PHOTOCHEMICAL TRANSFORMATION OF TRITHIO-BARBITURATE INTO THIOHYDANTOIN AND IMIDAZOLINO-THIOPHENE DERIVATIVES¹

Haruko Takechi,^{*a} Hajime Takahashi,^a and Minoru Machida^b

- ^a Department of General Education, Health Sciences University of Hokkaido, Ishikari-Tobetsu Hokkaido 061-0293, Japan
- ^b Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu Hokkaido 061-0293, Japan

Abstract- Upon irradiation of trithiobarbiturate (1), ring contraction reaction occurred to give thiohydantoin (2 or 3) and imidazolinothiophene (4) derivatives. Further, on treating with iodine, the thiohydantoins (2 and 3) undergo ring closure, giving imidazolinothiophene derivatives (4).

Although the photochemistry of barbiturates has been studied,² little is known about that of their sulfur analogs (thiobarbiturate).³ Their photochemical behaviors are also of interest in relation to that of extensively investigated thioimides⁴ or thioamides.⁵ since thiobarbiturate possesses a chromophore which consists of a combination of a thioimide with an amide or a thioamide. In a previous paper, we showed that 1,3,5,5-tetramethyl-2-monothio-, 2,4-dithio-, and 2,4,6-trithiobarbiturates undergo efficient [2+2] photocycloaddition (Paterno-Büchi reaction) with alkenes to give thietanes and/or products arose from fission of the thietane ring as well as cyclic thioimide systems.⁶ Interestingly, in the reaction of 1,3,5,5tetramethyl-2,4,6(1H,3H,5H)-pyrimidinetrithione (trithiobarbiturate, 1a), besides the Paterno-Büchi product (1-thia-5,7-diazaspiro[3,5]nonane-6,8-dithione), a novel type of ring contraction product [thiohydantoin derivative; 1,3-dimethyl-5-(methylethylidene)imidazolidine-2,4-dithione (2a)] was obtained.⁶ Since the thiohydantoin (2a) was also obtained in the absence of alkene, it was found that 1a by oneself undergoes the ring contraction reaction to give 2a. Similar ring contraction reaction has been also reported upon the photochemical reaction of oxygen analogs (5,5-disubstituted 2-methylbarbituric acid) in alkaline solution.^{2c-e} The photochemical behavior of trithiobarbiturate, however, was considerably different from that of oxygen analog, that is, in the ring contraction mode, the loss of sulfur atom was involved in the former, whereas that of carbon monoxide in the latter. In this paper, we wish to report a facile photochemical transformation of various 5,5-disubstituted trithiobarbiturates (1) to thiohydantoin

derivatives (2 and 3), which were easily led to imidazolinothiophene derivatives (4).

5,5-Disubstituted trithiobarbiturates (1a-f) were obtained by the condensation of the corresponding disubstituted malonyl dichloride and 1,3-dimethylthiourea in the presence of triethylamine, followed by thionation of the monothiobarbiturate with the dimer of p-methoxyphenylthionophosphine (Lawesson's reagent).

