THE HIGHLY STEREOCONTROLLED RADICAL-BASED ADDITION OF A 2,2-DICHLOROACYL FUNCTION TO A 2-OXAZOLONE HETEROCYCLE. A NEW APPROACH TO MeBmt, THE KEY COMPONENT OF CYCLOSPORIN

Hirofumi Matsunaga, Hiroyoshi Ohta, Tadao Ishizuka, and Takehisa Kunieda*

Faculty of Pharmaceutical Sciences, Kumamoto University,

5-1 Oe-honmachi, Kumamoto 862-0973, Japan

Abstract - The intramolecular Ru(l1)-catalyzed addition of the 2,2-dichloro-4 hexenoyl pendant group to an 2-oxazolone moiety followed by treatment with $(Me₃Si)₃SiH-Et₃B$ provides a perfectly stereocontrolled approach to the unusual amino acid (2S, 3R, 4R, **6E)-3-hydroxy-4-methyl-2-(methylamino)-6-octenoic** acid (MeBmt), which contains three contiguous stereogenic centers and is a key component of cyclosporin.

The unusual Cy-amino acid (25'. 3R, 4R, **6E)-3-hydroxy-4-methyl-2-(methylamino)-6-octenoic** acid (MeBmt), found in the immunosuppressive peptide cyclosporin,¹ appears to play a critical role in the observed biological activity of this chemotherapeutic agent² and represents an ideal target compound for asymmetric synthesis.³⁻⁹ A number of strategies for the multistep synthesis of MeBmt have appeared³⁻⁹ and involve stereoselective transformations of a variety of chiral sources such as tartaric acid.³ glucose⁴ and serine⁵ as well as a rationally designed aldehyde⁶ and epoxides.^{7,8}

This paper describes an entirely different synthetic approach to this unusual hydroxy amino acid, which contains three contiguous stereogenic centers, in which the efficient chiral functionalization of a simple heterocycle, 2-oxazolone, is involved in the key step.

^{*} Dedicated to Dr. Bernhard Witkop on the occasion of his 80th birthday.

We previously demonstrated the versatility of 2-oxazolone as a building block for chiral hydroxy amino acids such as hydroxyglutamic acid, 10 statine $10,11$ and the unusual amino acid components of amastatin and pepstatin.¹² Further investigation revealed an alternative method for the chiral synthesis of dichloroand difluorostatines with adjacent chiral centers, involving the smooth intramolecular Ru(1I)-catalyzed addition of the trihaloacetyl pendant groups to the 2-oxazolone moiety.¹³ This promising strategy for intramolecular radical-based addition, which proceeds with complete diastereoselection, is now extended to the chiral construction of the three contiguous stereogenic centers found in MeBmt, as retrosynthetically shown in Scheme I

The condensation of 2.2-dichloro-(4E)-hexenoic acid (5) and (1R,2S)-2-hydroxyethoxy-1-apocamphanecarboxylic ester (6114 gave the I-apocamphanecarboxylic acid **(7),** whose sodium salts readily reacted with DPPOx $(8)^{15}$ to give the chiral 3-acyl-2-oxazolone (9) with a dichloroacyl pendant group. A benzene solution of 9 was refluxed in the presence of a catalytic amount of $RuCl₂(PPh₃)₃$ (0.1 eq.) for 168 h to give the 12-membered macrolide (10) in a diastereomeric ratio of $3.4:1$, attributable to the C α -isomers only. Methanolysis of the isomeric mixture (10) in refluxing methanol followed by treatment with $(MegSi)$ ₃SiH under UV-irradiation gave the dechlorinated compound (12) with 99% de, while reduction with Bu₃SnH resulted in a lower selectivity of 87% de. The formation of small amounts of by-product, presumably an olefinic (Z) -isomer, was unavoidable under conditions of UV-irradiation. When Et3B was used as an initiator instead of UV-irradiation, the reaction of 11 with (Me_{3Si})3SiH proceeded smoothly to give a quantitative yield of the key intermediate **(12)** with perfectly controlled contiguous chiral centers with no detectable by-products.

The excellent selectivity thus observed can be rationalized by assuming an exclusive attack of the bulky reductant from the less hindered side to the carbon radicals generated *in* **situ,** as is schematically shown in Figure I. This consideration is further supported by the stereochemistry of the macrolide **(12),** verified by positive and negative NOE differences between the Ha and methylene protons, and the Ha and Hb-protons, respectively, as depicted in Figure 2.

The apocamphanecarbonyl auxiliary was reductively cleaved by LiBH₄-MeOH (1:2)¹⁶ to give the 2oxazolidinone derivative **(13),** the hydroxymethyl function of which was convened to a methyl group by conventional procedures. The N-methylation of 14 thus formed followed by cyanation 10 gave the cyanides **(15)** as a mixture of trans- and cis-isomers (1.4:1), which were readily separable by chromatography. Treatment of the isomeric mixture (15) with K_2CO_3 in EtOH at room temperature followed by acidification gave the trans-ester **(16)** in 90% yield,3 whose spectral and physical data were in good agreement with those previously reported,³ except for optical rotatory data.¹⁷ The hydrolytic conversion of **16** to MeBmt has been well established.3

i) 1) SOCI₂, 2) NaH/THF; rt, 3) TFA; ii) RuCI₂(PPh₃)₃/PhH; reflux; iii) MeOH; reflux; iv) (TMS)₃SiH. BEt₃/Toluene; -78 °C; v) LiBH₄-MeOH(1:2)/THF; 0 °C; vi) 1) MsCI, NEt₃/THF; rt, 2) Nal/DME; reflux, 3) Bu₃SnH, BEt₃/THF; -78 °C; vii) 1) Mel, NaH/THF; rt, 2) TMSCN, BF₃•OEt/CH₂Cl₂; -50 °C→rt; viii) 1) K2C03/EtOH; **ri,** 2) 2N HCI; rt

