THE HIGHLY STEREOCONTROLLED RADICAL-BASED ADDITION OF A 2,2-DICHLOROACYL FUNCTION TO A 2-OXAZOLONE HETEROCYCLE. A NEW APPROACH TO MeBmt, THE KEY COMPONENT OF CYCLOSPORIN

Hirofumi Matsunaga, Hiroyoshi Ohta, Tadao Ishizuka, and Takehisa Kunieda*

Faculty of Pharmaceutical Sciences, Kumamoto University,

5-1 Oe-honmachi, Kumamoto 862-0973, Japan

Abstract - The intramolecular Ru(II)-catalyzed addition of the 2,2-dichloro-4hexenoyl pendant group to an 2-oxazolone moiety followed by treatment with $(Me_3Si)_3SiH-Et_3B$ provides a perfectly stereocontrolled approach to the unusual amino acid (2S, 3R, 4R, 6E)-3-hydroxy-4-methyl-2-(methylamino)-6-octenoic acid (MeBmt), which contains three contiguous stereogenic centers and is a key component of cyclosporin.

The unusual C9-amino acid (2*S*, 3*R*, 4*R*, 6*E*)-3-hydroxy-4-methyl-2-(methylamino)-6-octenoic acid (MeBmt), found in the immunosuppressive peptide cyclosporin,¹ appears to play a critical role in the observed biological activity of this chemotherapeutic agent² and represents an ideal target compound for asymmetric synthesis.³⁻⁹ A number of strategies for the multistep synthesis of MeBmt have appeared³⁻⁹ and involve stereoselective transformations of a variety of chiral sources such as tartaric acid,³ glucose⁴ and serine⁵ as well as a rationally designed aldehyde⁶ and epoxides.^{7,8}

This paper describes an entirely different synthetic approach to this unusual hydroxy amino acid, which contains three contiguous stereogenic centers, in which the efficient chiral functionalization of a simple heterocycle, 2-oxazolone, is involved in the key step.

^{*} Dedicated to Dr. Bernhard Witkop on the occasion of his 80th birthday.

We previously demonstrated the versatility of 2-oxazolone as a building block for chiral hydroxy amino acids such as hydroxyglutamic acid,¹⁰ statine^{10,11} and the unusual amino acid components of amastatin and pepstatin.¹² Further investigation revealed an alternative method for the chiral synthesis of dichloroand difluorostatines with adjacent chiral centers, involving the smooth intramolecular Ru(II)-catalyzed addition of the trihaloacetyl pendant groups to the 2-oxazolone moiety.¹³ This promising strategy for intramolecular radical-based addition, which proceeds with complete diastereoselection, is now extended to the chiral construction of the three contiguous stereogenic centers found in MeBmt, as retrosynthetically shown in Scheme 1.

The excellent selectivity thus observed can be rationalized by assuming an exclusive attack of the bulky reductant from the less hindered side to the carbon radicals generated *in situ*, as is schematically shown in Figure 1. This consideration is further supported by the stereochemistry of the macrolide (12), verified by positive and negative NOE differences between the *H*a and methylene protons, and the *H*a and *H*b-protons, respectively, as depicted in Figure 2.

The apocamphanecarbonyl auxiliary was reductively cleaved by LiBH₄-MeOH $(1:2)^{16}$ to give the 2oxazolidinone derivative (13), the hydroxymethyl function of which was converted to a methyl group by conventional procedures. The *N*-methylation of 14 thus formed followed by cyanation¹⁰ gave the cyanides (15) as a mixture of *trans*- and *cis*-isomers (1.4:1), which were readily separable by chromatography. Treatment of the isomeric mixture (15) with K₂CO₃ in EtOH at room temperature followed by acidification gave the *trans*-ester (16) in 90% yield,³ whose spectral and physical data were in good agreement with those previously reported,³ except for optical rotatory data.¹⁷ The hydrolytic conversion of 16 to MeBmt has been well established.³

i) 1) SOCl₂, 2) NaH/THF; rt, 3) TFA; ii) RuCl₂(PPh₃)₃/PhH; reflux; iii) MeOH; reflux; iv) (TMS)₃SiH, BEt₃/Toluene; -78 °C; v) LiBH₄-MeOH(1:2)/THF; 0 °C; vi) 1) MsCl, NEt₃/THF; rt, 2) Nal/DME; reflux, 3) Bu₃SnH, BEt₃/THF; -78 °C; vii) 1) Mel, NaH/THF; rt, 2) TMSCN, BF₃•OEt/CH₂Cl₂; -50 °C→rt; viii) 1) K₂CO₃/EtOH; rt, 2) 2N HCl; rt

In conclusion, the intramolecular radical-based addition of the dichloroacyl pendant group to the 2oxazolone heterocyclic moiety presented here provides a useful tool for the effective construction of chiral skeletons with three contiguous stereogenic centers, such as is found in MeBmt. This methodology has the potential for serving as a general synthetic method for a variety of 2-amino alcohols with multi-stereogenic centers of biological interest.

