal activity. These compounds showed only significantly weak activity and the N-H sulfoximine moiety was extremely important for the activity. A more practical and effective stereoselective synthesis of N-H sulfoximine, (R)-S-2-[(2R,3R)-3-(2,4-difluorophenyl)-3-hydoroxy-4-(1H-1,2,4-triazol-1-yl)]butyl-S-methylsulfoximine (1), which was considered to be the most promising compound, has been developed.

Introduction

In the previous paper,¹ we described the stereoselective synthesis and antifungal activity of (R)-S-methylsulfoximine (1), the epimer of N-H sulfoximine at sulfur $[(\pm)-2]$, and the related compounds. As a result, we found that 1 was the most potent *in vitro* antifungal activity with a broad spectrum and then the desired stereochemistry at sulfur to show the strong activity was (R)-configuration (Figure 1). In this paper, we describe the modification of sulfoximine moiety of 1 to investigate whether the hydrogen of sulfoximine moiety is essential for antifungal activity, and also the more practical stereoselective synthesis of

1.

[†] This paper is dedicated to Dr. Bernhard Witkop on the occasion of his 80th birthday, and with gratitude for his many contributions in organic chemistry.

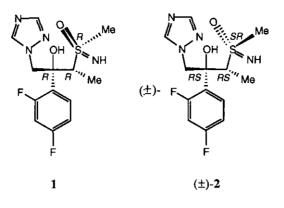
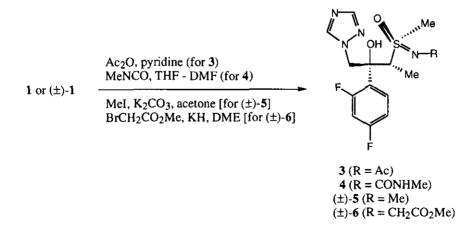
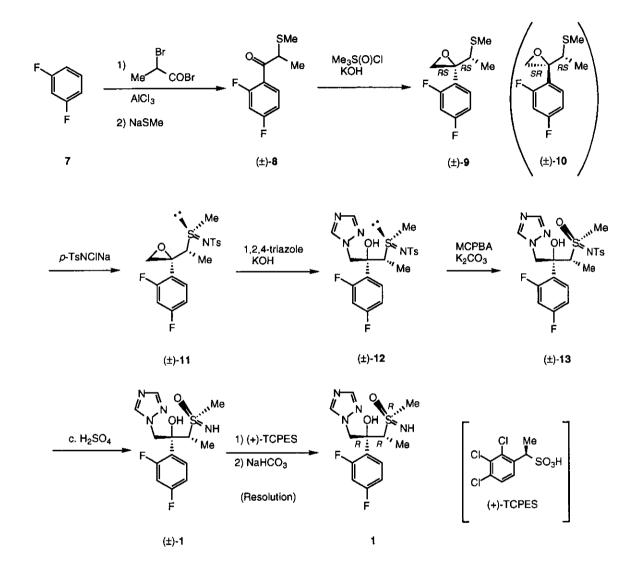



Figure 1

Chemistry


In general the nitrogen of *N*-*H* sulfoximine is sufficiently basic to form salts with mineral acids and can serve as a point for additional substitution.² *N*-Acylation of **1** with acetic anhydride in pyridine or methyl isocyanate proceeded smoothly at room temperature to give the corresponding *N*-substituted sulfoximines (**3** and **4**) in 83 and 78% yields, respectively. The hydroxyl group of **1** was inert under the conditions. In contrast, *N*-alkylation of (\pm) -**1** with methyl iodide or methyl bromoacetate gave the corresponding *N*-alkylated sulfoximines [(\pm) -**5** and (\pm) -**6**] in low yields, 19 and 47%, respectively (Scheme 1).

Scheme 1

The *in vitro* antifungal activity of 3, 4, (\pm) -5 and (\pm) -6 was evaluated and found to be very weak compared to that of 1 (data not shown). These results reveal that the *N*-*H* sulfoximine moiety is extremely important to

show the potent antifungal activity.