In conclusion, the intramolecular radical-based addition of the dichloroacyl pendant group to the 2 oxazolone heterocyclic moiety presented here provides a useful tool for the effective construction of chiral skeletons with three contiguous stereogenic centers, such as is found in MeBmt. This methodology has the potential for serving as a general synthetic method for a variety of 2-amino alcohols with multi-stereogenic centers of biological interest.

EXPERIMENTAL

Melting points were determined with a Yanaco micro melting point apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP 370 polarimeter. IR spectra were.recorded on a JASCO IR Report-100 spectrophotometer. ¹H NMR spectra were recorded in CDCl₃ with tetramethylsilane as the internal standard at 500 MHz on a JEOL ALPHA-500 spectrometer. MS and HRMS were obtained with a JEOL JMS-DX303HF mass spectrometer. Column chromatography was performed using silica gel 60 (70-230 mesh, Merck). All solvents were distilled prior to use; THF over Na/benzophenone, Et₂O over LiAlH₄, CH₂Cl₂ over CaH₂, MeOH over NaOMe and benzene over CaH₂.

2,2-Dichloro-(4E)-hexenoic acid (5). A solution of t-butyl dichloroacetate (2.76 g, 14.9 mmol) in THF (14 mL) was added dropwise to a solution of $HNEt₂$ (3.60 g, 49.3 mmol), BuLi (1.70 M in hexane; 26.4 mL, 44.8 mmol) and HMPA (2.68 g, 14.9 mmol) in THF (21 mL) under an argon atmosphere at -78 ^oC over a period of 30 min. After stirring at -78 ^oC for 30 min, a solution of *trans*-crotyl chloride¹⁸ (2.70 g, 29.8 mmol), derived from *trans*-2-butenol¹⁹ in THF (7 mL), was added at -78 °C, followed by stirring at rt for 10 h. The reaction was quenched by the addition of a saturated solution of NH4CI, followed by the addition of 200 mL of EtOAc. The usual work-up followed by chromatography on silica gel (hexane \rightarrow hexane:CH₂Cl₂ = 9:1) yielded t-butyl 2,2-dichloro-(4E)-hexenoate (2.20 g, 62%) as a colorless oil; bp 53.6 "C12.5 mmHg. IH NMR 6 1.52 (9H, sj, 1.71 (3H, d, *J* = 6.7 Hz), 3.06 (2H, d, *J=* 6.7 Hz), 5.45- 5.51 (1H, m), 5.65-5.71 (1H, m). The t-butyl ester was treated with CF_3CO_2H (10.5 g, 92 mmol) in CH₂Cl₂ (3.6 mL) at rt for 3 h to give 5 (1.7 g, quant.) as a colorless oil; IR (neat) 3600-2400, 2970, 2920, 2850, 1740, 1720, 1635, 1420, 1260, 1210, 965, 700 cm-1; IH NMR 6 1.73 (3H, d, *J* = 6.7 Hz), 3.12 $(2H, d, J = 6.7 \text{ Hz})$, 5.48-5.55 (1H, m), 5.70-5.77 (1H, m), 7.21 (1H, br s); MS (FAB, CHCl₃+NBA+NaI): m/z 227 ($[M+2Na-H]^+$), 205; HRMS (FAB, CHCl₃+NBA+NaI) calcd for $C_6H_7O_2Cl_2Na_2$ ([M+2Na-H]⁺): m/z 226.9619, found: m/z 226.9602.

(1R,2S)-2-[2-(2,2-Dichloro-(4E)-hexenoyloxy)ethoxy~-7,7-dimethylbicyclo[2.2.1]-

heptane-1-carboxylic acid (7). To a solution of 6^{14} (1.88 g, 6.60 mmol) in THF (33 mL) was added 2,2-dichloro-(4E)-hexenoyl chloride, derived from $5(3.02 \text{ g}, 16.5 \text{ mmol})$ and SOC₁₂ (19.6 g, 165 mmol), in the presence of NaH (60% in oil; 0.66 g, 16.5 mmol) and the mixture was stirred at rt for 3 h. The reaction was quenched by passing the solution through a silica gel-pad with EtOAc (200 mL) as eluent. The usual work-up followed by chromatography on silica gel (hexane:CH₂Cl₂ = 9:1 \rightarrow 2:8) yielded t-butyl (IR, **2S)-2-[2-(2,2-dichloro-(4E)-hexenoyloxy)ethoxy]-7,7-dimethylbicyclo[2.2.l]heptane-l-carboxylate** $(2.69 \text{ g}, 91\%)$ as a colorless oil; $\left[\alpha\right]_{\text{D}}^{27}$ +35.3 \degree (c 1.03, CHCl3); IR (neat) 2970, 2930, 2880, 1760, 1740, 1725, 1710, 1450, 1360, 1320, 1250, 1180, 1120, 1035, 965, 850 cm-1; IH NMR **F** 1.02-1.06 (IH, m), 1.04 (3H, s), 1.25 (3H. s), 1.37-1.44 (IH, m), 1.46 (9H, s), 1.60-1.72 (6H, m), 1.86-1.94 $(2H, m)$, 3.09 (2H, dd, J = 1.2, 7.3 Hz), 3.64-3.70 (3H, m), 4.29-4.33 (2H, m), 5.46-5.51 (1H, m), 5.67-5.71 (IH, m); MS (FAB, CHCI₃+NBA+NaI): m/z 471 (MNa⁺), 415, 375, 209, 57; HRMS (FAB, $CHCl₃+NBA+NaI$) calcd for $C_{22}H_{34}O₅Cl₂Na (MNa⁺): m/z 471.1681, found: m/z 471.1703.$