EXPERIMENTAL

Melting points were determined with a Yanaco micro melting point apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP 370 polarimeter. IR spectra were recorded on a JASCO IR Report-100 spectrophotometer. ¹H NMR spectra were recorded in CDCl₃ with tetramethylsilane as the internal standard at 500 MHz on a JEOL ALPHA-500 spectrometer. MS and HRMS were obtained with a JEOL JMS-DX303HF mass spectrometer. Column chromatography was performed using silica gel 60 (70-230 mesh, Merck). All solvents were distilled prior to use; THF over Na/benzophenone, Et₂O over LiAlH₄, CH₂Cl₂ over CaH₂, MeOH over NaOMe and benzene over CaH₂.

2,2-Dichloro-(*4E*)-hexenoic acid (5). A solution of *t*-butyl dichloroacetate (2.76 g, 14.9 mmol) in THF (14 mL) was added dropwise to a solution of HNEt₂ (3.60 g, 49.3 mmol), BuLi (1.70 M in hexane; 26.4 mL, 44.8 mmol) and HMPA (2.68 g, 14.9 mmol) in THF (21 mL) under an argon atmosphere at -78 °C over a period of 30 min. After stirring at -78 °C for 30 min, a solution of *trans*-crotyl chloride¹⁸ (2.70 g, 29.8 mmol), derived from *trans*-2-butenol¹⁹ in THF (7 mL), was added at -78 °C, followed by stirring at rt for 10 h. The reaction was quenched by the addition of a saturated solution of NH₄Cl, followed by the addition of 200 mL of EtOAc. The usual work-up followed by chromatography on silica gel (hexane \rightarrow hexane:CH₂Cl₂ = 9:1) yielded *t*-butyl 2,2-dichloro-(4*E*)-hexenoate (2.20 g, 62%) as a colorless oil; bp 53.6 °C/2.5 mmHg. ¹H NMR δ 1.52 (9H, s), 1.71 (3H, d, *J* = 6.7 Hz), 3.06 (2H, d, *J* = 6.7 Hz), 5.45-5.51 (1H, m). The *t*-butyl ester was treated with CF₃CO₂H (10.5 g, 92 mmol) in CH₂Cl₂ (3.6 mL) at rt for 3 h to give **5** (1.7 g, quant.) as a colorless oil; IR (neat) 3600-2400, 2970, 2920, 2850, 1740, 1720, 1635, 1420, 1260, 1210, 965, 700 cm⁻¹; ¹H NMR δ 1.73 (3H, d, *J* = 6.7 Hz), 3.12 (2H, d, *J* = 6.7 Hz), 5.48-5.55 (1H, m), 5.70-5.77 (1H, m), 7.21 (1H, br s); MS (FAB,

CHCl₃+NBA+NaI): m/z 227 ([M+2Na-H]⁺), 205; HRMS (FAB, CHCl₃+NBA+NaI) calcd for $C_6H_7O_2Cl_2Na_2$ ([M+2Na-H]⁺): m/z 226.9619, found: m/z 226.9602.

(1R,2S)-2-[2-(2,2-Dichloro-(4E)-hexenoyloxy)ethoxy]-7,7-dimethylbicyclo[2.2.1]-

heptane-1-carboxylic acid (7). To a solution of 6^{14} (1.88 g, 6.60 mmol) in THF (33 mL) was added 2,2-dichloro-(4*E*)-hexenoyl chloride, derived from 5 (3.02 g, 16.5 mmol) and SOCl₂ (19.6 g, 165 mmol), in the presence of NaH (60% in oil; 0.66 g, 16.5 mmol) and the mixture was stirred at rt for 3 h. The reaction was quenched by passing the solution through a silica gel-pad with EtOAc (200 mL) as eluent. The usual work-up followed by chromatography on silica gel (hexane:CH₂Cl₂ = 9:1 \rightarrow 2:8) yielded *t*-butyl (1*R*, 2*S*)-2-[2-(2,2-dichloro-(4*E*)-hexenoyloxy)ethoxy]-7,7-dimethylbicyclo[2.2.1]heptane-1-carboxylate (2.69 g, 91%) as a colorless oil; [α]_D²⁷ +35.3 ° (c 1.03, CHCl₃); IR (neat) 2970, 2930, 2880, 1760, 1740, 1725, 1710, 1450, 1360, 1320, 1250, 1180, 1120, 1035, 965, 850 cm⁻¹; ¹H NMR δ 1.02-1.06 (1H, m), 1.04 (3H, s), 1.25 (3H, s), 1.37-1.44 (1H, m), 1.46 (9H, s), 1.60-1.72 (6H, m), 1.86-1.94 (2H, m), 3.09 (2H, dd, *J* = 1.2, 7.3 Hz), 3.64-3.70 (3H, m), 4.29-4.33 (2H, m), 5.46-5.51 (1H, m), 5.67-5.71 (1H, m); MS (FAB, CHCl₃+NBA+NaI): m/z 471 (MNa⁺), 415, 375, 209, 57; HRMS (FAB, CHCl₃+NBA+NaI) calcd for C₂₂H₃₄O₅Cl₂Na (MNa⁺): m/z 471.1681, found: m/z 471.1703.