Scheme 2

Since the sulfoximine (1), which was prepared by the reported procedure,¹ was found to be the most promising compound as an antifungal drug candidate, more practical and effective synthetic procedure was investigated for a large scale synthesis of 1. Thus the racemic sulfide $[(\pm)-8]^3$ was prepared from 1,3-difluorobenzene (7) in two steps as shown in Scheme 2. Diastereoselective epoxidation of $(\pm)-8$ was subsequently performed by slightly modified literature method³ and the resulting crude mixture was purified by

distillation (bp 99-114 °C at 1.0-1.5 mmHg) to give predominantly desired epoxide [(±)-9] as a mixture $[(\pm)-9:(\pm)-10 = 7-8:1]$. The following reaction with anhydrous chloramine T^{1,4} proceeded diastereoselectively and the crude products were recrystallized from AcOEt to give the N-tosylsulfilimine $[(\pm)-11]$ in 49% yield as colorless crystals, mp 138.5-139.5 °C. The relative configuration at sulfur of obtained (±)-11 was confirmed to be desired (S)-configuration by leading to (\pm) -12¹ as follows. Thus obtained (\pm) -11 reacted with 1,2,4-triazole in the presence of potassium hydroxide in DMSO at room temperature and the resulting crude product was triturated with i-PrOH to give (±)-12 in 49% yield as colorless crystals, mp 171-173 °C. (±)-12 was subsequently reacted with MCPBA in the presence of potassium carbonate in DMF and the resulting mixture was diluted with water. The separated products were collected by filtration to afford (\pm) -13 as colorless crystals in 97% yield, mp 180-181 °C. Detosylation of (±)-13 was carried out in concentrated sulfuric acid and the crude product was recrystallized from AcOEt to give (±)-1 in 73% yield as colorless crystals, mp 162-163°C. Resolution of $(\pm)-1$ proceeded very effectively by using (+)-2-(2,3,4-trichlorophenyl)ethanesulfonic acid [(+)-TCPES]⁵ as a resolving agent to afford the diastereometric salt of 1 and (+)-TCPES (1:2) as colorless crystals, mp 210.0-210.5 $^{\circ}$ C (acetone), $[\alpha]_{p}^{20}$ +28.8° (c. 1.01, MeOH). 1 was easily obtained from the salt in a usual manner, mp 173.5-174.0 °C (AcOEt), $[\alpha]_{D}^{20}$ -40.0° (c. 0.10, MeOH). Thus the improved synthetic procedure was confirmed to be very practical for the large scale synthesis of optical pure 1.

1 was considered to be the most promising compound as an antifungal drug candidate.¹ The detailed pharmacological data of 1 will be submitted in the near future.

EXPERIMENTAL

Melting points were determined on a Yamato MP-21 apparatus and are uncorrected. IR spectra were recorded on a Hitachi 260-10 spectrophotometer. ¹H-NMR spectra were obtained on a Varian Gemini-300 spectrometer. Optical rotation was measured on a Horiba polarimeter SEPA-200. MS spectra were obtained on a JEOL JMS-HX100 mass spectrometer. Flash chromatography was performed by using Katayama K230 silica gel.

(R) -N-Acetyl-S-2-[(2R, 3R)-3-(2,4-difluorophenyl)-3-hydroxy-4-(1H-1,2,4-triazol-

1-y1)]buty1-S-methylsulfoximine (3) To a solution of 1 (200 mg, 0.61 mmol) in pyridine (0.5 mL) was added acetic anhydride (0.5 mL, 5.30 mmol) at rt. The mixture was stirred for 2 h, diluted with AcOEt (30 mL), washed with 5% citric acid (40 mL), brine (40 mL), saturated NaHCO₃ (30 mL), and brine (30