Subsequent treatment of the t-butyl ester (9.68 g, 21.5 mmol) with CF_3CO_2H (6.8 g, 60 mmol) in CH_2Cl_2 (6 mL) at rt for 3 h gave $\overline{7}$ (2.39 g, quant.) as a colorless oil; $\left[\alpha\right]_D^{26}$ +41.2 ° (c 1.00, CHCl3); IR (neat) 3600-2400, 2950, 2900, 1740, 1710, 1690, 1450, 1380, 1250, 1100, 1035, 965, 860, 720 cm-1: IH NMR δ 1.05 (3H, s), 1.08-1.35 (1H, m), 1.20 (3H, s), 1.25-1.33 (2H, m), 1.71 (3H, dd, $J = 1.2$, 6.7 Hz), 1.80-1.87 (3H, m), 2.00-2.04 (IH, m), 2.36-2.41 (IH, m), 3.10 (2H, d, **J** = 6.7 Hz), 3.76 (IH, **ddd,J=3.1,6.1,12.2Hz),3.84(lH,dd,J=3.1,6.7Hz),3.86(lH,ddd,J=3.1,6.1,12.2Hz),4.38** (IH, ddd, **J** = 3.1, 6.1, 12.2 Hz), 4.45 (IH, ddd, **J** = 3.1, 6.1, 12.2 Hz), 5.30-5.50 (IH, m), 5.67-5.72 (H, m) ; MS (FAB, CHCl₃+NBA+NaI): m/z 437 ($[M+2Na-H]$ ⁺), 415 (MNa⁺), 375, 209; HRMS (FAB, CHCl₃+NBA+NaI) calcd for C₁₈H₂₆O₅Cl₂Na (MNa⁺): m/z 415.1055, found: m/z 415.1042.

heptane-1-carbonyll-2-oxazolone (9). To the mixture of sodium carboxylate derived from **7** (1.21 g, 3.1 mmol) and NaH (60% in oil; 0.14 g, 3.4 mmol) in THF (10 mL), DPPOx¹⁵ (8) (diphenyl 2-oxo-3oxazolinylphosphonate; 0.98 g, 3.1 mmol) in THF (13 mL) was added at 0 "C followed by stirring at rt for 2 h. The solution was passed through a silica gel-pad (EtOAc as eluent) followed by evaporation and column chromatography on silica gel (hexane:CH₂Cl₂ = 5:5 \rightarrow CH₂Cl₂) to give the 2-oxazolone derivative

3-[(1R,2S)-2-[2-(2,2-Dichloro-(4E)-hexenoyloxy~ethoxy]-7,7-dimethylbicyclo[2.2.1~-

(9) (1.30 g, 92%) as a colorless oil; $[\alpha]_D^{27}$ +42.4 ° (c 1.01, CHCl3); IR (neat) 3150, 2940, 2880, 1790, 1760, 1745, 1710, 1355, 1280, 1230, 1120, 1070, 968, 912, 837, 702 cm⁻¹; ¹H NMR δ 1.14 (3H, s), 1.17-1.21 (1H, m), 1.33 (3H, s), 1.70 (3H, dd, $J = 1.2$, 6.7 Hz), 1.70-1.84 (4H, m), 1.93-1.97 (1H, m), 2.36-2.40 (1H, m), 3.03 (2H, d, $J = 6.7$ Hz), 3.52 (1H, dt, $J = 4.3$, 11.6 Hz), 3.65 (1H, dt, $J = 4.3$, 11.6 Hz), 4.23 (2H, t, $J = 4.3$ Hz), 4.79 (1H, q, $J = 3.7$ Hz), 5.43-5.49 (1H, m), 5.62-5.68 (1H, m), 6.78 (1H, d, $J = 2.4$ Hz), 7.27 (1H, d, $J = 2.4$ Hz); MS (FAB, CHCl₃+NBA+NaI): m/z 482 (MNa⁺), 375, 209; HRMS (FAB, CHCl₃+NBA+NaI) calcd for $C_{21}H_{27}NO_6Cl_2Na$ (MNa⁺): m/z 482.1113, found: m/z482.11ll.

