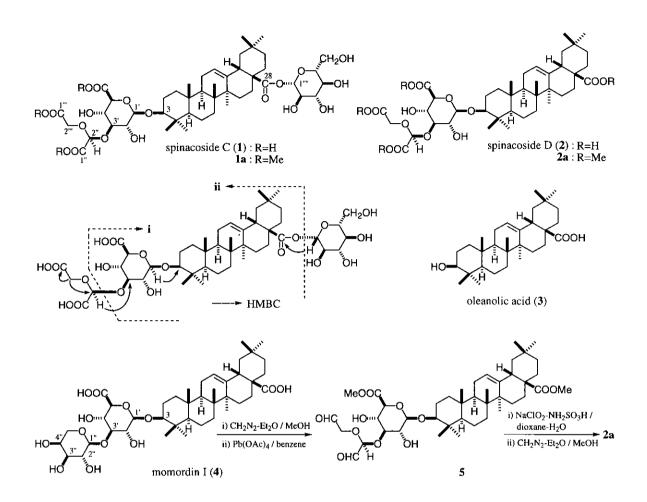
ABSOLUTE STEREOSTRUCTURES OF SPINACOSIDES C AND D WITH A NOVEL ACETAL TYPE SUBSTITUENT FROM SPINACIA OLERACEA (SPINACH) AND BASELLA RUBRA (INDIAN SPINACH)[†]

Masayuki Yoshikawa,^{*,a} Toshiyuki Murakami,^a Kazuhiro Hirano,^a Hisashi Matsuda,^a Johji Yamahara,^b Kazuhiro Ohtani,^c Ryoji Kasai,^c and Kazuo Yamasaki^c

Kyoto Pharmaceutical University,^a 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan, Research Institute for Production Development,^b 15 Shimogamo, Morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan, and Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine,^c 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.


Abstract — Spinacosides C and D with a novel acetal-type substituent were isolated from the fresh aerial parts of *Spinacia oleracea* (Spinach) and *Basella rubra* (Indian spinach). Their absolute stercostructures were determined on the basis of physicochemical and chemical evidence, which included the conversion from the α -L-arabinopyranosyl moiety of a known saponin momordin I to the acetal-type substituent of spinacoside D.

Annual herbaccous plants *Spinacia oleracea* L. (Spinach, Japanese name "Hourenso," Chenopodiaceae) and *Basella rubra* L. (Indian spinach, Japanese name "Tsurumurasaki," Basellaceae) are extensively cultivated and their young aerial parts such as the leaves and stems are consumed as a vegetable and health food. As chemical constituents of these plants, saponins, sterols, and flavonoids have been characterized from *S. oleracea*,¹ whereas betacyanins, carotenoids, and organic acids were isolated from *B. rubra*.²

During the course of our characterization studies on bioactive constituents in medicinal foodstuffs,³ we have recently isolated betavulgarosides with a unique substituent, which was presumed to be biosynthesized through an oxidative degradation process of terminal monosaccharide moiety in saponin, from the roots of *Beta vulgaris* L. (Sugar beet).⁴ As a continuing study, we have found that the saponin fractions from the fresh aerial parts of *S. oleracea* and *B. rubra* showed inhibitory activity on sugar absorption. From both saponin fractions, we have isolated new saponins named spinacosides C (1) and D (2) having a novel acidic acetal-type substituent, which was also supposed to be generated by the oxidative degradation of monosaccharide. In this communication, we describe the isolation of spinacosides (1, 2) from *S. oleracea* and *B. rubra* and the elucidation of their absolute stereostructures by means of chemical correlation with a known saponin momordin I (4).⁵

The methanolic extracts from the fresh aerial parts of *S. oleracea*⁶ and *B. rubra* (cultivated in Kyoto Prefecture) were subjected to Diaion HP-20 (H₂O \rightarrow MeOH \rightarrow CHCl₃) and silica gel (CHCl₃-MeOH-H₂O) column chromatography and finally HPLC (YMC-Pack ODS-A, MeCN-1% aq. AcOH, MeCN-1% aq. trifluoroacetic acid) to give spinacosides C (1, 0.001% from the fresh aerial parts of *S. oleracea*, 0.017% from the fresh aerial parts of *B. rubra*) and D [2, 0.001% (*S. oleracea*), trace (*B. rubra*)].

[†] Dedicated to Dr. Bernhard Witkop in celebration of his 80th birthday.