	Substrate		mp	Appearance	MS (m/	z) Formula	Analysis (%)				¹ H-NMR (90 MHz, CDCl ₃) &	
			(°C)	(solvent)	м+		Ca	alcd (l	Found))	-	
	R ¹	R ²					С	Н	Ν	S		
1a	CH ₃	Н	45-46	Red prisms (hexane)	232	$C_8H_{12}N_2S_3$	41.38 (41.30	5.21 5.22	12.07	41.34	1.76 (6H, s, CH_3x^2), 4.20 (6H, s, NCH_3x^2)	
1b	Ph	Н	119-121	Red prisms (hexane)	294	C ₁₃ H ₁₄ N ₂ S ₃	53.06 (53.10	4.80 4.71	9.52 9.72	32.62 32.69)	2.06 (3H, s, CH ₃), 4.14 (6H, s, NCH ₃ x2), 7 1-7 4 (5H, m aromH)	
1 c	-CH ₂ CH	₂ СН ₂ -	47-48	Red prisms	258	$C_{10}H_{14}N_2S_3$	46.51	5.47	10.85	37.17	1.7-1.9 (4H, m, C-CH ₂ -	
1 d	CH ₃	СН ₃	Oil	(hexane)	246	C ₉ H ₁₄ N ₂ S ₃	(46.54 : 246.0	5.45 0319 ^a	10.75	37.14)	CH ₂ -C), 2.4-2.7 (4H, m, -C <u>H₂CH₂CH₂CH₂-),</u> 4.20 (6H, s, NCH ₃ x2) 0.82 (3H, t, <i>J</i> = 7.5 Hz,	
						,	(246.)	0325))		CH_2CH_3), 1.87 (3H, s, CH_3), 2.12 (2H, q, $J=7.5$ Hz, CH_2CH_3), 4.19 (6H, s, NCH ₃ x2)	
1 e	CH_3	Ph	126-127	Red columns	308	$C_{14}H_{16}N_2S_3$	54.54	5.23	9.09	31.14	2.16 (3H, s, CH ₃), 3.25	
				(hexane)			(54.52	5.19	8.98	31.10)	(2H, s, PhCH ₂), 3.97 (6H, s, NCH ₃ x2), 6.9- 7.1 (2H, m, aromH), 7.1-7.4 (3H, m, aromH)	
1 f	C_2H_5	CH ₃	Oil		260	C ₁₀ H ₁₆ N ₂ S ₃	260.	048 ^a			0.76 (6H, t, J= 7.5 Hz,	
							(260.	.045)			CH ₂ C <u>H</u> 3x2), 2.49 (4H,	
											q, J= 7.5 Hz, C <u>H</u> ₂ CH ₃ x2) 4,21 (6H, s, NCH ₃ x2)	

Table 1. Physical Properties and Spectral Data for Trithiobarbiturates (1 a-f)

^a Determined by high-resolution mass spectrometry. Upper figure, calcd for M⁺; lower figure, found.

Photoreaction of 1 in acetone (10 mM) was carried out with 1 kW high-pressure mercury lamp through a Pyrex filter under a nitrogen atmosphere for 0.25-3 h at room temperature. The results are listed in Table 2. Irradiation of 5,5-dimethyltrithiobarbiturate (1a) for 1.5 h gave thiohydantoin (2a) and a small amount of imidazolinothiophene derivative (1,3,6-trimethylthiopheno[3,2-d]imidazoline-2-thione, 4a) in 68 and 2% yields, respectively, together with sulfur atom (67%). Similarly, trithiobarbiturate (1b,c) gave ring-contraction products (2b,c) in 48-70% yields accompanied by small amounts of 4b,c, respectively. Further, in the cases of 1d-f, the disulfides (3d-f), which presumably arose from thiohydantoin (2d-f),

were isolated in 29-88 % yields under the similar conditions. The formation pathway of 3 via 2 was suggested by the fact that acetylation of 2 afforded thioester (7), which was also derived from 3 by reduction of disulfide and subsequent acetylation (Scheme 1).

The structures of these products were determined on the basis of analytical and spectral data (Table 2, 3). The MS spectra of thiohydantoin (2a-c) showed molecular ion peaks (M^+) corresponding to the loss of sulfur atom from the trithiobarbiturate (1a-c). In the ¹³C-NMR spectra of 2a-c, the signals due to two olefinic carbons and two thiocarbonyl carbons appeared at 133.9-148.9 (s) and 177.3-185.1 (s), respectively. In the MS spectra, 3d-f did not show a molecular ion peak, but displayed characteristic fragment peaks [($M^+/2$)-1], which are consistent with the molecular weight of dehydrated products (4d-f), respectively. The ¹H-NMR spectra of 3d,3f showed the signals due to one olefinic proton at 5.24-6.80 ppm, respectively, and the ¹³C-NMR spectra of 3d-i and 3e-i exhibited signals due to one vinyl carbon,

Scheme 1

three olefinic carbons, and one 2-thiocarbonyl carbon at 133.4-137.2 (d), 113.8-143.2 (s), and 165.1-165.7 (s) ppm, respectively. Further, in the conversion of 3d into 7d, acetylation did not proceed without zinc dust. These results supported the conclusion that each structure of 3d-f was a dimer of dithiohydantoins (2d-f).