Intramolecular Cyclization to the Macrolide (10). A mixture of 9 (8.29 g, 18.0 mmol) and $RuCl₂(PPh₃)₃$ (1.73 g, 1.80 mmol) in benzene (360 mL) was refluxed for 168 h. The mixture was passed through a silica gel-pad with EtOAc as eluent. Evaporation of the eluate followed by chromatography on silica gel (hexane:CH₂Cl₂ = 8:2 \rightarrow 4:6) afforded the macrolide (10) (4.65 g, 56%) as colorless crystals; mp 187-190 °C (from hexane-CH₂Cl₂). The ¹H NMR spectrum showed a diastereomeric mixture in a ratio of 3.4:1. IR (nujol) 1795, 1740, 1700, 1280, 1115, 975, 915 cm⁻¹; ¹H NMR δ 1.15-1.26 (1H, m), 1.20 $(3H, s)$, 1.21 $(3H, s)$, 1.63-1.68 $(2H, m)$, 1.73 $(3H, d, J = 6.1 Hz)$, 1.83-1.93 $(3H, m)$, 2.24-2.32 $(1H, m)$ **m),** 2.74-3.00 (2H, m), 3.28 and 3.30 (IH, dt, J= 1.8, 11.6 Hz), 3.75-3.93 (2H, **m),** 4.31 (IH, q, J= 3.7 Hz), 4.78 and 4.85 (IH, d, J= 1.2 Hz), 4.89 and 4.97 (IH, dt, **J=** 1.8, 11.6 Hz), 5.30-5.50 (IH, m), 5.70-5.77 (1H, m), 6.22 and 6.38 (1H, d, $J = 1.2$ Hz); MS (FAB, CHCl₃+NBA+NaI): m/z 482 (MNa⁺), 176; HRMS (FAB, CHCl₃+NBA+NaI) calcd for C₂₁H₂₇NO₆Cl₂Na (MNa⁺): m/z 482.1113, found: m/z 482.11 16.

Methanolysis to 11. A solution of 10 (4.65 g, 10.1 mmol) in methanol (200 mL) was refluxed for 3 h and usual work-up gave diastereomeric mixture 11 (4.58 g, quant.) as colorless crystals; mp 112-122 °C (from hexane-CH₂Cl₂); IR (nujol) 1798, 1740, 1696, 1280, 1240, 1200, 1115, 1095, 975, 917, 727 cm⁻¹; ¹H NMR δ 1.13-1.22 (7H, m), 1.62-1.66 (2H, m), 1.72 (3H, d, $J = 6.1$ Hz), 1.79-1.84 (2H, m), 1.88-1.94 (1H, m), 2.32-2.39 (1H, m), 2.67 and 2.78 (1H, dd, $J = 7.9$, 14.7 Hz), 2.95 and 2.98 (1H, dd, $J =$ 6.7, 14.7 Hz), 3.29 and 3.31 (1H, t, $J = 11.6$ Hz), 3.53 and 3.59 (3H, s), 3.73 and 3.75 (1H, d, $J = 11.6$ Hz), 3.82 and 3.92 (IH, d, $J = 11.6$ Hz), 4.35 (IH, q, $J = 3.7$ Hz), 4.42 and 4.49 (IH, s), 4.87 and 4.92 $(H, dt, J = 1.8, 11.6 Hz)$, 5.45-5.55 (IH, m), 5.52 and 5.55 (IH, s), 5.66-5.74 (IH, m); MS (FAB, $CHCl₃+NBA+NaI$: m/z 478 (MNa⁺), 424, 329, 176; HRMS (FAB, CHCl₃+NBA+NaI) calcd for $C_{22}H_{30}NO_7C$ INa (MNa⁺): m/z 482.1609, found: m/z 478.1598.

Reductive Dechlorination to 12. To a mixture of **11** (3.83 g. 8.41 mmol) and tris(trimethylsilyl) silane (2.30 g, 9.25 mmol) in toluene (168 mL), triethylborane (1.04 M in hexane; 2.43 mL, 2.52 mmol) was added at -78 ^oC under an argon atmosphere followed by stirring for 5 h. The solution was then passed through a silica gel-pad (EtOAc as eluent). The usual work-up of the eluate afforded **12** (3.55 g, quant.) as colorless crystals; mp 101.5-102.0 °C (from hexane); $\alpha \ln^{28}$ +26.7 ° (c 1.00, CHCl₃); IR (nujol) 1783, 1740, 1695, 1280, 1240, 1180, 1110, 980, 770, 720 cm⁻¹; ¹H NMR δ 1.13-1.21 (1H, m), 1.20 (3H, s), 1.22 (3H, s), 1.58-1.65 (2H, m), 1.67 (3H, dd, *J* = 1.2, 6.7 Hz), 1.81-1.93 (3H, m), 2.15.(lH, quintet, *J* = 7.3 Hz), 2.37 (IH, ddd, *J* = 3.6, 9.2, 12.2 Hz), 2.49 (IH, ddd, *J* = 6.1, 7.9, 12.2 Hz), 2.86 (IH, ddd, *J* = 3.6, 7.9, 9.2 Hz), 3.22 (IH, dt, *J* = 1.8, 11.6 Hz), 3.50 (3H, s), 3.666 (IH, t, *J* = 11.6 Hz), 3.670 (IH, t, *J* = 11.6 Hz), 4.33 (IH, q, *J* = 3.7 Hz), 4.40 (IH, dd, *J* = 1.2, 3.6 Hz), 4.98 (IH, dt, *J=* 1.8, 11.6 Hz), 5.32-5.38 (IH, m), 5.52 (IH, d, *J* = 1.2 Hz), 5.54-5.60 (IH, m). Anal. Calcd for $C_{22}H_{31}NO_7$: C, 62.69; H, 7.41; N, 3.32. Found: C, 62.64; H, 7.49; N, 3.42.