Subsequent treatment of the *t*-butyl ester (9.68 g, 21.5 mmol) with CF₃CO₂H (6.8 g, 60 mmol) in CH₂Cl₂ (6 mL) at rt for 3 h gave 7 (2.39 g, quant.) as a colorless oil; $[\alpha]_D^{26}$ +41.2 ° (*c* 1.00, CHCl₃); IR (neat) 3600-2400, 2950, 2900, 1740, 1710, 1690, 1450, 1380, 1250, 1100, 1035, 965, 860, 720 cm⁻¹; ¹H NMR δ 1.05 (3H, s), 1.08-1.35 (1H, m), 1.20 (3H, s), 1.25-1.33 (2H, m), 1.71 (3H, dd, *J* = 1.2, 6.7 Hz), 1.80-1.87 (3H, m), 2.00-2.04 (1H, m), 2.36-2.41 (1H, m), 3.10 (2H, d, *J* = 6.7 Hz), 3.76 (1H, ddd, *J* = 3.1, 6.1, 12.2 Hz), 3.84 (1H, ddd, *J* = 3.1, 6.7 Hz), 3.86 (1H, ddd, *J* = 3.1, 6.1, 12.2 Hz), 4.38 (1H, ddd, *J* = 3.1, 6.1, 12.2 Hz), 4.45 (1H, ddd, *J* = 3.1, 6.1, 12.2 Hz), 5.30-5.50 (1H, m), 5.67-5.72 (1H, m); MS (FAB, CHCl₃+NBA+NaI): m/z 437 ([M+2Na-H]⁺), 415 (MNa⁺), 375, 209; HRMS (FAB, CHCl₃+NBA+NaI): m/z 437 ([M+2Na-H]⁺), 415.1055, found: m/z 415.1042.

3-[(1R,2S)-2-[2-(2,2-Dichloro-(4E)-hexenoyloxy)ethoxy]-7,7-dimethylbicyclo[2.2.1]-

heptane-1-carbonyl]-2-oxazolone (9). To the mixture of sodium carboxylate derived from 7 (1.21 g, 3.1 mmol) and NaH (60% in oil; 0.14 g, 3.4 mmol) in THF (10 mL), DPPOx¹⁵ (8) (diphenyl 2-oxo-3-oxazolinylphosphonate; 0.98 g, 3.1 mmol) in THF (13 mL) was added at 0 °C followed by stirring at rt for 2 h. The solution was passed through a silica gel-pad (EtOAc as eluent) followed by evaporation and column chromatography on sifica gel (hexane:CH₂Cl₂ = $5:5 \rightarrow CH_2Cl_2$) to give the 2-oxazolone derivative

(9) (1.30 g, 92%) as a colorless oil; $[\alpha]_D^{27}$ +42.4 ° (c 1.01, CHCl₃); IR (neat) 3150, 2940, 2880, 1790, 1760, 1745, 1710, 1355, 1280, 1230, 1120, 1070, 968, 912, 837, 702 cm⁻¹; ¹H NMR δ 1.14 (3H, s), 1.17-1.21 (1H, m), 1.33 (3H, s), 1.70 (3H, dd, J = 1.2, 6.7 Hz), 1.70-1.84 (4H, m), 1.93-1.97 (1H, m), 2.36-2.40 (1H, m), 3.03 (2H, d, J = 6.7 Hz), 3.52 (1H, dt, J = 4.3, 11.6 Hz), 3.65 (1H, dt, J = 4.3, 11.6 Hz), 4.23 (2H, t, J = 4.3 Hz), 4.79 (1H, q, J = 3.7 Hz), 5.43-5.49 (1H, m), 5.62-5.68 (1H, m), 6.78 (1H, d, J = 2.4 Hz), 7.27 (1H, d, J = 2.4 Hz); MS (FAB, CHCl₃+NBA+NaI): m/z 482 (MNa⁺), 375, 209; HRMS (FAB, CHCl₃+NBA+NaI) calcd for C₂₁H₂₇NO₆Cl₂Na (MNa⁺): m/z 482.1113, found: m/z 482.1111.

Intramolecular Cyclization to the Macrolide (10). A mixture of 9 (8.29 g, 18.0 mmol) and RuCl₂(PPh₃)₃ (1.73 g, 1.80 mmol) in benzene (360 mL) was refluxed for 168 h. The mixture was passed through a silica gel-pad with EtOAc as eluent. Evaporation of the eluate followed by chromatography on silica gel (hexane:CH₂Cl₂ = $8:2 \rightarrow 4:6$) afforded the macrolide (10) (4.65 g, 56%) as colorless crystals; mp 187-190 °C (from hexane-CH₂Cl₂). The ¹H NMR spectrum showed a diastereomeric mixture in a ratio of 3.4:1. IR (nujol) 1795, 1740, 1700, 1280, 1115, 975, 915 cm⁻¹; ¹H NMR δ 1.15-1.26 (1H, m), 1.20 (3H, s), 1.21 (3H, s), 1.63-1.68 (2H, m), 1.73 (3H, d, J = 6.1 Hz), 1.83-1.93 (3H, m), 2.24-2.32 (1H, m), 2.74-3.00 (2H, m), 3.28 and 3.30 (1H, dt, J = 1.8, 11.6 Hz), 3.75-3.93 (2H, m), 4.31 (1H, q, J = 3.7 Hz), 4.78 and 4.85 (1H, d, J = 1.2 Hz), 4.89 and 4.97 (1H, dt, J = 1.8, 11.6 Hz), 5.30-5.50 (1H, m), 5.70-5.77 (1H, m), 6.22 and 6.38 (1H, d, J = 1.2 Hz); MS (FAB, CHCl₃+NBA+NaI): m/z 482 (MNa⁺), 176; HRMS (FAB, CHCl₃+NBA+NaI) calcd for C₂₁H₂₇NO₆Cl₂Na (MNa⁺): m/z 482.1113, found: m/z 482.1116.

