A NEW STEREOSELECTIVE SYNTHETIC STRATEGY FOR β -HYDROXY- α -AMINO ACIDS OF VANCOMYCIN

Mukund K Gurjar,* Shashwati Pal, and Debendra K Mohapatra

Indian Institute of Chemical Technology, Hyderabad 500 007, India

<u>Abstract</u> - The synthesis of *syn* and *anti* β -hydroxy- α -amino acids representing rings C and E of vancomycin has been achieved starting from (*R*)- and (*S*)-Garner's aldehydes by a stereocontrolled Grignard arylation reaction.

 β -Hydroxy- α -amino acids are the primary constituents of many bioactive natural products.¹ Many brilliant approaches have been developed to synthesise them in enantiomerically pure forms.² Vancomycin (1), a glycopeptide antibiotic,³ is increasingly becoming a drug of choice, particularly against penicillin resistant *Staphyloccii strain*. The complexity of vancomycin has preluded its total synthesis and many schools including ours have embarked on this endeavour.⁴ Apart from many unprecedented structural features,

vancomycin has unique *syn*- and *anti*- β -hydroxy-3-chlorotyrosine units representing rings C and E of 1. The absolute configuration of ring C was established as 2S,3R while that of ring E as 2R,3R. Although, some elegant approaches⁵ for both these segments of vancomycin have been reported, we believe that scope still existed in developing new stereoselective synthetic strategies based on highly stereocontrolled Grignard addition to the Garner's aldehyde. This paper reveals our efforts to synthesise

suitably substituted ring E (2) and ring C (3) derivatives of vancomycin (1) based on the above protocol. 2-Chlorophenol (4) was brominated using Br_2 -CCl₄ to afford 4-bromo-2-chlorophenol (5).⁶ Subsequent benzyl protection of the phenolic group with BnBr-K₂CO₃ in acetone gave 6 (Scheme 1). Treatment of 6 with magnesium in THF led to the formation of the Grignard reagent (7) exclusively, whose reaction⁷ with (*S*)-Garner's aldehyde (8)⁸ led to the formation of 8:1 diastereomeric mixture of 9 + 10 in which the *anti* product (9) predominated.⁹ Acetylation of the mixture with Ac₂O-pyridine followed by chromatography gave the diastereomerically pure isomers (11) and (12). The absolute stereochemistry of 11 was established by its transformation into the known molecule (15). The stereoselective formation of the *anti* product (9) was explained by involving Felkin-Anh model according to which nucleophilic addition occurred from the least hindered face as shown in Figure A.¹⁰

Reagents and conditions: a) i) Br₂, CCl₄, rt, 12 h; ii) BnBr, K₂CO₃, Me₂CO, Δ , 2 h; b) Mg, THF, rt, 1 h; c) THF, 0 °C, 1 h; d) Ac₂O, Pyr, CH₂Cl₂, rt, 2 h.

Transformation of the undesired syn isomer (12) into the required anti isomer (9) was investigated. For example, hydrolysis of 12 with NaOMe-MeOH followed by oxidation with iodoxybenzoic acid (IBX)-DMSO provided the keto derivative (13). Compound (13) was reduced with $Zn(BH_4)_2$ in benzene-ether to provide exclusively the anti isomer (9)¹¹ which was acetylated to 11 and then correlated with previously prepared sample.

Figure A

Treatment of 11 with 98% aq. TFA at 0 °C smoothly cleaved the cyclohexylidene group to obtain 14. The structure of 14 was compatible with the ¹H NMR spectrum whereas high resolution FABMS revealed molecular ion peak (M⁺) at m/z : 449.1618 (calculated for $C_{23}H_{28}NO_6Cl$: 449.1605). The Jone's oxidation of 14 at 0 °C gave the required acid (2). For comparison, 2 was deacetylated with K₂CO₃-MeOH to furnish (2*R*,3*R*)-hydroxy-3-chlorotyrosine derivative (15). Compound (15) showed optical rotation, ¹H NMR and MS spectral values similar to the reported data^{4d} (Scheme 2).