The optical purity was in excess of 99% de, as evidenced by HPLC analysis on a DAICEL CHIRALCEL-AD column with hexane-IPA (99:1) as an eluent.

(4R, SR)-5-[(IS, **3E)-l-Hydroxymethyl-3-pentenyl]-4-methoxy-2-oxazolidinone** (13). A solution of **12** (1.28 g, 3.04 mrnol) in THF (36 mL) was treated with LiBH4 (2.0 M in THF; 7.6 mL, 15.2 mmol) and MeOH (0.97 g, 30.4 mmol) at 0 °C under an argon atmosphere for 3 h. The mixture was then passed through a silica gel-pad with EtOAc as the eluent. The usual work-up of the eluate followed by chromatography on silica gel (hexane:AcOEt = $1:1 \rightarrow 1:9$) afforded, in addition to the oily 2-exohydroxyethoxy-l-apocamphanemethanol (0.66 g, quant.), the deacylated 2-oxazolidinone (13) (0.44 g, 67%) as colorless crystals; mp 104-105 °C (from hexane-CH₂Cl₂); $\left[\alpha\right]_0^{28}$ +121.0 ° (c 0.50, CHCl₃); IR (nujol) 3330, 1750, 1725, 1235, 1100, 1060, 1030, 1010, 970, 940 cm⁻¹; ¹H NMR δ 1.67 (3H, d, *J* = 6.1 Hz), 1.79-2.18 (3H, m), 3.34 (3H, s), 3.64 (IH, dd, *J=* 6.7, 11.0 Hz), 3.74 (IH, dd, *J=* 3.7, 11.0 Hz), 4.52 (1H, dd, $J = 1.8$, 5.5 Hz), 5.03 (1H, s), 5.36-5.44 (1H, m), 5.48-5.60 (1H, m), 7.16 (1H, br s). Anal. Calcd for CloH17N04: C, 55.80; H, 7.96; N, 6.51. Found: C, 55.97; H, 8.03; N, 6.47.

(4R,SR)-S-[(1S,3E)-1-Methanesulfonyloxymethyl-3-pentenyl]-4-methoxy-2-

oxazolidinone. To a mixture of 13 $(1.03 \text{ g}, 4.80 \text{ mmol})$ and triethylamine $(0.73 \text{ g}, 7.20 \text{ mmol})$ in THF (60 mL), methanesulfonyl chloride (0.60 g, 5.28 mmol) in THF (10 mL) was added at 0 °C followed by stirring at rt for 30 min. The solution was passed through a silica gel-pad (EtOAc as eluent) followed by evaporation in vacuo. Column chromatography on silica gel (CH₂CI₂:EtOAc = 4:1 \rightarrow 1:1) afforded the

mesylate (1.41 g, quant.) as colorless crystals; mp 67-69 °C (from hexane-CH₂CI₂); $\left[\alpha\right]_{0.5}^{28}$ +101.5 ° (c 1.02, CHCl₃); IR (nujol) 3270, 1750, 1720, 1363, 1225, 1180, 995, 975, 840 cm⁻¹; ¹H NMR δ 1.68 **(3H,d,J=7.3Hz),2.05-2.11(1H,m),2.15-2.24(2H,m),3.04(3H,s),3.35(3H.s),4.15(lH,dd,J** $= 7.3, 10.4$ Hz), 4.30 (1H, dd, $J = 4.3, 10.4$ Hz), 4.52 (1H, dd, $J = 1.8, 4.9$ Hz), 4.90 (1H, d, $J = 1.8$) Hz), 5.32-5.38 (1H, m), 5.53-5.60 (1H, m), 7.11 (1H, br s). Anal. Calcd for $C_{11}H_{19}NO_6S$: C, 45.04; H, 6.53; N, 4.77. Found: C, 44.94; H, 6.56; N, 4.75.

(4R, 5R)-5-[(lR, **3E)-l-lodomethyl-3-pentenyl]-4-methoxy-2-oxazolidinone.** A mixture of $(4R, 5R)$ -5- $[(1S, 3E)$ -1-methanesulfonyloxymethyl-3-pentenyl]-4-methoxy-2-oxazolidinone (1.41 g, 4.78) mmol) and sodium iodide (1.43 g, 9.57 mmol) in dimethoxyethane (96 mL) was refluxed for I h. The solution was then passed through a silica gel-pad (EtOAc as eluent) followed by evaporation in *vacuo.* Column chromatography on silica gel (CH₂Cl₂:EtOAc = 9:1 \rightarrow 4:1) afforded the iodide (1.48 g, 95%) as colorless crystals; mp 68.0-68.5 °C (from hexane-CH₂Cl₂); $[\alpha]_0^{27}$ +83.0 ° (c 0.76, CHCl₃); IR (nujol) 3290, 1742, 1710, 1235, 1082, 1065, 1008, 968, 958 cm⁻¹; ¹H NMR δ 1.68 (3H, d, J = 5.5 Hz), 1.76-1.83 (IH, m), 2.11 (IH, quintet, J = 7.3 Hz), 2.26-2.30 (IH, m), 3.21 (ZH, dd, *J* = 1.2, 7.3 Hz), 3.36 (3H, s), 4.54 (IH, dd, J = 1.8, 4.9 Hz), 4.82 (IH, d, *J* = 1.8 Hz), 5.29-5.35 (IH, m), 5.57-5.63 (IH, m), 6.99 (1H, br s). Anal. Calcd for $C_{10}H_{16}NO_3I$: C, 36.94; H, 4.96; N, 4.31. Found: C, 36.92; H, 4.89; N, 4.28.