Methanolysis to 11. A solution of **10** (4.65 g, 10.1 mmol) in methanol (200 mL) was refluxed for 3 h and usual work-up gave diastereomeric mixture **11** (4.58 g, quant.) as colorless crystals; mp 112-122 °C (from hexane-CH₂Cl₂); IR (nujol) 1798, 1740, 1696, 1280, 1240, 1200, 1115, 1095, 975, 917, 727 cm⁻¹; ¹H NMR δ 1.13-1.22 (7H, m), 1.62-1.66 (2H, m), 1.72 (3H, d, *J* = 6.1 Hz), 1.79-1.84 (2H, m), 1.88-1.94 (1H, m), 2.32-2.39 (1H, m), 2.67 and 2.78 (1H, dd, *J* = 7.9, 14.7 Hz), 2.95 and 2.98 (1H, dd, *J* = 6.7, 14.7 Hz), 3.29 and 3.31 (1H, t, *J* = 11.6 Hz), 3.53 and 3.59 (3H, s), 3.73 and 3.75 (1H, d, *J* = 11.6 Hz), 3.82 and 3.92 (1H, d, *J* = 11.6 Hz), 4.35 (1H, q, *J* = 3.7 Hz), 4.42 and 4.49 (1H, s), 4.87 and 4.92 (1H, dt, *J* = 1.8, 11.6 Hz), 5.45-5.55 (1H, m), 5.52 and 5.55 (1H, s), 5.66-5.74 (1H, m); MS (FAB, CHCl₃+NBA+NaI): m/z 478 (MNa⁺), 424, 329, 176; HRMS (FAB, CHCl₃+NBA+NaI) calcd for C₂₂H₃₀NO₇CINa (MNa⁺): m/z 482.1609, found: m/z 478.1598.

349

Reductive Dechlorination to 12. To a mixture of 11 (3.83 g, 8.41 mmol) and tris(trimethylsilyl)silane (2.30 g, 9.25 mmol) in toluene (168 mL), triethylborane (1.04 M in hexane; 2.43 mL, 2.52 mmol) was added at -78 °C under an argon atmosphere followed by stirring for 5 h. The solution was then passed through a silica gel-pad (EtOAc as eluent). The usual work-up of the eluate afforded 12 (3.55 g, quant.) as colorless crystals; mp 101.5-102.0 °C (from hexane); $[\alpha]_D^{28}$ +26.7 ° (c 1.00, CHCl₃); IR (nujol) 1783, 1740, 1695, 1280, 1240, 1180, 1110, 980, 770, 720 cm⁻¹; ¹H NMR δ 1.13-1.21 (1H, m), 1.20 (3H, s), 1.22 (3H, s), 1.58-1.65 (2H, m), 1.67 (3H, dd, J = 1.2, 6.7 Hz), 1.81-1.93 (3H, m), 2.15 (1H, quintet, J = 7.3 Hz), 2.37 (1H, ddd, J = 3.6, 9.2, 12.2 Hz), 2.49 (1H, ddd, J = 6.1, 7.9, 12.2 Hz), 2.86 (1H, ddd, J = 3.6, 7.9, 9.2 Hz), 3.22 (1H, dt, J = 1.8, 11.6 Hz), 3.50 (3H, s), 3.666 (1H, t, J = 11.6 Hz), 3.670 (1H, t, J = 11.6 Hz), 4.33 (1H, q, J = 3.7 Hz), 4.40 (1H, dd, J = 1.2, 3.6 Hz), 4.98 (1H, dt, J = 1.8, 11.6 Hz), 5.32-5.38 (1H, m), 5.52 (1H, d, J = 1.2 Hz), 5.54-5.60 (1H, m). Anal. Calcd for C₂₂H₃₁NO₇: C, 62.69; H, 7.41; N, 3.32. Found: C, 62.64; H, 7.49; N, 3.42.

The optical purity was in excess of 99% de, as evidenced by HPLC analysis on a DAICEL CHIRALCEL-AD column with hexane-IPA (99:1) as an eluent.