Spinacoside C (1), colorless fine crystals of mp 220-222 °C (MeOH-H₂O), [\alpha]_D²⁴ +10.2° (MeOH), C₄₆H₇₀O₁₉,⁷ showed absorption bands at 3426, 1735, 1728, and 1076 cm⁻¹ due to hydroxyl, ester, and carboxyl functions in the IR spectrum. In the positive-ion FAB-MS of 1, a quasimolecular ion peak was observed at m/z 949 (M+Na)⁺, while the negative-ion FAB-MS of 1 exhibited a quasimolecular ion peak at m/2 925 (M-H)⁻ in addition to fragment ion peaks at m/2 793 (i, M- $C_4H_5O_5$)⁻ and m/z 767 (ii, M- $C_6H_{11}O_5$)⁻. Acid hydrolysis of 1 with 5% aq. H_2SO_4 -dioxane (1 : 1) liberated oleanolic acid (3) together with D-glucuronic acid and D-glucose, whose absolute configurations were characterized by GLC analysis of their TMS thiazolidine derivatives.⁸ Methylation of 1 with diazomethane-etherate in MeOH gave the trimethyl ester (1a).⁹ The ¹H- and ¹³C-NMR data (pyridine-d₅, Table 1) of 1 and 1a, which were assigned by various NMR experiments,¹⁰ showed the presence of an acetal-type substituent composed of glyoxylic acid (C-1'', 2'') and glycolic acid (C-1'', 2'') [1:δ 6.40 (s, 2"-H), 5.18, 5.37 (ABq, J=16.2 Hz, 2"-H₂); 1a : δ 6.24 (s, 2"-H), 4.90, 5.05 (ABq, J=16.2 Hz, 2"'-H₂)] together with the oleanolic acid 3-O-β-D-glucopyranosiduronic acid-28-O-β-D-glucopyranoside moiety [1:δ 3.35 (dd, J=3.9, 11.2 Hz, 3-H), 4.99 (d, J=7.6 Hz, 1'-H), 6.32 (d, J=7.6 Hz, 1'''-H); 1a : δ 3.31 (dd, J=4.2, 11.5 Hz, 3-H), 3.56, 3.58, 3.70 (all s, 1", 1", 6'-OCH₃), 4.86 (d, J=7.9 Hz, 1'-H), 6.29 (d, J=7.9 Hz, 1"''-H)]. The plane structure of the acetal-type substituent bonded to the 3'-hydroxyl group of the 3-O-β-D-glucuronic acid moiety in 1 was clarified by the HMBC experiment. Namely, long-range correlations were observed between the following protons and carbons of 1 and 1a (1'-H and 3-C. 2''-H and 3'-C, 2'''-H2 and 1''', 2''-C, 1''''-H and 28-C).

	1	1a	2		1	1a	2
C-1	38.6	38.7	38.6	C-26	17.5	17.5	17.4
C-2	26.6	26.6	26.6	C-27	26.1	26.1	26.2
C-3	89.3	89.5	89.3	C-28	176.4	176.4	180.1
C-4	39.5	39.5	39.6	C-29	33.1	33.2	33.2
C-5	55.7	55.8	55.8	C-30	23.6	23.7	23.8
C-6	18.5	18.5	18.5	3-GlcA-1'	106.9	106.8	106.8
C-7	33,1	33.2	33.2	2'	75.0	74.9	75.0
C-8	39.9	40.0	39.8	3'	85.7	84.3	85.6
C-9	48.0	48.1	48.0	4'	71.9	71.3	71.9
C-10	36.9	37.0	37.0	5'	77.6	76.8	77.6
C-11	23.4	23.5	23.8	6'	172.4	170.2	172.3
C-12	122.8	122.9	122.3	6'-OMe		52.1	
C-13	144.1	144.2	144.9	1"	171.7	168.1	171.9
C-14	42.1	42.2	42.2	t''-OMe		51.8	
C-15	28.3	28.3	28.4	2"	101.2	99.5	101.2
C-16	23.8	23.8	23.8	1'''	173.5	170.6	173.5
C-17	47.0	47.1	46.7	1'''-OMe		51.5	
C-18	41.7	41.7	42.1	2***	64.7	63.2	65.0
C-19	46.2	46.3	46.6	28-Glc-1''''	95.8	95.8	
C-20	30.8	30.8	31.0	2''''	74.1	74.2	
C-21	34.0	34.1	34.3	3''''	78.9	79.0	
C-22	32.6	32.6	33.2	4''''	71.1	71.1	
C-23	28.1	28.2	28.2	5''''	79.3	79.3	
C-24	16.9	16.8	17.0	6''''	62.2	62.4	
C-25	15.5	15.5	15.5				