mL), dried (MgSO₄), and filtered. The filtrate was evaporated *in vacuo* and the residue was purified by flash chromatography (CHCl₃ - MeOH, 15:1). The obtained products were recrystallized from CH₂Cl₂ - *i*-Pr₂O to give **3** as colorless needles (189 mg, 83%), mp 157-159 °C. IR (Nujol) cm⁻¹: 3100, 1620, 1500, 1280, 1160. ¹H-NMR (CDCl₃) δ : 1.23 (3H, d, *J*=7.2 Hz), 2.11 (3H, s), 3.33 (3H, s), 4.89 (1H, dq, *J*=7.0, 1.2 Hz), 5.06 (1H, br d, *J*=14.7 Hz), 5.49 (1H, d, *J*=14.6 Hz), 5.75 (1H, d, *J*=2.0 Hz), 6.7-6.8 (2H, m), 7.29 (1H, ddd, *J*=8.8, 8.8, 6.3 Hz), 7.76 (1H, s), 7.78 (1H, s). FAB-MS *m/z*: 373 (MH⁺). Anal. Calcd for C₁₅H₁₈N₄O₃F₂S: C, 48.38; H, 4.87; N, 15.04; F, 10.20; S, 8.61. Found: C, 48.32; H, 4.88; N, 14.78; F, 10.16; S, 8.80.

(R)-S-2-[(2R, 3R)-3-(2,4-Difluorophenyl)-3-hydroxy-4-(1H-1,2,4-triazol-1-yl)]butyl-

S-methyl-N-methylcarbamoylsulfoximine (4) To a solution of 1 (159 mg, 0.454 mmol) in THF (10 mL) - DMF (2 mL) was added methyl isocyanate (29 μ L, 0.499 mmol) under ice-cooling. The ice-bath was removed and the mixture was stirred for 5.5 h at rt. To the mixture was added methyl isocyanate (8 μ L, 0.136 mmol) and the stirring was continued for an additional 2 h. The reaction was quenched with ice-water (30 mL). The resulting mixture was saturated with NaCl and extracted with AcOEt (30 mL, 20 mL). The combined extracts were washed with brine (350 mL), dried (Na₂SO₄), and filtered. The filtrate was evaporated *in vacuo* and the residue was purified by flash chromatography (AcOEt - MeOH, 100:1) to give 4 as an amorphous solid (137 mg, 78%), mp 73-76 °C. IR (Nujol) cm⁻¹: 3310, 1620, 1500, 1140. ¹H-NMR (CDCl₃) δ : 1.22 (3H, d, *J*=7.2 Hz), 2.79 (3H, d, *J*=4.8 Hz), 3.26 (3H, s), 4.92 (1H, br q, *J*=4.1 Hz), 5.08 (1H, br d, *J*=15 Hz), 5.09 (1H, q like, *J*=7 Hz), 5.49 (1H, d, *J*=14.6 Hz), 5.66 (1H, d, *J*=1.8 Hz), 6.7-6.8 (2H, m), 7.2 7 (1H, s), 7.30 (1H, ddd, *J*=9.5, 8.8, 6.4 Hz), 7.76 (1H, s). FAB-MS *m/z*: 388 (MH⁺).

(RS)-S-2-[(2RS, 3RS)-3-(2,4-Difluorophenyl)-3-hydroxy-4-(1H-1,2,4-triazol-1-yl)]butyl-

N, *S*-dimethylsulfoximine $[(\pm)-5]$ To a solution of $(\pm)-1$ (2.32 g, 7 mmol) in acetone (40 mL) were added K₂CO₃ (0.97 g, 7 mmol) and methyl iodide (0.87 mL, 14 mmol) at rt. After stirring for 7 h, methyl iodide (4.4 mL, 70 mmol) was added. After stirring for 16.5 h, K₂CO₃ (2.91 g, 21 mmol) was added and the stirring was continued for 23 h. The mixture was concentrated *in vacuo* and the residue was purified by flash chromatography (CHCl₃ - MeOH, 50:1) to give (\pm)-5 as a colorless oil (0.46 g, 19%). IR (Neat) cm⁻¹: 3300, 1605, 1590, 1135. ¹H-NMR (CDCl₃) δ : 1.29 (3H, dd, *J*=7.3, 1.3 Hz), 2.82 (3H, s), 3.09 (3H, s), 3.74 (1H, q, *J*=7.2 Hz), 4.89 (1H, dd, *J*=14.2, 1.3 Hz), 5.30 (1H, d, *J*=14.3 Hz), 6.7-6.8 (3H, m), 7.39 (1H, ddd, *J*=9.1, 8.4, 6.5 Hz), 7.74 (1H, s), 7.93 (1H, s). FAB-MS *m/z*: 345 (MH⁺).