(4*R*, 5*R*)-5-[(1*S*, 3*E*)-1-Hydroxymethyl-3-pentenyl]-4-methoxy-2-oxazolidinone (13). A solution of 12 (1.28 g, 3.04 mmol) in THF (36 mL) was treated with LiBH₄ (2.0 M in THF; 7.6 mL, 15.2 mmol) and MeOH (0.97 g, 30.4 mmol) at 0 °C under an argon atmosphere for 3 h. The mixture was then passed through a silica gel-pad with EtOAc as the eluent. The usual work-up of the eluate followed by chromatography on silica gel (hexane:AcOEt = 1:1 → 1:9) afforded, in addition to the oily 2-*exo*-hydroxyethoxy-1-apocamphanemethanol (0.66 g, quant.), the deacylated 2-oxazolidinone (13) (0.44 g, 67%) as colorless crystals; mp 104-105 °C (from hexane-CH₂Cl₂); $[\alpha]_D^{28}$ +121.0 ° (c 0.50, CHCl₃); IR (nujol) 3330, 1750, 1725, 1235, 1100, 1060, 1030, 1010, 970, 940 cm⁻¹; ¹H NMR δ 1.67 (3H, d, *J* = 6.1 Hz), 1.79-2.18 (3H, m), 3.34 (3H, s), 3.64 (1H, dd, *J* = 6.7, 11.0 Hz), 3.74 (1H, dd, *J* = 3.7, 11.0 Hz), 4.52 (1H, dd, *J* = 1.8, 5.5 Hz), 5.03 (1H, s), 5.36-5.44 (1H, m), 5.48-5.60 (1H, m), 7.16 (1H, br s). Anal. Calcd for C₁₀H₁₇NO₄: C, 55.80; H, 7.96; N, 6.51. Found: C, 55.97; H, 8.03; N, 6.47.

(4R,5R)-5-[(1S,3E)-1-Methanesulfonyloxymethyl-3-pentenyl]-4-methoxy-2-

oxazolidinone. To a mixture of **13** (1.03 g, 4.80 mmol) and triethylamine (0.73 g, 7.20 mmol) in THF (60 mL), methanesulfonyl chloride (0.60 g, 5.28 mmol) in THF (10 mL) was added at 0 °C followed by stirring at rt for 30 min. The solution was passed through a silica gel-pad (EtOAc as eluent) followed by evaporation *in vacuo*. Column chromatography on silica gel (CH₂Cl₂:EtOAc = 4:1 \rightarrow 1:1) afforded the

mesylate (1.41 g, quant.) as colorless crystals; mp 67-69 °C (from hexane-CH₂Cl₂); $[\alpha]_D^{28}$ +101.5 ° (c 1.02, CHCl₃); IR (nujol) 3270, 1750, 1720, 1363, 1225, 1180, 995, 975, 840 cm⁻¹; ¹H NMR δ 1.68 (3H, d, *J* = 7.3 Hz), 2.05-2.11 (1H, m), 2.15-2.24 (2H, m), 3.04 (3H, s), 3.35 (3H, s), 4.15 (1H, dd, *J* = 7.3, 10.4 Hz), 4.30 (1H, dd, *J* = 4.3, 10.4 Hz), 4.52 (1H, dd, *J* = 1.8, 4.9 Hz), 4.90 (1H, d, *J* = 1.8 Hz), 5.32-5.38 (1H, m), 5.53-5.60 (1H, m), 7.11 (1H, br s). Anal. Calcd for C₁₁H₁₉NO₆S: C, 45.04; H, 6.53; N, 4.77. Found: C, 44.94; H, 6.56; N, 4.75.

(*AR*, *5R*)-5-[(1*R*, 3*E*)-1-lodomethyl-3-pentenyl]-4-methoxy-2-oxazolidinone. A mixture of (4*R*, 5*R*)-5-[(1*S*, 3*E*)-1-methanesulfonyloxymethyl-3-pentenyl]-4-methoxy-2-oxazolidinone (1.41 g, 4.78 mmol) and sodium iodide (1.43 g, 9.57 mmol) in dimethoxyethane (96 mL) was refluxed for 1 h. The solution was then passed through a silica gel-pad (EtOAc as eluent) followed by evaporation *in vacuo*. Column chromatography on silica gel (CH₂Cl₂:EtOAc = 9:1 → 4:1) afforded the iodide (1.48 g, 95%) as colorless crystals; mp 68.0-68.5 °C (from hexane-CH₂Cl₂); [α]_D²⁷ +83.0 ° (c 0.76, CHCl₃); IR (nujol) 3290, 1742, 1710, 1235, 1082, 1065, 1008, 968, 958 cm⁻¹; ¹H NMR δ 1.68 (3H, d, *J* = 5.5 Hz), 1.76-1.83 (1H, m), 2.11 (1H, quintet, *J* = 7.3 Hz), 2.26-2.30 (1H, m), 3.21 (2H, dd, *J* = 1.2, 7.3 Hz), 3.36 (3H, s), 4.54 (1H, dd, *J* = 1.8, 4.9 Hz), 4.82 (1H, d, *J* = 1.8 Hz), 5.29-5.35 (1H, m), 5.57-5.63 (1H, m), 6.99 (1H, br s). Anal. Calcd for C₁₀H₁₆NO₃I: C, 36.94; H, 4.96; N, 4.31. Found: C, 36.92; H, 4.89; N, 4.28.