Table 1. 13 C-NMR Data for 1.^a 1a,^b and 2^a (pyridine-ds)

a : 67.5 MHz, b : 125.0 MHz

Spinacoside D (2), colorless fine crystals of mp 183-185 °C (MeOH-H₂O), $[\alpha]_D^{25}$ +11.4° (MeOH), C₄₀H₆₀O₁₄, IR (KBr) : 3453, 1736, 1638, 1070, cm⁻¹, showed a quasimolecular ion peak at *m/z* 787 (M+Na)⁺ in the positive-ion FAB-MS. Diazomethane methylation of **2** provided the tetramethyl ester (**2a**).¹¹ The ¹H-NMR and ¹³C-NMR (Table 1) spectra¹⁰ of **2** and **2a** showed signals assignable to an acetal-type substituent [**2** (pyridine-*d*₅) : δ 6.34 (s, 2''-H), 5.08, 5.27 (ABq, *J*=16.5 Hz, 2'''-H₂); **2a** (CDCl₃) : δ 5.39 (s, 2''-H), 4.35, 4.52 (ABq, *J*=16.5 Hz, 2'''-H₂)] and the oleanolic acid 3-*O*-β-D-gluco-pyranosiduronic acid moiety [**2** : δ 3.34 (dd, *J*=4.0, 11.6 Hz, 3-H), 4.91 (d, *J*=7.9 Hz, 1'-H); **2a** : 3.16 (1H, dd-like, 3-H), 4.39 (1H, d, *J*=6.0, 1'-H),]. Finally, **2** was obtained by hydrolysis of **1** with 5% aq. NaOH. Consequently, the structures of **1** and **2** were characterized except for the stereostructure of the acetal-type substituent.

In order to determine the absolute stereostructure of the acetal-type substituent, we carried out the chemical correlation of spinacoside D (2) with momordin I (4), whose component monosaccharides were confirmed to be D-glucuronic acid and Larabinose. Thus, momordin I (4) was subjected to diazomthane methylation and subsequent $Pb(OAc)_4$ degradation of the 2'', 3'', and 4''-triol moiety in the L-arabinose moiety to furnish an unstable dialdehyde (5). The dialdehyde (5) was immediately treated with NaClO₂ and NH₂SO₃H in 75% aq. dioxane followed by diazomethane methylation to give 2a, which was identified with spinacoside D tetramethyl ester. On the basis of the above-mentioned evidence, the 2''S configuration of the acetal-type substituent was determined, so that the absolute stereostructures of spinacosides C (1) and D (2) were also characterized as shown.