(4R, 5R)-4-Methoxy-5-[(1R, **3E)-1-methyl-3-pentenyll-2-oxazolidinone** (14). To a mixture of $(4R, 5R)$ -5- $(1R, 3E)$ -1-iodomethyl-3-pentenyl-4-methoxy-2-oxazolidinone $(0.59 g, 1.83 mmol)$ and tributyltin hydride (0.64 **g,** 2.19 mmol) in THF (36 mL), triethylborane (1.04 M in hexane; 0.53 mL, 0.55 mmol) was added at -78 °C under an argon atmosphere followed by stirring for 1 h. The solution was then passed through a silica gel-pad (EtOAc as eluent) followed by evaporation in *vacuo.* Column chromatography on silica gel (CH₂Cl₂:EtOAc = 9:1 \rightarrow 7:3) afforded 14 (0.36 g, quant.) as colorless crystals; mp 66.2-66.5 °C (from hexane); $[\alpha]_D^{27}$ +109.1 ° (c 0.98, CHCl₃); IR (nujol) 3270, 1740, 1712, 1230, 1110, 1070, 1020, 970, 950, 920 cm-I; IH NMR 6 0.93 (3H. d, J= 6.7 Hz), 1.67 (3H, dd, *J=* 1.2, 6.7 Hz), 1.78-1.84 (IH, m), 1.91-1.97 (IH, **m),** 2.19-2.22 (IH, m), 3.33 (3H, s), 4.19 (IN, dd. J $= 1.8, 7.3$ Hz), 4.76 (1H, t, $J = 1.8$ Hz), 5.34-5.40 (1H, m), 5.46-5.52 (1H, m), 7.31 (1H, br s). Anal. Calcd for $C_{10}H_{17}NO_3$: C, 60.28; H, 8.60; N, 7.03. Found: C, 60.58; H, 8.64; N, 7.08.

(4R, **SR)-4-Methoxy-3-methyI-5-[(1R, 3E)-I-methyl-3-pentenyll-2-oxazolidinone.** To a mixture of 14 $(0.28 \text{ g}, 1.41 \text{ mmol})$ and iodomethane $(0.80 \text{ g}, 5.63 \text{ mmol})$ in THF (14 mL) . NaH $(60\%$ in oil; 0.09 g, 2.11 mmol) was added at 0 °C followed by stirring at rt for 1 h. The solution was passed through a silica gel-pad (EtOAc as eluent) followed by evaporation in *vacuo.* Column chromatography on silica gel (CH₂Cl₂:EtOAc = 9:1 \rightarrow 7:3) afforded (4R, 5R)-4-methoxy-3-methyl-5-[(1R, 3E)-1-methyl-3pentenyll-2-oxazolidinone $(0.30 \text{ g}, \text{quant.})$ as a colorless oil; $\left[\alpha\right]_{\text{D}}^{27}$ +71.9 $^{\circ}$ (c 0.89, CHCl₃); IR (neat) 2960, 2920, 1770, 1430, 1395, 1220, 1040, 970 cm-I; IH NMR **F** 0.93 (3H, d, *J* = 6.7 Hz), 1.67 (3H, dd, *J* = 1.2, 6.1 Hz), 1.73-1.80 (IH, m), 1.91-1.97 (IH, m), 2.17-2.22 (IH, m), 2.92 (3H, s), 3.30 (3H, s), 4.08 (IH, dd, *J* = 1.8, 7.3 Hz), 4.70 (IH, d, *J* = 1.8 Hz), 5.30-5.39 (IH, m), 5.46-5.52 (IH, m); MS (EI): m/z 213 (M⁺), 198, 182, 156, 126, 85; HRMS (EI) calcd for C₁₁H₁₉NO₃ (M⁺): m/z 213.1 3648, found: m/z 213.13670.

(4SSR)- **and (4R,5R)-3-methyI-5-[(1R,3E)-1-methyl-3-pentenyl]-2-oxo-4-oxazolidinecarbonitrile (15).** To a solution of (4R, **SR)-4-methoxy-3-methyl-5-[(1R, 3E)-1-methyl-3-pentenyll-2** oxazolidinone (0.30 g, 1.38 mmol) and trimethylsilyl cyanide (0.27 g, 2.76 mmol) in CH₂Cl₂ (14 mL), BF₃ \cdot OEt₂ (0.20 g, 1.38 mmol) in CH₂Cl₂ (1.4 mL) was added at -78 °C under an argon atmosphere followed by stirring at rt for 10 h. The mixture was passed through a silica gel-pad with EtOAc as the eluent. Concentration of the eluate in vacuo followed by chromatography on silica gel (CH₂Cl₂ \rightarrow CHzC12:EtOAc = 19: 1) afforded *15* as a mixture of *trans-* and cis-isomers which were readily separable by column chromatography on silica gel (hexane:EtOAc = $4:1 \rightarrow 3:2$).