	Pho	otoreaction	n of 1						Transfor	mation
Substr- ate	Time (h)	Pro- duct	Yield (%)	mp (℃)	Appear- ance ^a	MS (m/z) M ⁺	Formula	Analysis (%) Calcd (Found) C H N S	Z OF 3 Time (h)	Yield (%)
1a	1.5	2a	68	125-127	Orange needles	200	C ₈ H ₁₂ N ₂ S ₂	47.99 6.05 14.00 31.97 (47.90 6.07 14.00 31.70)	6.0	65
		4 a	2	197-198	Colorless needles	198	$C_8H_{10}N_2S_2$	48.485.0914.1432.29(48.395.0914.3132.22)		
16	0.7	2 b	48	116-117	Orange prisms	262	C ₁₃ H ₁₄ N ₂ S ₂	59.535.3810.6924.40(59.645.3710.8424.38	12.0)	77
		4b	4	132-134	Colorless needles	260	$C_{13}H_{12}N_2S_2$	59.99 4.65 10.77 24.59 (59.89 4.59 10.61 24.61)		
1 c	3.0	2 c	70	154-156 (dec.)	Orange needles	226	$C_{10}H_{14}N_2S_2$	53.086.2412.3928.29(53.006.3412.3728.30	12.0	78
		4c	1	186-187	Colorless needles	224	$C_{10}H_{12}N_2S_2$	53.565.4012.5028.54(53.475.3312.3128.54)	
1d	0.8	3d-i ^b	41	134-136	Yellow columns	212 ^C	$C_{18}H_{26}N_4S_4$	50.69 6.15 13.15 30.01 (50.64 6.26 13.09 30.05	12.0	70
		4d	22	199-200	Colorless needles	212	$C_9H_{12}N_2S_2$	50.93 5.70 13.21 30.16 (50.83 5.67 13.23 30.31)	
1 e	2.0	3e-i ^d	29	113-114	Orange needles	274 ^c	$C_{28}H_{30}N_4S_4$	274.0598 ^e (274.0575)	0.75	78
		4 e	trace	209-211	Colorless needles	274	$C_{14}H_{14}N_2S_2$	61.30 5.15 10.22 23.33 (61.30 5.07 10.10 23.54	3	
1 f	0.25	3 f ^f	88	133-135	Orange prisms	226 ^c	C ₂₀ H ₃₀ N ₄ S ₄	52.85 6.66 12.33 28.16 (52.72 6.78 12.12 28.21	4.0	81
		4f	-	135-137	Colorless prisms	226	$C_{10}H_{14}N_2S_2$	53.08 6,24 12.39 28 29 (53.19 6.25 12.22 28.44	-)	

Table 2. Photoreaction of Trichiobarbiturates 1 and Transformation of 2,3, to the Thiophene Derivatives 4

^a Recrystallized from EtOH.

^b 3d-i was accompanied by a mixture (18%) of two rotational isomers of 3d-ii.

 $(M^{+}/2)-1].$

^d 3e-i was accompanied by a mixture (13%) of two rotational isomers of 3e-ii.

e Determined by high-resolution mass spectrometry. Upper figure, calcd for [(M⁺/2)-1]; lower figure, found.

^f A mixture of two geometrical isomers (3f-1 and 3f-1i) and their respective rotational isomers (3f'-1 and 3f'-1i) of 3 f.

Table 3. NMR Spectral Data for the Compounds (2a-c, 3d-f, and 4a-f)