Scheme 2

Reagents and conditions : a) aq. TFA, CH_2Cl_2 , 0 °C, 1 h; b) Jone's reagent, Me_2CO , 0 °C, 1 h; c) K_2CO_3 , MeOH, rt, 30 min.

Having established an efficient protocol to obtain 2 (ring E), efforts were directed toward the synthesis of the corresponding (2S,3R)- β -hydroxytyrosine derivative (3), representing ring C of vancomycin (Scheme 3).

Reagents and conditions : a) THF, 0 °C, 1 h; b) Ac₂O, Pyr, rt, 2 h.

For example, the reaction of 7 with (*R*)-Garner's aldehyde (16) gave a mixture of diastereomers (17). As described earlier for separation of diastereomeric mixture (9+10), acetylation of 17 and chromatography likewise provided enantiomerically pure *anti* product (18) (89%) and *syn* (19) (11%). In order to directly convert 17 into the required *syn* isomer (19), its oxidation with iodoxybenzoic acid (IBX)-DMSO was carried out to give the ketone (20) whose stereoselective reduction with NaBH₄ - MeOH at 0 °C followed by acetylation provided the *syn* product (19) (92%).¹² Conversion of 19 into the final

product (3) (ring C) via 22 was carried out by the same sequence of reactions as reported for 2 (ring E) (Scheme 4).

Reagents and conditions: a) IBX, DMSO, rt, 1 h; b) NaBH₄, MeOH, 0 °C, 30 min.; c) Ac₂O, Pyr, rt, 2 h; d) aq. TFA, CH₂Cl₂, 0 °C, 1 h; e) Jone's reagent, Me₂CO, 0 °C, 1 h.

In conclusion, we have demonstrated that a strategy involving stereocontrolled addition of arylmagnesium reagent on Garner's aldehyde forms an efficient approach for making both the diastereomers of β -hydroxy- α -amino acids associated with an important antibiotic-vancomycin.

EXPERIMENTAL

The reactions were monitored by TLC on Merck 0.25 mm precoated silica gel glass plate and detected by UV and molybdic acid spray. NMR spectra were recorded on Varian Gemini 200 instrument with TMS as an internal standard. MS spectra were recorded on VG Autospec (M-series). Evaporations were carried out below 40 °C. All the solvents were distilled before use and light petroleum refers to fraction, bp 60-

80°C. Optical rotations were measured on JASCO DIP 370 digital polarimeter. Elemental analysis were carried out on Elementar Vario El.

4-Benzyloxy-3-chloro-1-bromobenzene (6)

Compound (5) (12.0 g, 58.0 mmol), benzyl bromide (9.91 g, 58.0 mmol), K_2CO_3 (11.4 g) in acetone (200 mL) was heated under reflux for 2 h and filtered. The filtrate was concentrated and the residue purified by column chromatography on silica gel by using ethyl acetate-light petroleum (1:20) as eluent to give 6 (15.5 g, 90%) as a white solid; ¹H NMR (CDCl₃): δ 5.26 (s, 2H), 6.80 (d, J=10 Hz, 1H), 7.20-7.45 (m, 6H), 7.50 (d, J=2.0 Hz, 1H). Anal. Calcd for C₁₃H₁₀OBrCl : C, 52.46; H, 3.36. Found : C,

112

52.03; H. 3.42.

(2S, 3R)-3-Acetoxy-3-(4-benzyloxy-3-chlorophenyl)-2-*tert*-butoxycarbonylamino-1,2cyclohexylidenepropan-1-ol (11) and (2S,3S)-3-acetoxy-3-(4-benzyloxy-3-chlorophenyl)-2-*tert*-butoxycarbonylamino-1,2-cyclohexylidenepropan-1-ol (12)

Grignard reagent (7) was prepared from Mg (0.9 g, 37.8 mmol) and 4-benzyloxy-3-chloro-1bromobenzene (6) (11.0 g, 37.8 mmol) in dry THF (100 mL) at rt under nitrogen atmosphere in 1 h. The mixture was then cannulated to a flask containing the aldehyde (8) (2.5 g, 9.3 mmol) in THF at 0 °C.