(RS)-S-2-[(2RS, 3RS)-3-(2,4-Difluorophenyl)-3-hydroxy-4-(1H-1,2,4-triazol-1-yl)]butyl-

S-methyl-N-methoxycarbonylmethylsulfoximine $[(\pm)-6]$ To a suspension of potassium hydride (35% dispersion in a mineral oil, 229 mg, 2 mmol) in 1,2-dimethoxyethane (3 mL) was added (±)-1 (300 mg, 0.91 mmol) under ice-cooling. The ice-bath was removed and the mixture was stirred for 50 min at rt. After addition of tetra-*n*-butylammonium bromide (15 mg, 0.045 mmol) and methyl bromoacetate (258 μ L, 2.72 mmol) under ice-cooling, the ice-bath was removed and the stirring was continued for additional 1.5 h at rt. The reaction was quenched with saturated NH₄Cl (20 mL) and saturated NaHCO₃ (20 mL) under ice-cooling. The resulting mixture was saturated with NaCl and extracted with AcOEt (2 x 30 mL). The combined extracts were washed with brine (3 x 40 mL), dried (MgSO₄), and filtered. The filtrate was evaporated in vacuo and the residue was purified by flash chromatography (CHCl₁ - AcOEt, 20:1 \rightarrow CHCl₁ - AcOEt - MeOH, 200:10:1). The obtained products were recrystallized from CH₂Cl₂ - *i*-Pr₂O to give (\pm)-6 as colorless needles (171 mg, 47%), mp 133-136 °C. IR (Nujol) cm⁻¹: 3120, 1750, 1620, 1500, 1205, 1145. ¹H-NMR (CDCl₄) δ: 1.34 (3H, dd, J=7.2, 1.0 Hz), 3.20 (3H, s), 3.83 (1H, q, J=7.3 Hz), 3.76 (3H, s), 3.96 (2H, s), 4.92 (1H, dd, J=13.9, 1.3 Hz), 5.46 (1H, d, J=13.7 Hz), 6.7-6.8 (3H, m), 7.37 (1H, ddd, J=9.5, 9.0, 6.5 Hz), 7.69 (1H, s), 8.00 (1H, s). FAB-MS m/z: 403 (MH⁺). Anal. Calcd for C_{1.6}H₂₀N₄O₄F₂S: C, 47.75; H, 5.01; N, 13.92; F, 9.44; S, 7.97. Found: C, 47.19; H, 4.90; N, 13.67; F, 9.05; S, 7.82.

Epoxydation of ketone $[(\pm)-8)]^4$ To a suspension of $(\pm)-8$ (68.01 g, 0.315 mol) and trimethylsulfoxonium chloride (60.71 g, 0.472 mol) in CH₂Cl₂ (680 mL) was added dropwise 43% aq. KOH (830 g) at rt. The mixture was vigorously stirred for 16.5 h and diluted with water (2 L). The resulting organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (300 mL). The organic layer and extracts were combined, washed with brine (2 x 600 mL), dried (Na₂SO₄), and filtered. The filtrate was removed *in vacuo* and the residue was dissolved in toluene (300 mL). The insoluble materials were removed by filtration. The filtrate was removed *in vacuo* and the residue was gurified by distillation under reduced pressure to give a 7.9:1 mixture of the diastereomeric epoxides $[(\pm)-9$ and $(\pm)-10$] as a colorless oil (62.38 g, 86%), bp 99-114 °C (1.0-1.5 mmHg). The ratio of two diastereomers was determined by the ¹H-NMR analysis. IR (Neat) cm⁻¹: 1615, 1600, 1505, 1135. ¹H-NMR (CDCl₃) δ : $[(\pm-9)]$ 1.27 (3H, dd, *J*=7.3, 1.8 Hz), 2.18 (3H, s), 2.86 (1H, dd, *J*=5.1, 0.9 Hz), 2.95 (1H, q, *J*=7.3 Hz), 3.18 (1H, d, *J*=5.1 Hz), 6.7-7.0 (2H, m), 7.4-7.6 (1H, m); $[(\pm)-10]$ 1.31 (3H, dd, *J*=7.0, 0.9 Hz), 2.15 (3H, s), 2.8-3.2 (3H, partly hidden behind the signals of 9), 6.7-7.0 (2H, m), 7.3-7.5 (1H, m). EI-MS *m/z*: 230 (M⁺).