REFERENCES AND NOTES

- a) A. Zane and S. H. Wender, J. Org. Chem., 1961, 26, 4718; b) R. Tschesche, H. Rehkämper, and G. Wulfe, Liebigs Ann. Chem., 1969, 726, 125; c) P. Da Re, P. Valenti, L. Cateni, and P. L. Barili, Tetrahedron Lett., 1976, 71; d) H. Wagner, I. Maurer, L. Farkas, and J. Strelisky, Tetrahedron, 1977, 33, 1405; e) M. Bathory, I. Toth, K. Szendrei, and J. Reisch, Phytochemistry, 1982, 21, 236; f) M. Aritomi and T. Kawasaki, *ibid.*, 1984, 23, 2043; g) M. Aritomi, T. Komori, and T. Kawasaki, *ibid.*, 1986, 25, 231.
- a) A. Takami, Oita Daigaku Kyoikugakubu Kenkyo Kiyo, Shizenkagaku, 1969, 3, 53 [Chem. Abstr., 1971, 74, 108135q];
 b) A. K. Banerjee, M. Jain, and V. Dubey, Fitoterapia, 1992, 63, 377 [Chem. Abstr., 1993, 118, 109476r];
 c) W. E. Glassgen, J. W., Metzger, S. Heuer, and D. Strack, Phytochemistry, 1993, 33, 1525.
- a) M. Yoshikawa, T. Murakami, H. Komatsu, N. Murakami, J. Yamahara, and H. Matsuda, *Chem. Pharm. Bull.*, 1997,
 45, 81; b) M. Yoshikawa, H. Shimada, M. Saka, S. Yoshizumi, J. Yamahara, and H. Matsuda, *ibid.*, 1997,
 45, 81; b) M. Yoshikawa, H. Shimada, M. Saka, S. Yoshizumi, J. Yamahara, and H. Matsuda, *ibid.*, 1997,
 45, 877; d) M. Yoshikawa, H. Shimada, T. Sakurama, N. Nishida, J. Yamahara, H. Shimoda, H. Matsuda, and T. Tani, *ibid.*, 1997,
 45, 877; d) M. Yoshikawa, H. Shimada, T. Morikawa, S. Yoshizumi, N. Matsumura, T. Murakami, H. Matsuda, K. Hori, and J. Yamahara, *ibid.*, 1997,
 45, 2034; f) M. Yoshikawa, T. Murakami, H. Komatsu, J. Yamahara, and H. Matsuda, *Heterocycles*, 1998,
 47, 397; g) S. Yoshizumi, T. Murakami, M. Kadoya, H. Matsuda, J. Yamahara, and M. Yoshikawa, *Yakugaku Zasshi*, 1998,
 188; h) M. Yoshikawa, T. Murakami, H. Komatsu, and H. Matsuda, *Chem. Pharm. Bull.*, 1998,
 46, 812; i) H. Komatsu, T. Murakami, H. Komatsu, *Atterocycles*, 1998,
- a) M. Yoshikawa, T. Murakami, M. Kadoya, H. Matsuda, J. Yamahara, O. Muraoka, and N. Murakami, *Heterocycles*, 1995, 41, 1621; b) M. Yoshikawa, T. Murakami, M. Kadoya, H. Matsuda, O. Muraoka, J. Yamahara, and N. Murakami, *Chem. Pharm. Bull.*, 1996, 44, 1212; c) M. Yoshikawa, T. Murakami, M. Inaduki, K. Hirano, J. Yamahara, and H. Matsuda, *ibid.*, 1997, 45, 561.
- 5. M. Iwamoto, H. Okabe, and T. Yamauchi, Chem. Pharm. Bull., 1985, 33, 1.
- 6. a) Spinacosides C and D were also isolated from the roots of *S. oleracea* as their methyl ester derivatives together with spinacosides A and B methyl esters;^{6b} b) N. Tugimura, K. Ohtani, R. Kasai, and K. Yamasaki, Abstract Papers, 115th Annual Meeting of Pharmaceutical Society of Japan, Sendai, 1995, p. 254.
- 7. The molecular composition of the compound given with the chemical formula was determined by high-resolution FAB-MS.
- 8. S. Hara, H. Okabe, and K. Mihashi, Chem. Pharm. Bull., 1986, 34, 1843.
- 9. 1a : colorless fine crystals, mp 158-160 °C (MeOH-H₂O), [α]_D²⁵ +4.9° (MeOH), C₄₉H₇₆O₁₉,⁶ IR (KBr) : 3442, 1748, 1730, 1075 cm⁻¹. ¹H-NMR (pyridine-d₅) δ : 0.83, 0.89, 0.90, 0.92, 1.08, 1.23, 1.27 (3H cach, all s, 25, 24, 30, 29, 26, 23, 27-H₃), 3.19 (1H, dd, *J*=4.0, 13.5, 18-H), 3.31 (1H, dd, *J*=4.2, 11.5, 3-H), 3.56, 3.58, 3.70 (3H cach, all s, 1^{'''}, 1^{''}, 6'-OCH₃), 4.86 (1H, d, *J*=7.9, 1'-H), 4.90, 5.05 (2H, ABq, *J*=16.2, 2^{'''}-H₂), 5.41, (1H, br s, 12-H), 6.24 (1H, s, 2^{''}-H), 6.29 (1H, d, *J*=7.9, 1^{''''}-H). Positive-ion FAB-MS : *m/z* 991 (M+Na)⁺.
- 10. The ¹H- and ¹³C-NMR spectra of 1, 1a, 2, and 2a were assigned with the aid of homo- and hetero-correlation spectroscopy (¹H-¹H, ¹H-¹³C COSY), distortionless enhancement by polarization transfer (DEPT), and heteronuculear multiple bond connectivity (HMBC) experiments.
- 11. 2a : colorless fine crystals, mp 110-111 °C (McOH-H₂O), [α]_D²⁸ +15.8° (CHCl₃), C₄₄H₆₈O₁₄,⁶ IR (KBr) : 3471, 1751, 1735, 1088, 1048 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.72, 0.82, 0.90, 0.91, 0.93, 1.01, 1.12 (3H each, all s, *tert*.-CH₃x7), 2.85 (1H, dd-like, 18-H), 3.16 (1H, dd-like, 3-H), 3.62, 3.76 (both 3H, s), 3.82 (6H, s) (COOCH₃x4), 4.35, 4.52 (2H, ABq, J=16.5, 2^{***}-H₂), 4.39 (1H, d, J=6.0, 1'-H), 5.28, (1H, dd-like, 12-H), 5.39 (1H, s, 2^{**}-H). Positive-ion FAB-MS : m/z 843 (M+Na)⁺.