After 1 h at 0 °C, the reaction was quenched by the addition of saturated NH₄Cl solution and extracted with ethyl acetate (2 x 200 mL). The organic layer was dried (Na₂SO₄), concentrated and the residue purified by column chromatography over silica gel using ethyl acetate-light petroleum (3:7) as elucnt to furnish a mixture of diastereomers (9 + 10) (3.4 g, 75%) as a syrup.

The above mixture (9 + 10) (3.0 g, 6.16 mmol) was acetylated with acetic anhydride (1.25 mL, 12.32 mmol) and pyridine (1.22 mL, 15.40 mmol) in CH₂Cl₂ (15 mL) for 2 h at rt. The reaction was quenched with MeOH (2 mL) and evaporated to give a residue which was chromatographed on silica gel using ethyl acetate-light petroleum (1:9) as eluent. The first fraction gave *anti* product (11) (2.75 g, 84%) as a pale yellow syrup; $[\alpha]_D$ -7.5° (c 0.61, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 1.3-1.8 (m, 16H), 2.0-2.45 (m, 3H), 2.14 (s, 3H), 3.70 (dd, J= 6.6 Hz, 8.8 Hz, 1H), 4.00 (m, 2H), 5.11 (s, 2H), 6.04 (d, J=4.4 Hz, 1H), 6.86 (d, J=8.8 Hz, 1H), 7.34 (m, 7H); FABHRMS: Calcd for C₂₉H₃₇NO₆Cl: 530.2204; Found: 530.2180 (M++1). Anal. Calcd for C₂₉H₃₆NO₆Cl : C, 65.71; H, 6.85. Found : C, 65.92; H, 6.65. The second fraction provided *syn* product (12) (0.34 g, 10%); $[\alpha]_D$ -10° (c 0.5, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 1.3-1.7 (m, 17H), 2.0-2.3 (m, 2H), 2.02 (s, 3H), 3.70 (m, 2H), 4.20 (m, 1H), 5.09 (s, 2H), 5.86 (d, J=8.8 Hz, 1H), 6.86 (d, J=8.8 Hz, 1H), 7.36 (m, 7H); HRFABMS: Calcd for C₂₉H₃₇NO₆Cl; 530.2204; Found: 530.2189 (M++1). Anal. Calcd for C₂₉H₃₆NO₆Cl : C, 65.71; H, 6.85. Found : CDCl₃, 200 MHz): δ 1.3-1.7 (m, 17H), 2.0-2.3 (m, 2H), 2.02 (s, 3H), 3.70 (m, 2H), 4.20 (m, 1H), 5.09 (s, 2H), 5.86 (d, J=8.8 Hz, 1H), 6.86 (d, J=8.8 Hz, 1H), 7.36 (m, 7H); HRFABMS: Calcd for C₂₉H₃₇NO₆Cl; 530.2204; Found: 530.2189 (M++1). Anal. Calcd for C₂₉H₃₆NO₆Cl : C, 65.71; H, 6.85. Found : C, 65.71; H, 6.85. Found : C, 65.68; H, 6.75.

(2S)-3-(4-Benzyloxy-3-chlorophenyl)-2-*tert*-butoxycarbonylamino-1,2-cyclohexylidene-3-oxopropan-1-ol (13)

A solution of 12 (2.2 g, 4.16 mmol) in MeOH (15 mL), containing sodium (24 mg, 1.04 mmol) was stirred at rt for 30 min, deionised with Amberlite IR 120 (H+) resin and concentrated to obtain 10 (2.04 g, 93%), used as such for next reaction.