(RS)-S-2-[(2SR, 3SR)-3-(2,4-Difluorophenyl)-3,4-epoxy]butyl-S-methyl-N-

tosylsulfoximine $[(\pm)-11]$ Chloramine T trihydrate (51.90 g, 184 mmol) was treated with EtOH (2 x 500 mL) as described in the previous paper.¹ To a solution of the epoxide (7.9:1 mixture of **9** and **10**, 20.20 g, 87.7 mmol) in DMF (50 mL) was added dropwise a solution of the pretreated anhydrous chloramine T in DMF (150 mL) under ice-cooling. After stirring for 1 h, the ice-bath was removed and the stirring was continued for an additional 2 h at rt. The mixture was poured into ice-water (2.3 L) and extracted with AcOEt (2 x 500 mL). The combined extracts were washed with ice-cold 5% NaOH (2 x 200 mL), and brine (200 mL), dried (Na₂SO₄), and filtered. The filtrate was evaporated *in vacuo* and the residue was recrystallized from AcOEt to give (±)-11 as colorless prisms (17.31 g, 49%), mp 138.5-139.5 °C. IR (Nujol) cm⁻¹: 1610, 1590, 1140. ¹H-NMR (CDCl₃) δ : 1.38 (3H, dd, *J*=7.5, 1.0 Hz), 2.41 (3H, s), 2.50 (3H, s), 2.90 (1H, d, *J*=4.0 Hz), 3.40 (1H, d, *J*=4.0 Hz), 3.76 (1H, q, *J*=7.5 Hz), 6.8-6.9 (2H, m), 7.2-7.3 (2H, m), 7.34 (1H, ddd, *J*=9.0, 6.5, 6.5 Hz), 7.7-7.8 (2H, m). FAB-MS *m/z*: 400 (MH⁺). Anal. Calcd for C₁₈H₁₉NO₃F₂S₂: C, 54.12; H, 4.79; N, 3.51; F, 9.51; S, 16.01. Found: C, 54.15; H, 4.66; N, 3.40; F, 9.68; S, 16.27.

(RS)-S-2-[(2SR, 3SR)-3-(2,4-Difluorophenyl)-3-hydroxy-4-(1H-1,2,4-triazol-1-yl)]butyl-

S-methyl-N-tosylsulfilimine $[(\pm)-12]$ A mixture of 1,2,4-triazole (20.71 g, 0.3 mol) and 96% KOH (11.78 g, 0.21 mol) in DMSO (80 mL) was heated at 75°C for 10 min. After cooling, a solution of $(\pm)-11$ (79.90 g, 0.2 mol) in DMSO (320 mL) was added to the mixture at rt. After stirring for 2 h, the mixture was poured into ice-water (10 L) and the separated product was collected by filtration. The air-dried product was triturated with *i*-PrOH (150 mL) and collected by filtration to give $(\pm)-12$ as colorless crystals (46.22 g, 49%), mp 171-173 °C (AcOEt). IR (Nujol) cm⁻¹: 3360, 1500, 1280, 1140, 1090. ¹H-NMR (CDCl₃) δ : 1.19 (3H, d, *J*=7.1 Hz), 2.42 (3H, s), 2.70 (3H, s), 3.81 (1H, ddq, *J*=0.7, 0.7, 7.0 Hz), 5.01 (2H, s), 5.76 (1H, d, *J*=2.2 Hz), 6.7-6.8 (2H, m), 7.1 (1H, ddd, *J*=8.9, 8.9, 6.2 Hz), 7.28 (2H, d like, *J*=8.4 Hz), 7.81 (1H, s), 7.82 (1H, s), 7.83 (2H, d like, *J*=8.4 Hz). FAB-MS *m*/*z*: 469 (MH⁺). Anal. Calcd for C₂₀H₂₂N₄O₃F₂S₂: C, 51.27; H, 4.73; N, 11.96; F, 8.11; S, 13.69. Found: C, 51.29; H, 4.68; N, 11.90; F, 8.01; S, 13.80.