(4*R*, 5*R*)-4-Methoxy-5-[(1*R*, 3*E*)-1-methyl-3-pentenyl]-2-oxazolidinone (14). To a mixture of (4*R*, 5*R*)-5-[(1*R*, 3*E*)-1-iodomethyl-3-pentenyl]-4-methoxy-2-oxazolidinone (0.59 g, 1.83 mmol) and tributyltin hydride (0.64 g, 2.19 mmol) in THF (36 mL), triethylborane (1.04 M in hexane; 0.53 mL, 0.55 mmol) was added at -78 °C under an argon atmosphere followed by stirring for 1 h. The solution was then passed through a silica gel-pad (EtOAc as eluent) followed by evaporation *in vacuo*. Column chromatography on silica gel (CH₂Cl₂:EtOAc = 9:1 \rightarrow 7:3) afforded 14 (0.36 g, quant.) as colorless crystals; mp 66.2-66.5 °C (from hexane); [α]_D²⁷ +109.1 ° (c 0.98, CHCl₃); IR (nujol) 3270, 1740, 1712, 1230, 1110, 1070, 1020, 970, 950, 920 cm⁻¹; ¹H NMR δ 0.93 (3H, d, *J* = 6.7 Hz), 1.67 (3H, dd, *J* = 1.2, 6.7 Hz), 1.78-1.84 (1H, m), 1.91-1.97 (1H, m), 2.19-2.22 (1H, m), 3.33 (3H, s), 4.19 (1H, dd, *J* = 1.8, 7.3 Hz), 4.76 (1H, t, *J* = 1.8 Hz), 5.34-5.40 (1H, m), 5.46-5.52 (1H, m), 7.31 (1H, br s). Anal. Calcd for C₁₀H₁₇NO₃: C, 60.28; H, 8.60; N, 7.03. Found: C, 60.58; H, 8.64; N, 7.08.

(4R, 5R)-4-Methoxy-3-methyl-5-[(1R, 3E)-1-methyl-3-pentenyl]-2-oxazolidinone. To a mixture of 14 (0.28 g, 1.41 mmol) and iodomethane (0.80 g, 5.63 mmol) in THF (14 mL). NaH (60% in

oil; 0.09 g, 2.11 mmoł) was added at 0 °C followed by stirring at rt for 1 h. The solution was passed through a silica gel-pad (EtOAc as eluent) followed by evaporation *in vacuo*. Column chromatography on silica gel (CH₂Cl₂:EtOAc = 9:1 \rightarrow 7:3) afforded (4*R*, 5*R*)-4-methoxy-3-methyl-5-[(1*R*, 3*E*)-1-methyl-3-pentenyl]-2-oxazolidinone (0.30 g, quant.) as a colorless oil; $[\alpha]_D^{27}$ +71.9 ° (c 0.89, CHCl₃); IR (neat) 2960, 2920, 1770, 1430, 1395, 1220, 1040, 970 cm⁻¹; ¹H NMR δ 0.93 (3H, d, *J* = 6.7 Hz), 1.67 (3H, dd, *J* = 1.2, 6.1 Hz), 1.73-1.80 (1H, m), 1.91-1.97 (1H, m), 2.17-2.22 (1H, m), 2.92 (3H, s), 3.30 (3H, s), 4.08 (1H, dd, *J* = 1.8, 7.3 Hz), 4.70 (1H, d, *J* = 1.8 Hz), 5.30-5.39 (1H, m), 5.46-5.52 (1H, m); MS (EI): m/z 213 (M⁺), 198, 182, 156, 126, 85; HRMS (EI) calcd for C₁₁H₁₉NO₃ (M⁺): m/z 213.13648, found: m/z 213.13670.

(4S,5R)- and (4R,5R)-3-methyl-5-[(1R,3E)-1-methyl-3-pentenyl]-2-oxo-4-oxazolidinecarbonitrile (15). To a solution of (4R, 5R)-4-methoxy-3-methyl-5-[(1R, 3E)-1-methyl-3-pentenyl]-2oxazolidinone (0.30 g, 1.38 mmol) and trimethylsilyl cyanide (0.27 g, 2.76 mmol) in CH₂Cl₂ (14 mL), BF₃•OEt₂ (0.20 g, 1.38 mmol) in CH₂Cl₂ (1.4 mL) was added at -78 °C under an argon atmosphere followed by stirring at rt for 10 h. The mixture was passed through a silica gel-pad with EtOAc as the eluent. Concentration of the eluate *in vacuo* followed by chromatography on silica gel (CH₂Cl₂ \rightarrow CH₂Cl₂:EtOAc = 19:1) afforded **15** as a mixture of *trans*- and *cis*-isomers which were readily separable by column chromatography on silica gel (hexane:EtOAc = 4:1 \rightarrow 3:2).