A solution of iodoxybenzoic acid (IBX) (1.72 g, 6.16 mmol) in DMSO (5 mL), and **10** (2.0 g, 4.11 mmol) in THF (3 mL) was stirred at rt for 1 h. Ice was added, the solid filtered and washed with ethyl acetate. The aqueous layer was extracted, washed with 5% NaHCO₃ solution, brine, dried (Na₂SO₄) and concentrated. The residue was purified over silica gel by eluting with ethyl acetate-light petroleum (1:9) to furnish **13** (1.45 g, 73%) as a syrup; ¹H NMR (CDCl₃, 200 MHz): δ 1.26 (s, 9H), 1.45-2.55 (m, 10H), 3.86 (m, 1H), 4.20 (m, 1H), 5.20 (s, 2H), 5.32 (m, 1H), 6.97 (d, J=8.1 Hz, 1H), 7.36 (m, 5H), 7.75 (dd, J=2.2 Hz, 8.1 Hz, 1H), 7.93 (s, 1H); HRFABMS: Calcd for C₂₇H₃₂NO₅Cl: 485.1969; Found 485.1964 (M+). Anal. Calcd for C₂₇H₃₂NO₅Cl : C, 66.73; H, 6.64. Found : C, 66.69; H, 6.54.

(2S,3R)-3-Acetoxy-3-(4-benzyloxy-3-chlorophenyl)-2-*tert*-butoxycarbonylamino-1,2cyclohexylidenepropan-1-ol (11)

To the solution of 13 (1.2 g, 2.47 mmol) in (1:4) benzene-ether solvent mixture (10 mL), 0.66 M solution of $Zn(BH_4)_2$ in THF (5.6 mL, 3.7 mmol) was added. The reaction was stirred at rt for 1 h, decomposed with saturated NH₄Cl solution and extracted with ethyl acetate. The organic layer was dried (Na₂SO₄), concentrated and treated with acetic anhydride (0.5 mL, 4.95 mmol) and pyridine (0.5 mL, 6.18 mmol) at rt for 2 h. After usual workup, the residue was purified on silica gel with ethyl acetate-light petroleum (1:9) to give 11 (1.0 g, 77%) which was found to be identical with the compound obtained above.

(2S, 3R)-3-Acetox y-3-(4-benzylox y-3-chlorophenyl)-2-*tert*-butox ycarbonylaminopropan-1-ol (14)

Compound (11) (1.0 g, 1.89 mmol) was dissolved in CH₂Cl₂ (10 mL) and 3 mL of 98% aq. TFA was added at 0 °C. The mixture was stirred at the same temperature for 1 h and excess TFA neutralised with satutated solution of NaHCO₃. The aqueous phase was extracted with CH₂Cl₂, and the extract was washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on silica gel using ethyl acetate - light petroleum (2:3) as eluent to furnish 14 (0.60 g, 70%) as a white solid mp 109-110 °C; $[\alpha]_D$ -27° (c 0.89, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 1.28 (s, 9H), 2.08 (s, 3H), 2.53 (br s, 1H), 3.62 (m, 2H), 3.93 (m, 1H), 4.84 (d, J=8.8 Hz, 1H), 5.08 (s, 2H), 5.73 (d, J=6.6 Hz, 1H), 6.86 (d, J=8.0 Hz, 1H), 7.1-7.5 (m, 7H); HR-FABMS: Calcd for C₂₃H₂₈NO₆Cl: 449.1605; Found: 449.1618 (M+). Anal. Calcd for C₂₃H₂₈NO₆Cl : C, 61.39; H, 6.27. Found : C, 61.40; H, 6.21.

(2R, 3R)-3-(4-Benzyloxy-3-chlorophenyl)-2-*tert*-butoxycarbonylamino-3-hydroxypropionic acid (15)

To a solution of 14 (0.55 g, 1.22 mmol) in acetone (4 mL) at 0 °C, Jones reagent was added dropwise till the orange colour of the reagent retained. After 1 h, the reaction was quenched with i-PrOH and concentrated. The residue was extracted with ethyl acetate, the extract was dried (Na₂SO₄) and concentrated to yield a residue which was purified by column chromatography on silica gel using ethyl acetate : hexane (3:2) as eluent to afford 2 (0.31 g, 54%) as a oil; $[\alpha]_D$: -60° (c 1.14, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 1.36 (s, 9H), 2.09 (s, 3H), 4.61 (br s), 4.91 (br s, 1H), 5.02 (m, 1H), 5.15 (s, 2H), 6.11 (m, 1H), 6.95 (d, J=8.5 Hz, 1H), 7.19 (d, J=8.5 Hz, 1H), 7.39 (m, 6H); HRFABMS: Calcd for C₂₃H₂₇NO₇Cl. 464.1416; Found 464.1405 (M⁺+1). Anal. Calcd for C₂₃H₂₆NO₇Cl : C, 59.55; H, 5.65. Found : C, 59.36; H, 5.66.