(*R S*) -*S*-2-[(2*R S*, 3*R S*)-3-(2,4-Difluorophenyl)-3-hydroxy-4-(1*H*-1,2,4-triazol-1-yl)]butyl-*S*-methyl-*N*-tosylsulfoximine [(\pm)-13] To a suspension of (\pm)-12 (46.05 g, 98 mmol) and K₂CO₃ (20.83 g, 197 mmol) in DMF (400 mL) was added 80% MCPBA (25.45 g, 118 mmol) under ice-cooling. The ice-bath was removed and the mixture was stirred for 2 h at rt. After addition of 80% MCPBA (2.16 g, 10 mmol), the stirring was continued for an additional 2 h. The mixture was poured into ice-water (8 L) and the

separated product was collected by filtration. After washing with water (2 x 2 L), the product was dissolved in AcOEt (2.5 L), dried (MgSO₄), and filtered. The filtrate was removed *in vacuo* to give (\pm)-13 as colorless crystals (45.90 g, 97%), mp 180-181 °C (AcOEt). IR (Nujol) cm⁻¹: 3380, 1155, 1060. ¹H-NMR (CDCl₃) δ : 1.36 (3H, d, *J*=7.1 Hz), 2.40 (3H, s), 3.40 (3H, s), 4.82 (1H, dq like, *J*=1.1, 7.0 Hz), 5.00 (1H, d, *J*=14.7 Hz), 5.40 (1H, d, *J*=14.6 Hz), 5.75 (1H, d, *J*=2.0 Hz), 6.7-6.8 (2H, m), 7.26 (1H, ddd, *J*=6.2, 9.0, 9.0 Hz), 7.30 (2H, d like, *J*=7.7 Hz), 7.73 (1H, s), 7.78 (1H, s), 7.89 (2H, d like, *J*=8.4 Hz). FAB-MS *m/z*: 485 (MH⁺). Anal. Calcd for C₂₀H₂₂N₄O₄F₂S₂: C, 49.58; H, 4.58; N, 11.56; F, 7.84; S, 13.24. Found: C, 49.75; H, 4.57; N, 11.37; F, 7.76; S, 13.10.