Ξ

Compd.	¹ H-NMR (CDCl ₃ , 90 MHz) δ	¹³ C-NMR (CDCl ₃ , 90 MHz) δ
2a	2.30 (3H, s, CH ₃), 2.58 (3H, d, J= 0.9 Hz, CH ₃),	25.6(q), 25.9(q), 33.5(q), 37.8(q),137.0(s), 137.3(s),
	3.67 (3H, s, NCH ₃), 3.80 (3H, s, NCH ₃)	178.1(s), 184.3(s)
4 a	2.42 (3H, d, J= 1.3 Hz, C=C-CH ₃), 3.71 (3H, s,	14.2(q), 32.9(q), 34.0(q), 115.3(d), 121.7(s),
	NCH ₃), 3.87 (3H, s, NCH ₃), 6.61 (1H, d, J= 1.3	129.5(s), 132.1(s), 168.5(s)
	Hz,C = CH-S)	25 24-1 22 54-1 27 84-1 100 8441-2 100 7441-2
26	2.84 (3H, s, CH_3), 2.94 (3H, s, NCH_3), 3.74 (3H,	$25.7(q), 33.5(q), 37.8(q), 128.0(d) \times 2, 128.7(d) \times 2,$
41	s, NCH ₃), $7.2-7.5$ (5H, m, aromH)	129.0(0), 130.2(3), 137.0(3), 142.0(3), 178.4(3), 183.1(3)
4 D	3.58 (3H, s, NCH ₃), 3.78 (3H, s, NCH ₃), 6.85 (1H,	34.1(g)x2, 110.4(d), 128.3(s), 128.3(d), 128.7(d)x2,
2c	s, C=CH-S), 7.43 (3H, s, aromH) 1.7-1.9 (4H, m, C-CH ₂ CH ₂ -C), 2.7-3.0 (2H, m,	26.3(t), 26.7(t), 33.5(q), 35.7(q), 35.7(t), 37.7(t),
	C=C-CH ₂), 2.9-3.2 (2H, m, C=C-CH ₂), 3.70 (3H,	133.9(s), 148.9(s), 177.3(s), 183.9(s)
	s, NCH ₃), 3.85 (3H, s, NCH ₃)	
4c	2.3-2.7 (2H, m, CH ₂ CH ₂ CH ₂), 2.7-3.1 (4H, m,	26.8(t), 28.3(t), 29.3(t), 33.2(q), 33.9(q), 128.1 (s),
	CH ₂ -C=C-CH ₂), 3.66 (3H, s, NCH ₃), 3.72 (3H, s,	128.3(s), 130.9(s), 136.7(s), 166.5(s)
	NCH ₃)	
3d-i	1.60 (3H, br s, CH ₃), 1.75 (3H, dd, $J=7$, 1 Hz, CH ₃),	14.2(q), 16.4(q), 32.6(q), 33.4(q), 113.8(s), 122.1(s),
	$3.47 (3H, s, NCH_3), 3.65 (3H, s, NCH_3), 5.24 (1H, 1)$	133.4(d), 143.2(s), 165.1(s)
.	br q, $J = 7$ Hz, C=CH-C)	
3d-11ª	1.32 (3H, d, $J=6$ Hz, CH ₃), 1.38 (3H, dd, $J=6$, 1 Hz,	
	CH_3 , 1.55 (3H, s, CH_3), 1.71 (3H, s, CH_3), 3.31	
	$(3H, S, NCH_3), 5.33 (3H, S, NCH_3), 5.43 (3H, S, NCH) > 2.47 (2H, a, CH) > 5.02 (1Hz) have$	
	(10, 3, 5, 47) (30, 3, $(10, 3, 5, 92)$ (10, 2, 6) q,	
4d	$2.30(3H, d, J=0.9 Hz, CH_a), 2.39(3H, s, CH_a).$	11.7(a), $13.7(a)$, $32.9(a)$, $34.0(a)$, $117.5(s)$, $125.4(s)$,
	$3.68 (3H, s, NCH_2), 3.86(3H, s, NCH_2)$	128.3(s), 132.4(s), 167.2(s)
3e-i	$1.89 (3H, d, J=1 Hz, C=C-CH_2), 3.50 (3H, s, NCH_4),$	18.2(a), 32.8(a), 33.7(a), 115.1(s), 122.6(s), 128.2(d),
-	3.62 (3H, s, NCH ₂), 6.34 (1H, br q, $J=1$ Hz, C=CH-C),	128.6(d)x2, 129.3(d)x2, 135.3(s), 137.2(d), 143.1(s),
	7.2-7.6 (5H, m, aromH)	165.7(s)
3e-ii	1.81 (3H, d, J= 1.3 Hz, C=C-CH ₃), 2.06 (3H, d, J=	24.7(q), 25.1(q), 33.0(q), 33.2(q), 114.6(s), 115.8(s),
	1.3 Hz, C=C-CH ₃), 3.37 (3H, s, NCH ₃), 3.41 (3H, s,	122.5(s), 122.9(s), 127.9(d)x2, 128.2(d), 128.8(d)x2,
	NCH ₃), 3.48 (3H, s, NCH ₃), 3.61 (3H, s, NCH ₃),	135.6(s), 136.5(s), 137.0(d), 137.0(s), 138.4(s),
	6.7-7.0 (1Hx2, m, C=CH-C), 6.7-7.4 (5Hx2, m,	165.9(s), 166.1(s)
	aromH)	
4e	2.45 (3H, s, CH ₃), 3.70 (3H, s, NCH ₃), 3.91 (3H, s,	12.9(q), 33.1(q), 34.0(q), 117.6(s), 127.8(d), 128.0(s), 129.0(s), 129.0(s
	NCH ₃), 7.40 (5H, s, aromH)	128.7(d)x2, 129.5(d)x2, 132.9(s), 133.2(s), 133.7(s), 168.1(s)
3f	0.6-1.1 (3Hx4, m, CH ₂ CH ₃), 1.34, 1.42, 1.72, 1.80	
	(3Hx4, br s, CH ₃), 1.8-2.3 (2Hx4, m, CH ₂ CH ₃), 3.43,	
	3.44, 3.45, 3.47, 3.57, 3.60, 3.65, 3.68 (3Hx8, s, NCH ₃), 4.9-5.3 (1Hx2, br q, C=CH-C), 5.7-6.1	
	(1Hx2, br q, C=CH-C)	
4f	1.19 (3H, t, $J=7$ Hz, CH_2CH_3), 2.40 (3H, s, CH_3),	13.5(q), 15.4(q), 19.4(t), 33.0(q), 34.1(q), 124.5(s),
	2.71 (2H, q, $J=7$ Hz, CH_2CH_3), 3.69(3H, s, NCH ₃),	125.8(s), 128.1(s), 131.7(s), 167.2(s)
	3.86 (3H, s, NCH ₃)	