trans-15 ((4S)-form; lower polarity): 0.14 g (52%) as colorless crystals; mp 42.5-43.0 °C (from hexane-CH₂Cl₂); α _{1D}²⁷ +35.6 ° (c 0.71, CHCl₃); IR (neat) 2960, 2920, 2850, 1760, 1425, 1390, 1220, 1140, 1120, 1040, 965, 823 cm-I; IH NMR 6 0.98 (3H, d, *J* = 6.1 Hz), 1.69 (3H. dd, *J* = 1.2, 6.1 Hz), 1.91- 1.99 (lH, m), 2.00-2.06 (IH, m), 2.18-2.23 (lH,m), 2.99 (3H, s),4.22 (lH,d, *J=* 6.1 Hz),4.49(lH, t, $J = 6.1$ Hz), 5.33-5.39 (1H, m), 5.51-5.58 (1H, m). Anal. Calcd for C₁₁H₁₆N₂O₂: C, 63.44; H, 7.74; N, 13.45. Found: C, 63.42; H, 7.74; N, 13.21.

cis-15 ((4R)-form; higher polarity): 0.11 g (38%) as colorless crystals; mp 68.5-69.5 °C (from hexane-CH₂Cl₂); α _{1D}²⁸ -7.8 ° (c 0.77, CHCl₃); IR (neat) 2960, 2920, 2850, 1760, 1425, 1390, 1220, 1140, 1120, 1040, 965, 823 cn-1; IH NMR 6 0.99 (3H, d, *J* = 6.7 Hz), 1.68 (3H, d, *J* = 7.3 Hz), 2.02-2.09 (IH, m), 2.12-2.18 (IH, **rn),** 2.41-2.46 (IH, m), 3.01 (3H, s), 4.21 (IH, dd, *J* = 7.3, 10.4 Hz),4.49 (1H, d, $J = 7.3$ Hz), 5.36-5.42 (1H, m), 5.51-5.58 (1H, m). Anal. Calcd for C₁₁H₁₆N₂O₂: C, 63.44: H, 7.74: N, 13.45. Found: C, 63.18; H, 7.89; N, 13.30.

Ethyl **(4S,SR)-3-Methyl-5-[(1R,3E)-l-methyl-3-pentenyl]-2-oxo-4-oxazolidinecarboxyl**ate (16). A mixture of *trans-* and *cis-* 15 $(0.12 \text{ g}, 0.57 \text{ mmol})$ and K_2CO_3 $(0.16 \text{ g}, 1.16 \text{ mmol})$ in EtOH (17 mL) was stirred at rt for 2 h and then acidified with a solution of 2N HCI (1.75 mL, 3.49 mmol). After stirring for an additional I h, the solution was neutralized with a saturated solution of NaHC03. After removal of the solvents, EtOAc (100 mL) was added, followed by washing (brine, 20 mL \times 3) and concentrated in vacuo. Column chromatography on silica gel (hexane:EtOAc = 8:2) afforded 16 (0.13 g, 90%) as a colorless oil; $\alpha \ln^{28}$ +34.0 ° (c 1.31, CHCl₃) (lit.,³ $\alpha \ln^{3}$ +29.5 ° (c 1.0, CHCl₃)); IR (neat) 2970, 2930, 1762, 1750, 1440, 1400, 1220, 1 140, 1045, 970 cm-l; 'H NMR 6 0.94 (3H, d, *J* = 6.7 Hz), 1.32 (3H, t, $J = 6.7$ Hz), 1.66 (3H, dd, $J = 1.2$, 6.1 Hz), 1.84-1.90 (1H, m), 1.95 (1H, quintet, $J = 7.3$ Hz), 2.18-2.25 (IH, m), 2.91 (3H, s), 3.95 (IH, d, **J** = 4.9 Hz), 4.23-4.31 (3H, m), 5.33-5.39 (IH, m), 5.45-5.53 (1H, m); MS (EI): m/z 255 (M⁺), 198, 182, 128, 100, 55; HRMS (EI) calcd for C₁₃H₂₁NO₄ (M+): m/z 255.1470, found: m/z 255.1462.

In addition to 16, the 4,5-cis-carboxylate was isolated in 1% yield (2 mg); ¹H NMR (500 MHz, CDCl3) δ 0.94 (3H, d, J = 6.7 Hz), 1.32 (3H, t, *J* = 6.7 Hz), 1.66 (3H, d, *J* = 6.1 Hz), 1.69-1.76 (IH, **m),** 1.94- 2.00 (IH, m), 2.33-2.39 (IH, m), 2.84 (3H, s), 4.18 (IH, d, J = 7.3 Hz), 4.23-4.35 (3H, m), 5.32-5.38 (IH, m), 5.47-5.53 (IH, m). The cis-stereochemistry was verified by differential NOE analysis.