(RS)-S-2-[(2RS, 3RS)-3-(2,4-Difluorophenyl)-3-hydroxy-4-(1H-1,2,4-triazol-1-yl)]butyl-S-methylsulfoximine $[(\pm)-1]$ To a solution of $(\pm)-13$ (3.61 g, 7.45 mmol) in CHCl₃ (12 mL) was added dropwise conc. H₂SO₄ (7 mL) under ice-cooling. After stirring for 30 min, the ice-bath was removed and the stirring was continued for 4 h at rt. The mixture was poured into ice-water (50 mL), basified with ice-cold 10% NaOH (115 mL), and extracted with CHCl, (2 x 100 mL). The combined extracts were washed with brine (2 x 50 mL), dried (MgSO₄), and filtered. The filtrate was removed in vacuo and the residue was recrystallized from AcOEt to give (±)-1 as colorless prisms (1.79 g, 73%), mp 162-163 °C. IR (Nujol) cm⁻¹: 3260, 3200, 1505, 1210, 1035. ¹H-NMR (CDCl₃) δ: 1.34 (3H, dd, J=7.3, 0.9 Hz), 2.67 (1H, br s), 3.14 (3H, s), 3.57 (1H, q, J=7.2 Hz), 4.93 (1H, dd, J=14.4, 0.8 Hz), 5.45 (1H, d, J=14.4 Hz), 6.02 (1H, s), 6.7-6.8 (2H, m), 7.36 (1H, ddd, J=9.3, 9.3, 6.5 Hz), 7.76 (1H, s), 7.88 (1H, s). FAB-MS m/z: 331 (MH⁺). **Resolution of (\pm)-1** To a solution of (\pm) -1 (300 mg, 0.908 mmol) in CHCl₃ (6 mL) was added a solution of lyophilized (S)-2-(2,3,4-trichlorophenyl)ethanesulfonic acid [(+)-TCPES]⁵ (421 mg, 1.45 mmol) in CHCl₃ (1.5 mL) at rt. After stirring for 3 h, the separated needles were collected by filtration and recrystallized from acetone to give a diastereomeric salt of 1 and (+)-TCPES (1:2) as colorless needles (275 mg, 33%), mp 208.5-209.0 °C; $[\alpha]_{p}^{20}$ +28.8° (c. 1.01, MeOH). IR (Nujol) cm⁻¹: 1615, 1170, 1010. ¹H-NMR (DMSO-d₆) δ : 1.28 (3H, d, J=7.0 Hz), 1.44 (2 x 3H, d, J=7.0 Hz), 3.72 (3H, s), 4.26 (2 x 1H, q, J=7.0 Hz), 4.84 (1H, d, J=14.5 Hz), 4.87 (1H, q, J=7.0 Hz), 5.14 (1H, d, J=14.5 Hz), 7.02 (1H, ddd, J=9.0, 9.0, 2.0 Hz), 7.2-7.3 (3H, m), 7.58 (2 x 1H, d, J=8.5 Hz), 7.69 (2 x 1H, d, J=8.5 Hz), 7.76 (1H, s), 8.32 (1H, s). FAB-MS m/z: 331 (MH⁺). Anal. Calcd for $C_{13}H_{16}N_4O_2F_2S + 2C_8H_7O_3Cl_3S + 0.5 H_2O$: C, 37.92; H, 3.40; N, 6.10; Cl, 23.16; F, 4.14; S, 10.47. Found: C, 37.83; H, 3.32; N, 6.01; Cl, 23.45; F, 4.26; S, 10.77. The obtained diastereomeric salt (265 mg) was basified with saturated NaHCO, (10 mL) and the resulting mixture was extracted with AcOEt (2 x 20 mL). The combined extracts were washed with brine (2 x 10 mL), dried (MgSO₄), and filtered. The filtrate was removed *in vacuo* and the residue was recrystallized from AcOEt to give 1¹ as colorless prisms (83 mg, 86%), mp 173.5-174.0°C; $[\alpha]_D^{20}$ -40.0° (c. 0.10, MeOH). Anal. Calcd for C₁₃H₁₆N₄O₂F₂S: C, 47.26; H, 4.88; N, 16.96; F, 11.50; S, 9.71. Found: C, 47.23; H, 4.78; N, 16.81; F, 11.63; S, 9.74. The enantiomeric purity was determined by HPLC using Opti-Pak XC (3.9 mm i.d. x 300 mm, Nihon Millipore Ltd.) under the following conditions; mobile phase, *n*-hexane - *i*-PrOH (1:1), v/v; flow rate, 0.7 mL/min; detection, UV at 220 nm; retention time, (*R*)-1 and (*S*)-1, 13.7 and 9.1 min. No (*S*)-1 was detected.

REFERENCES AND NOTES

- 1. H. Kawanishi, H. Morimoto, T. Nakano, T. Miyajima, K. Oda, K. Takeda, S. Yano, N. Hirano, and K. Tsujihara, *Heterocycles*, 1998, **45**, in press (the preceding paper).
- 2. C. R. Johnson, Aldrichimica Acta, 1985, 18, 3.
- 3. I. Saji, K. Tamoto, Y. Tanaka, H. Miyauchi, K. Fujimoto, and N. Ohash, Bull. Chem. Soc. Jpn., 1994, 67, 1427.
- 4. K. Tsujihara, N. Furukawa, K. Oae, and S. Oae, Bull. Chem. Soc. Jpn., 1969, 42, 2631.
- 5. The details of preparation and application of (+)-TCPES as a resolving reagent are prepared to be submitted.

Received, 11th March, 1998