163

-

. ...

^a ¹H-NMR (DMSO-d₆, 400 MHz)

As for a stereochemistry of disulfides (3d-f), the presence of two geometrical isomers [(E)-3, (Z)-3] and their respective rotational isomers [(E)-3', (Z)-3'] is theoretically possible (Scheme 2). In the reactions of 2d,e, only one rotational isomer (3d-i, 3e-i) of 3d and 3e was isolated, respectively, however, it was difficult to assign 3d-i and 3e-i to one of the structures [(E)-3, (Z)-3, (E)-3', and (Z)-3'] in Scheme 2. Furthermore, on standing in a chloroform solution at room temperature, the isolated 3d-i and 3e-i were easily converted to the corresponding other rotational isomers (3d'-i and 3e'-i, respectively), reaching an equilibrium. Besides 3d-i and 3e-i, the other geometrical isomers (3d-ii, 3d'-ii and 3e-ii, 3e'-ii) were obtained in the state of the rotational mixtures in 18 and 13% yields, respectively. In the ¹H-NMR spectra of these compounds (a mixture of 3d-ii and 3d'-ii, and a mixture of 3e-ii and 3e'-ii), two pairs of the methyl and NCH₃ signals were observed, respectively, suggesting the presence of two preferred conformers which are due to the restricted rotation about the C-C bond of a diene moiety. To confirm the existence of rotational isomer, the ¹H-NMR spectrum of **3d-ii** was measured at varied temperatures. At 90 °C, two pair of dimethyl signals (1.32, 1.38 and 1.55, 1.71 ppm) and NCH₃ signals (3.31, 3.33 and 3.45, 3.47 ppm) of 3d-ii coalesced into the one pair of signals of 1.36 (CH₃), 1.61(CH₂), 3.34 (NCH₂), and 3.46 (NCH₂) ppm, respectively. In the case of 2 f, the spectrum of product was observed as a mixture of two geometrical isomers and their respective inseparable rotational isomers (four pairs of NCH₃ signals existed), in which they could not be separated.

Scheme 2

It is well known that the systems having 1-mercapto-1,3-butadiene moiety are readily converted to thiophene derivatives in the presence of iodine catalyst.⁷ In the present work, since imidazolinothiophene

derivatives (4) were photochemically obtained from 1 in poor yield, 2 or 3 was treated with iodine in dioxane at 100 °C. As expected, 4 were obtained in good yields (Table 2).

The MS spectra of 4 showed the molecular ion peaks corresponding to the peaks dehydrated from 2 or 3. The ¹H-NMR spectrum of 4a revealed three methyl and one aromatic protons at 2.42, 3.71, 3.87 and 6.61 ppm, respectively, attributable to C-6 methyl protons, two NCH₃ protons, and C-5 proton of a thiophene ring. In the ¹³C-NMR spectrum, 4a indicated the peaks due to three methyl carbons [14.2 (q), 32.9 (q), and 34.0 (q)], and C-5 carbon in the thiophene ring [115.3 (d)], and three quaternary carbons [121.7(s), 129.5 (s), and 132.1 (s)] in addition to thiocarbonyl carbon [168.5 (s)]. Further, in the ¹H-detected heteronuclear multiple bond connectivity (HMBC) spectrum (Figure 1), C-5 proton signal (δ H 6.61 ppm) of thiophene ring showed cross peaks to C-6 methyl carbon (δ C 14.2 ppm), C-3a (132.1 ppm), C-6 (121.7 ppm), and C-6a (129.5 ppm) quaternary carbons, respectively, and their correlations indicated the thiophene structure. The structures of **4b-f** were also assigned on the basis of spectral data, which were analogous to those of **4a**.