REFERENCES

- 1. M. Dreyfuss, E. Harri, H. Hofmann, H. Kobel, W. Pache, and H. Tscherter, Eur. J. Appl. Microbial., 1976, **3,** 125; R. M. Wenger, 'Cylosporin A'. ed. by D. J. G. White, Elsevier Biomedical, Amsterdam, 1982.
- 2. K. E. Miller and D. H. Rich, *J.* Am. Chem. Soc., 1989, 111, 8351; D. H. Rich. M. K. Dhaon, B. Dunlap and S. P. F. Miller, **J.** Med. Che~n., 1986, **29,** 978.
- 3. R. M. Wenger, Helv. Chim. Acta, 1983, 66, 2308; R. M. Wenger, Angew. Chem., Int. Ed. Engl., 1985, **24,** 77.
- 4. A.V. Rama Rao, J. S. Yadav, S. Chandrasekhar, and C. Srinivas Rao, Tetrahedron Lett., 1989, **30,** 6769.
- 5. W. D. Lubell, T. F. Jamison, and H. Rapoport, *J. Org. Chem.*, 1990, **55.** 3511.
- D. A. Evans and A. E. Weber, *J. Am. Chem. Soc.,* 1986, 108, 6757; D. Seebach, E. 6. Juaristi, D. D. Miller, C. Schickli, and T. Weber, *Helv. Chim. Actu,* 1987, 70, 237; J. D. Aebi, M. K. Dhaon, and D. H. Rich, *J. Org. Chem.,* 1987, 52, 2881; U. Schmidt and W. Siegel, *Tetrahedron Lett.,* 1987, 28, 2849; **A.** V. Rama Rao, T. G. Murali Dhar, T. K. Chakraborty, and M. K. Gurjar, *Tetrahedron Lett.,* 1988, **29,** 2069; A. Togni, S. D. Pastor, and G. Rihs, *Helv. Chim. Acta,* 1989, 72, 1471; D. Blaser, S. Y. KO, and D. Seebach, *J. Org. Chem.,* 1991, 56, 6230.
- 7. R. D. Tung and D. H. Rich, *Tetrahedron Lett.,* 1987, 28, 1139.
- 8. C. -Q. Sun and D. H. Rich, *Tetrahedron Lett.,* 1988, **29,** 5205; J. P. Genet, J. 0. Durand, M. Savignac, and D. Pons, *Tetrahedron Lett.,* 1992, 33, 2497.
- 9. S. W. McCombie, B. B. Shankar, and A. K. Ganguly, *Tetrahedron Lett.,* 1989,30,7029; A. V. Rama Rao, M. K. Gurjar, D. S. Bose, and R. Revathi Devi, *J. Org. Chem.,* 1991, *56,* 1320.
- 10. T. Kunieda, T. Ishizuka, T. Higuchi, and M. Hirobe, J. *Org. Ckem.,* 1988, 53, 3381. For reviews, see: T. Ishizuka and T. Kunieda, *J Synth. Org. Chem. Jpn.,* 1991, **49,** 118; T. Ishizuka, S. Ishibuchi, and T. Kunieda, *Tetrahedron,* 1993, **49,** 1841; T. Kunieda and T. Ishizuka, *'Studies in Natural Products Chemistry, Stereoselective Synthesis (Part H)',* ed. by Atta-ur-Rahman, Elsevier Science Publishers, Amsterdam, 1993, pp. 41 1-444; T. Kunieda and T. Ishizuka, *'Reviews on Heteroatom Chemistry'*, Vol. 15, ed. by S. Oae, MYU, Tokyo, 1996, pp. 227-24 1.
- $11.$ S. Ishibuchi, Y. Ikematsu, T. Ishizuka, and T. Kunieda, *Tetrahedron Lett.,* 1991, 32, 3523.
- $12.$ S. Ishibuchi, T. Nagatani, T. Ishizuka, and T. Kunieda, *Natural Products Letters,* 1992, 1,21.
- 13. T. Yamamoto, S. Ishibuchi, T. Ishizuka, M. Haratake, and T. Kunieda, *J. Org. Chem.,* 1993, 58, 1997.
- 14. T. Ishizuka, K. Kimura, S. Ishibuchi, and T. Kunieda, *Chem. Pharm. Bull.,* 1990, 38, 1717.
- 15. T. Kunieda, Y. Abe, T. Higuchi, and M. Hirobe, *Tetrahedron Lett.,1981,* 22, 1257; T. Kunieda and M. Hirobe, *J. Synth, Orz. Clrem. Jp.,* 1983, **41,** 77; T. Nagamatsu and T. Kunieda, *Tetrahedron Lett.,* 1987, 28, 2375; T. Kunieda, T. Nagamatsu, T. Higuchi, and M. Hirobe, *ibid,* 1988, **29,** 2203; T. Kunieda, *Yakugaku Zassi,* 1988, 108, 593.
- H. Matsunaga, K. Kimura, T. Ishizuka, M. Hardtake, and T. Kunieda, *Tetrahedron Lett.,* 16. 1991, **32,** 7715; H. Matsunaga, T. Ishizuka, N. Marubayashi, and T. Kunieda, *Chem. Pharm.* Bull., 1992,40, 1077.
- This discrepancy might come from possible contamination with the *cis*-isomer.⁷ 17.
- 18. R. M. Magid, *0.* S. Fruchey, W. L. Johnson, and T. G. Allen, **J.** *Org. Chem.,* 1981, *46,* 1232.
- 19. K. Mori, M. Amaike, and H. Watanabe, *Liebigs Ann. Chem.,* 1993, 1287; S. E. Denmark and T. K. Jones, **J.** *Org. Chem.,* 1982, *47,* 4595.

Received, 1st June, 1998