Compound (2) (0.25 g, 0.54 mmol), K_2CO_3 (20 mg, 0.16 mmol) and MeOH (5 mL) were stirred at rt for 30 min. It was evaporated, extracted with ethyl acetate and the extract was washed with aqueous 5% KHSO₄ solution, brine and dried (Na₂SO₄). Solvent removal provided a residue which was purified on silica gel using ethyl acetate:light petroleum (4:1) to furnish 15 (0.21 g, 91%); [α]_D -44° (c 0.53, CHCl₃),

lit.,^{4d} $[\alpha]_D$ -45° (c 0.5, CHCl₃); ¹H NMR (DMSO-d₆, 200 MHz): δ 1.36 (s, 9H), 3.25 (br s), 4.36 (m, 1H), 4.93 (m, 1H), 5.14 (s, 2H), 5.85 (m, 1H), 6.97 (d, J=8.5 Hz, 1H), 7.25 (d, J=8.5 Hz, 1H), 7.3-7.5 (m, 5H), 7.75 (s, 1H); FABMS: 422 (M++1).

(2R,3S)-3-Acetoxy-3-(4-benzyloxy-3-chlorophenyl)-2-*tert*-butoxycarbonylamino-1,2-cyclohexylidenepropan-1-ol (18) and (2R,3R)-3-acetoxy-3-(4-benzyloxy-3-chlorophenyl)-2-*tert*-butoxycarbonylamino-1,2-cyclohexylidenepropan-1-ol (19)

The Grignard reaction between 7 (9.95 g, 34.20 mmol) and aldehyde (16) (2.3 g, 8.55 mmol) was carried out by a similar procedure as described earlier, which gave a diastereomeric mixture of products (17) (3.1 g, 74.5%).

Acetylation of 17 (1.0 g, 2.05 mmol) with acetic anhydride (0.42 mL, 4.11 mmol) and pyridine (0.4 mL, 5.13 mmol) followed by column chromatography on silica gel using ethyl acetate - light petroleum (1:4) gave 18 (0.97, 89%) as a syrup, $[\alpha]_D$ 8.2° (c 0.42, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 1.4-1.7 (m, 17H), 2.10 (m, 5H), 3.80 (m, 1H), 4.1-4.2 (m, 2H), 5.11 (s, 2H), 6.10 (d, J=4.4 Hz, 1H), 6.87 (d, J=8.3 Hz, 1H), 7.05-7.4 (m, 8H); HRFABMS: Calcd for C₂₉H₃₇NO₆Cl: 530.2204; Found: 530.2198 (M++1). Anal. Calcd for C₂₉H₃₆NO₆Cl : C, 65.71; H, 6.85. Found : C, 65.79; H, 6.66. Further elution provided compound (19) (0.12 g, 11%) as a syrup; $[\alpha]_D$ 16.9° (c 1.77, CHCl₃); ¹H NMR (CDCl₃, 200 MHz): δ 1.3-1.75 (m, 17H), 2.00 (m, 5H), 3.72 (m, 2H), 4.15-4.4 (m, 1H), 5.11 (s, 2H), 5.84 (d, J=7.7 Hz, 1H), 6.86 (d, J=8.3 Hz, 1H), 7.05-7.4 (m, 8H); HRFABMS: Calcd for C₂₉H₃₆NO₆Cl : 530.2204; Found 530.2188 (M++1). Anal. Calcd for C₂₉H₃₆NO₆Cl : C, 65.71; H, 6.85. Found : C, 65.71; H, 6.85. Found : C, 65.71; H, 6.86. CDCl₃, 200 MHz): δ 1.3-1.75 (m, 17H), 2.00 (m, 5H), 3.72 (m, 2H), 4.15-4.4 (m, 1H), 5.11 (s, 2H), 5.84 (d, J=7.7 Hz, 1H), 6.86 (d, J=8.3 Hz, 1H), 7.05-7.4 (m, 8H); HRFABMS: Calcd for C₂₉H₃₇NO₆Cl: 530.2204; Found 530.2188 (M++1). Anal. Calcd for C₂₉H₃₆NO₆Cl : C, 65.71; H, 6.85. Found : C, 65.82; H, 6.53.