Figure 1. C-H Long-Range Correlations in the HMBC Spectrum of 4a

A mechanism for this photochemical ring contraction reaction can be reasonably explained in terms of initial formation of 1,6-biradical intermediate (5) which was generated by α -cleavage (Norrish type I reaction) of a thiocarbonyl group (4-position of 1), followed by recyclization to thiolactone (6), and then ring contraction leading to 2 or 3 with the loss of a sulfur atom (Scheme 1).

It is noteworthy that in the thiocarbonyl photochemistry, Norrish type I reaction appears to be very rare case, occurring in preference to the Paterno-Büchi reaction.^{4,5,8} Although a few instances of Norrish type I reaction have been reported, they are limited to thiocarbonyl compounds, in which (S=)C-C bond is particularly weak as a result of high strain factors (three and four membered thioketones).⁸ The present

photoreaction involving unprecedented ring contraction also provides the first example of α -cleavage in a six-membered nitrogen-thiocarbonyl system such as trithiobarbiturate (1).

EXPERIMENTAL

All melting points were determined on a Yamato melting point apparatus (model MP-21) and are uncorrected. Infrared spectra were recorded on a JASCO A-102 spectrophotometer. Nuclear magnetic resonance spectra were taken on JEOL-FX-90Q, JEOL-LA-300, and JEOL JNM-EX 400 spectrometers. Chemical shifts are reported in ppm (δ) with tetramethylsilane as an internal standard. MS spectra were determined with a JEOL JMS-QH-100 gas chromatograph-mass spectrometer with a direct inlet system and high-resolution MS spectra were recorded using a JEOL JMS-DX 303 spectrometer. Irradiations of substrates were conducted using a 1 kW high-pressure mercury lamp and a water-cooled quartz immersion well (Eikosha EHB-W-1000). Stirring of the reaction mixture was effected by the introduction of a stream of nitrogen at the bottom of the outer jacket. All column chromatography was conducted using silica gel (Wakogel C-300, 200-300 mesh).

5,5-Disubstituted 1,3-dimethyl-2,4,6(1*H*, 3*H*, 5*H*)-pyrimidinetrithiones (Trithiobarbiturates 1a-f): General Procedure: i) Triethylamine (9.8 mL, 70 mmol) was added to a mixture of 2,2-disubstituted malonyl dichloride [prepared from the corresponding 2,2-disubstituted malonic acid (30 mmol) and phosphorus pentachloride] and 1,3-dimethyl-2-thiourea (3.4 g, 33 mmol) in benzene (30 mL) at 60 °C. The reaction mixture was refluxed for 2 h, then treated with water and extracted with benzene. The organic layer was washed with saturated aqueous NaHCO₃, and brine, dried over MgSO₄, and evaporated. The residue was chromatographed on silica gel with AcOEt-hexane (1:10, v/v) to give 5,5-disubstituted 2,3-dihydro-1,3-dimethyl-2-thioxo-4,6(1*H*, 5*H*)-pyrimidinedione (monothiobarbiturate, 8). The product was recrystallized from hexane; 8a (R¹= CH₃, R²= H): yield 54%, mp 78-79 °C (lit.,³ mp 75-76.5 °C); 8b (R¹= Ph, R²= H): yield 70%, mp 77-78 °C; 8c (R¹ + R²= -CH₂CH₂CH₂-): yield 82%, mp 89-91 °C; 8d (R¹=CH₃, R²= CH₃): yield 74%, mp 38-39 °C; 8e (R¹= CH₃, R²= Ph): yield 73%, mp 155-157 °C; 8f (R¹= C₂H₅, R²= CH₃): yield 43%, pale yellow oil.