trans-15 ((4*S*)-form; lower polarity): 0.14 g (52%) as colorless crystals; mp 42.5-43.0 °C (from hexane-CH₂Cl₂); $[\alpha]_D^{27}$ +35.6 ° (c 0.71, CHCl₃); IR (neat) 2960, 2920, 2850, 1760, 1425, 1390, 1220, 1140, 1120, 1040, 965, 823 cm⁻¹; ¹H NMR & 0.98 (3H, d, *J* = 6.1 Hz), 1.69 (3H, dd, *J* = 1.2, 6.1 Hz), 1.91-1.99 (1H, m), 2.00-2.06 (1H, m), 2.18-2.23 (1H, m), 2.99 (3H, s), 4.22 (1H, d, *J* = 6.1 Hz), 4.49 (1H, t, *J* = 6.1 Hz), 5.33-5.39 (1H, m), 5.51-5.58 (1H, m). Anal. Calcd for C₁₁H₁₆N₂O₂: C, 63.44; H, 7.74; N, 13.45. Found: C, 63.42; H, 7.74; N, 13.21.

cis-15 ((4*R*)-form; higher polarity): 0.11 g (38%) as colorless crystals; mp 68.5-69.5 °C (from hexane-CH₂Cl₂); $[\alpha]_D^{28}$ -7.8 ° (c 0.77, CHCl₃); IR (neat) 2960, 2920, 2850, 1760, 1425, 1390, 1220, 1140, 1120, 1040, 965, 823 cm⁻¹; ¹H NMR δ 0.99 (3H, d, *J* = 6.7 Hz), 1.68 (3H, d, *J* = 7.3 Hz), 2.02-2.09 (1H, m), 2.12-2.18 (1H, m), 2.41-2.46 (1H, m), 3.01 (3H, s), 4.21 (1H, dd, *J* = 7.3, 10.4 Hz), 4.49 (1H, d, *J* = 7.3 Hz), 5.36-5.42 (1H, m), 5.51-5.58 (1H, m). Anal. Calcd for C₁₁H₁₆N₂O₂: C, 63.44; H, 7.74; N, 13.45. Found: C, 63.38; H, 7.89; N, 13.30.

Ethyl (4*S*,5*R*)-3-Methyl-5-[(1*R*,3*E*)-1-methyl-3-pentenyl]-2-oxo-4-oxazolidinecarboxylate (16). A mixture of *trans*- and *cis*- 15 (0.12 g, 0.57 mmol) and K₂CO₃ (0.16 g, 1.16 mmol) in EtOH (17 mL) was stirred at rt for 2 h and then acidified with a solution of 2N HCl (1.75 mL, 3.49 mmol). After stirring for an additional 1 h, the solution was neutralized with a saturated solution of NaHCO₃. After removal of the solvents, EtOAc (100 mL) was added, followed by washing (brine, 20 mL × 3) and concentrated *in vacuo*. Column chromatography on silica gel (hexane:EtOAc = 8:2) afforded 16 (0.13 g, 90%) as a colorless oil; $[\alpha]_D^{28}$ +34.0 ° (c 1.31, CHCl₃) (lit.,³ $[\alpha]_D$ +29.5 ° (c 1.0, CHCl₃)); IR (neat) 2970, 2930, 1762, 1750, 1440, 1400, 1220, 1140, 1045, 970 cm⁻¹; ¹H NMR δ 0.94 (3H, d, *J* = 6.7 Hz), 1.32 (3H, t, *J* = 6.7 Hz), 1.66 (3H, dd, *J* = 1.2, 6.1 Hz), 1.84-1.90 (1H, m), 1.95 (1H, quintet, *J* = 7.3 Hz), 2.18-2.25 (1H, m), 2.91 (3H, s), 3.95 (1H, d, *J* = 4.9 Hz), 4.23-4.31 (3H, m), 5.33-5.39 (1H, m), 5.45-5.53 (1H, m); MS (EI): m/z 255 (M⁺), 198, 182, 128, 100, 55; HRMS (EI) calcd for C₁₃H₂₁NO₄ (M⁺): m/z 255.1470, found: m/z 255.1462.

In addition to **16**, the 4,5-*cis*-carboxylate was isolated in 1% yield (2 mg); ¹H NMR (500 MHz, CDCl₃) δ 0.94 (3H, d, J = 6.7 Hz), 1.32 (3H, t, J = 6.7 Hz), 1.66 (3H, d, J = 6.1 Hz), 1.69-1.76 (1H, m), 1.94-2.00 (1H, m), 2.33-2.39 (1H, m), 2.84 (3H, s), 4.18 (1H, d, J = 7.3 Hz), 4.23-4.35 (3H, m), 5.32-5.38 (1H, m), 5.47-5.53 (1H, m). The *cis*-stereochemistry was verified by differential NOE analysis.