(2R, 3R)-3-Acetoxy-3-(4-benzyloxy-3-chlorophenyl)-2-*tert*-butoxycarbonylamino-1, 2cyclohexylidenepropan-1-ol (19)

Oxidation of 17 (2.0 g, 4.10 mmol) was carried out with iodoxybenzoic acid (IBX)-DMSO as described earlier to give 20 (1.43 g, 72%). NaBH₄ (0.23 g,6.18 mmol) was added in portions to a solution of (20) (2.0 g, 4.12 mmol) in MeOH (15 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min after which time excess NaBH₄ was quenched with dil. CH₃COOH and concentrated. It was extracted with ethyl acetate and the extract was washed with brine, dried (Na₂SO₄) and concentrated to afford the residue which was purified on silica gel using ethyl acetate - light petroleum (3:7) as eluent to furnish 21 (1.7 g, 85%) as a semi solid. Conventional acetylation of 21 (1.7 g, 3.49 mmol) with acetic anhydride (0.71 mL, 6.98 mmol) and pyridine (0.6 mL, 8.73 mmol) gave 19 (1.7 g, 92%). The ¹H NMR and optical rotation data of 19 was found to be identical to the product obtained above.

(2R, 3R)-3-Acetoxy-3-(4-benzylocy-3-chlorophenyl)-2-*tert*-butoxycarbonylaminopropan-1-ol (22)

Compound (22) as a thick syrup was obtained by the similar procedure as described earlier for 14; $[\alpha]_D$ -

 52.2° (c 0.55, CHCl₃); ¹H NMR (CDCl₃, 200 MHz) : δ 1.73 (s, 9H), 2.14 (s, 3H), 3.52 (m, 2H), 3.97 (s, 1H), 4.95 (br d, 1H), 5.16 (s, 2H), 5.91 (d, J=6.8 Hz, 1H), 6.93 (d, J=8.3 Hz, 1H), 7.20 (dd, J=2.2, 8.3 Hz, 1H), 7.38 (m, 6H); HRFABMS: Calcd for C₂₃H₂₉NO₆Cl: 450.1683; Found 450.1688

 (M^{++1}) . Anal. Calcd for $C_{23}H_{28}NO_6Cl : C, 61.39; H, 6.27$. Found : C, 61.44; H, 6.12.

(2S, 3R)-3-(4-Benzyloxy-3-chlorophenyl)-2-tert-butoxycarbonylamino-3-acetoxypropionic acid (3)

Compound (3) as a semi solid was obtained in a similar manner as described for 2; $[\alpha]_D$: -75° (c 0.5,

CHCl₃); ¹H NMR (CDCl₃, 200 MHz); δ 1.39 (br s, 9H), 2.11 (s, 3H), 3.40 (br s), 4.91 (m, 2H), 5.11 (s, 2H), 6.02 (br s, 1H), 6.90 (d, J=8.1 Hz, 1H), 7.14 (dd, J=2.1, 8.1 Hz, 1H), 7.3 (m, 6H); HRFABMS: Calcd for C₂₃H₂₇NO₇Cl. 464.1416; Found 464.1401 (M++1). Anal. Calcd for C₂₃H₂₆NO₇Cl : C, 59.55; H, 5.65. Found : C, 59.59; H, 5.61.

ACKNOWLEDGMENTS

SP and DKM thank CSIR and UGC, New Delhi respectively for research fellowships.