REFERENCES

- M. Dreyfuss, E. Harri, H. Hofmann, H. Kobel, W. Pache, and H. Tscherter, *Eur. J. Appl. Microbiol.*, 1976, 3, 125; R. M. Wenger, '*Cyclosporin A*', ed. by D. J. G. White, Elsevier Biomedical, Amsterdam, 1982.
- K. E. Miller and D. H. Rich, J. Am. Chem. Soc., 1989, 111, 8351; D. H. Rich, M. K. Dhaon, B. Dunlap and S. P. F. Miller, J. Med. Chem., 1986, 29, 978.
- R. M. Wenger, Helv. Chim. Acta, 1983, 66, 2308; R. M. Wenger, Angew. Chem., Int. Ed. Engl., 1985, 24, 77.
- 4. A.V. Rama Rao, J. S. Yadav, S. Chandrasekhar, and C. Srinivas Rao, *Tetrahedron Lett.*, 1989, **30**, 6769.
- 5. W. D. Lubell, T. F. Jamison, and H. Rapoport, J. Org. Chem., 1990, 55, 3511.

- D. A. Evans and A. E. Weber, J. Am. Chem. Soc., 1986, 108, 6757; D. Seebach, E. Juaristi, D. D. Miller, C. Schickli, and T. Weber, Helv. Chim. Acta, 1987, 70, 237; J. D. Aebi, M. K. Dhaon, and D. H. Rich, J. Org. Chem., 1987, 52, 2881; U. Schmidt and W. Siegel, Tetrahedron Lett., 1987, 28, 2849; A. V. Rama Rao, T. G. Murali Dhar, T. K. Chakraborty, and M. K. Gurjar, Tetrahedron Lett., 1988, 29, 2069; A. Togni, S. D. Pastor, and G. Rihs, Helv. Chim. Acta, 1989, 72, 1471; D. Blaser, S. Y. Ko, and D. Seebach, J. Org. Chem., 1991, 56, 6230.
- 7. R. D. Tung and D. H. Rich, Tetrahedron Lett., 1987, 28, 1139.
- C. -Q. Sun and D. H. Rich, *Tetrahedron Lett.*, 1988, **29**, 5205; J. P. Genet, J. O. Durand, M. Savignac, and D. Pons, *Tetrahedron Lett.*, 1992, **33**, 2497.
- S. W. McCombie, B. B. Shankar, and A. K. Ganguly, *Tetrahedron Lett.*, 1989, **30**, 7029; A.
 V. Rama Rao, M. K. Gurjar, D. S. Bose, and R. Revathi Devi, *J. Org. Chem.*, 1991, **56**, 1320.
- T. Kunieda, T. Ishizuka, T. Higuchi, and M. Hirobe, J. Org. Chem., 1988, 53, 3381. For reviews, see: T. Ishizuka and T. Kunieda, J. Synth. Org. Chem. Jpn., 1991, 49, 118; T. Ishizuka, S. Ishibuchi, and T. Kunieda, Tetrahedron, 1993, 49, 1841; T. Kunieda and T. Ishizuka, 'Studies in Natural Products Chemistry, Stereoselective Synthesis (Part H)', ed. by Atta-ur-Rahman, Elsevier Science Publishers, Amsterdam, 1993, pp. 411-444; T. Kunieda and T. Ishizuka, 'Reviews on Heteroatom Chemistry', Vol. 15, ed. by S. Oae, MYU, Tokyo, 1996, pp. 227-241.
- 11. S. Ishibuchi, Y. Ikematsu, T. Ishizuka, and T. Kunieda, Tetrahedron Lett., 1991, 32, 3523.
- 12. S. Ishibuchi, T. Nagatani, T. Ishizuka, and T. Kunieda, Natural Products Letters, 1992, 1, 21.
- T. Yamamoto, S. Ishibuchi, T. Ishizuka, M. Haratake, and T. Kunieda, J. Org. Chem., 1993, 58, 1997.
- 14. T. Ishizuka, K. Kimura, S. Ishibuchi, and T. Kunieda, Chem. Pharm. Bull., 1990, 38, 1717.
- T. Kunieda, Y. Abe, T. Higuchi, and M. Hirobe, *Tetrahedron Lett.*, 1981, 22, 1257; T. Kunieda and M. Hirobe, *J. Synth. Org. Chem. Jpn.*, 1983, 41, 77; T. Nagamatsu and T. Kunieda, *Tetrahedron Lett.*, 1987, 28, 2375; T. Kunieda, T. Nagamatsu, T. Higuchi, and M. Hirobe, *ibid.*, 1988, 29, 2203; T. Kunieda, *Yakugaku Zassi*, 1988, 108, 593.

- H. Matsunaga, K. Kimura, T. Ishizuka, M. Haratake, and T. Kunieda, *Tetrahedron Lett.*, 1991, **32**, 7715; H. Matsunaga, T. Ishizuka, N. Marubayashi, and T. Kunieda, *Chem. Pharm. Bull.*, 1992, **40**, 1077.
- 17. This discrepancy might come from possible contamination with the *cis*-isomer.⁷
- 18. R. M. Magid, O. S. Fruchey, W. L. Johnson, and T. G. Allen, J. Org. Chem., 1981, 46, 1232.
- 19. K. Mori, M. Amaike, and H. Watanabe, *Liebigs Ann. Chem.*, 1993, 1287; S. E. Denmark and T. K. Jones, J. Org. Chem., 1982, 47, 4595.

Received, 1st June, 1998