REFERENCES

- 1. a) D. A. Evans, E. B. Sjogren, D. E. Weber, and R. E. Corn, Tetrahedron Lett., 1987, 28, 39, and references cited therein; b) D. J. G. White, 'Cyclosporin A', Biomedical Amsterdam, 1982; c) V. R. Traber, C. K. Justen, H. R. Loosli, M. Kuhn, and A. V. Wartburg, Helv. Chim. Acta, 1979. 62, 1252.
- 2. a) R. M. Williams, 'Synthesis of Optically Active α -Amino Acids', Pergamon Press, Oxford, 1989; b) J. M. Chong and K. B. Sharpless, J. Org. Chem., 1985, 50, 1560; c) K. Shimamoto and Y. Ohfune, Tetrahedron Lett., 1986, 29, 5177; d) D. A. Evans and A. E. Weber, J. Am. *Chem. Soc.*, 1986, **108**, 6757; e) D. A. Evans and A. E. Weber, *J. Am. Chem. Soc.*, 1987, **109**, 7151; f) J. P. Genet, S. Juge, and S. Mallart, *Tetrahedron Lett.*, 1988, **29**, 6765; g) A. V. Rama Rao, T. G. Murali Dhar, T. K. Chakraborty, and M. K. Gurjar, *Tetrahedron Lett.*, 1988, 29, 2069; h) A. V. Rama Rao, J. S. Yadav, S. Chandrasekhar, and C. S. Rao, *Tetrahedron Lett.*, 1989, 30, 6769; i) J. P. Genet, C. Pinel, S. Mallart, S. Juge, S. Thorimbert, and J. A. Laffitte, Tetrahedron : Asymmetry, 1991, 2, 555; j) P. Cintas, Tetrahedron, 1991, 47, 6079; k) T. Kimura, V. P. Vissilev, G. J. Shen and C. H. Wong, J. Am. Chem. Soc., 1997, 119, 11734.
- R. Nagarajan, (ed.) 'Glycopeptide Antibiotics', Marcel Dekker, Inc., New York, 1994. 3.
- 4.
- a) A. V. Rama Rao, M. K. Gurjar, K. L. Reddy, and A. S. Rao, *Chem. Rev.*, 1995, **95**, 2135; J. Zhu, *Synlett.*, 1997, 133; c) A. V. Rama Rao, M. K. Gurjar, P. Lakshmipathi, M. M. Reddy, b) M. Nagarajan, Shashwati Pal, B. V. N. B. S. Sarma, and N. K. Tripathy, Tetrahedron Lett. 1997, 38, 7433; d) A. S. Rao, Ph. D thesis, Osmania University, Hyderabad, India, 1995.
- 5. a) D. A. Evans, J. A. Ellman, and K. M. De Vries, J. Am. Chem. Soc., 1989, 111, 8912; b) A. V. Rama Rao, T. K. Chakraborty, K. L. Reddy, and A. S. Rao, Tetrahedron Lett., 1994, 35, 5043; c) J. Zhu, J. P. Bouillon, G. P. Singh, J. Chastanet, and R. Beugelman, Tetrahedron Lett. 1995, 36, 7081; d) M. E. Jung, and Y. H. Jung, Synlett., 1995, 563; e) A. Girard, C. Greck, D. Ferroud, and J. P. Genet, *Tetrahedron Lett.*, 1996, **37**, 7967. L. C. Raifard and G. R. Miller, J. Am. Chem. Soc., 1933, 2125.
- 6.
- 7. J. S. R. Kumar, and A. Dutta, Tetrahedron Lett., 1997, 38, 473.
- 8. P. Garner and J. M. Park, J. Org. Chem., 1987, 52, 2361.
- 9. a) J. Jurczak, and A. Golebiowski, Chem. Rev., 1989, 89, 149; b) M. T. Reetz, Angew. Chem., Int. Ed. Engl., 1991, 30, 1531; c) F.J. Sardina, and H. Rapport, Chem. Rev., 1996, 96, 1825.
- 10. L. Williams, Z. Zhang, F. Shao, P. J. Carroll, and M. M. Joullie, Tetrahedron, 1996, 52, 11673.
- a) B. C. Ranu, 'Morton Internationals Alembic', 48, 1993. b) T. Oishi and T. Nakata, Acc. 11. Chem. Res., 1984, 17, 338.
- 12. S. Hanessian, H. Park, and R. Y. Yang, Synlett., 1996, 353.