ii) A solution of monothiobarbiturate (8) (15 mmol) and Lawesson's reagent (9.7 g, 24 mmol) in xylene (40 mL) was heated to reflux for 1-2 days. The solution was concentrated to one-third of its original volume, and the residue was directly subjected to column chromatography on silica gel to give 1. Yields of 1a-f and the solvent systems used were as follows: 1a, 42%, AcOEt : hexane (1 : 20, v/v); 1b, 7%, AcOEt : hexane (1 : 30, v/v); 1c, 39%, AcOEt : hexane (1 : 30, v/v); 1d, 54%, AcOEt : hexane (1 : 20, v/v); 1e, 24%, AcOEt : hexane (1 : 20, v/v); 1f, 6%, AcOEt : hexane (1 : 20, v/v). Melting points and analytical data of trithiobarbiturate (1a-f) are listed in Table 1.

Irradiation of Trithiobarbiturate Derivatives (1a-f): General Procedure Acetone solution of 1 (10 mM) was irradiated with a 1 kW high-pressure mercury lamp through a Pyrex filter with water cooling. After removal of the solvent *in vacuo*, the residue was subjected to silica gel column chromatography. The solvent systems used were as follows: 1a, AcOEt : hexane = 1 : 8, v/v; 1b,c,

AcOEt: hexane = 1: 10, v/v; 1d, AcOEt: hexane = 1: 5, v/v; 1e, f, AcOEt: hexane = 1: 4, v/v. Iodine Oxidation of Dithiohydantoins (2) and Its Disulfides (3) to Imidazolinothiophene **Derivatives (4): General Procedure** A solution of dithiohydantoin derivative (2 or 3) (0.27)mmol) and iodine (69 mg, 0.27 mmol) in dioxane (10 mL) was heated to reflux for 0.75-12 h. The solution was evaporated in vacuo, and the residue was chromatographed on silica gel with AcOEt : hexane (1:4, v/v) to give 4. Melting points and analytical data of imidazolinothiophene (4a-f) are listed in Table 2. Acetylation of Dithiohydantoin (2a); Formation of Thioester (7a) A mixture of dithiohydantoin (2a, 94 mg, 0.47 mmol), sodium acetate (82 mg, 1.00 mmol), and acetic anhydride (3 mL) was refluxed for 10 min. The reaction mixture was poured into ice-water, treated with K_2CO_3 to decompose excess of acetic anhydride, and extracted with Et₂O. The extract was washed with brine, dried over $MgSO_4$, and evaporated. The residue was chromatographed on silica gel with AcOEt : hexane (1:4, v/v) to give thioester (7a) (102 mg, 84%). ¹H-NMR (CDCl₃, 90 MHz) δ: 1.96 (3H, d, J= 1.3 Hz, CH₃), 2.41 (3H, s, COCH₃), 3.53 (3H, s, NCH₃), 3.59 (3H, s, NCH₃), 5.10 (1H, s, ≈CH), 5.46 (1H, br s, =CH). 13 C-NMR (CDCl₃, 400 MHz) δ : 22.4(q), 29.5(q), 32.7(q), 33.5(q), 110.2(s), 122.7(t), 131.8(s), 139.1(s), 164.8(s), 192.6(s). MS m/z: 242 (M⁺).

Acetylation of Dithiohydantoin Disulfide (3d-i) under Reductive Conditions A mixture of disufide (3d-i, 30 mg, 0.14 mmol), zinc dust (30 mg, 0.46 mmol), acetic acid (0.5 mL), and acetic anhydride (0.5 mL) was refluxed for 15 min. The reaction mixture was poured into ice-water, treated with K_2CO_3 to decompose excess of acetic anhydride, and extracted with Et_2O . The extract was washed with brine, dried over MgSO₄, and evaporated. The residue was chromatographed on silica gel with AcOEt : hexane (1 : 4, v/v) to give thioester (7d) (28 mg, 78%). ¹H-NMR (CDCl₃, 400 MHz) δ : 1.78 (3H, dd, J= 7, 1 Hz, CH₃), 1.82 (3H, s, CH₃), 2.40 (3H, s, COCH₃), 3.52 (3H, s, NCH₃), 3.54 (3H, s, NCH₃), 5.62 (1H, qd, J= 7, 1 Hz, =CH). ¹³C-NMR (CDCl₃, 400 MHz) δ : 14.0(q), 16.3(q), 29.4(q), 32.7(q), 33.4(q), 109.8(s), 123.0(s), 132.5(d), 141.1(s), 164.4(s), 193.1(s). MS *m/z*: 256 (M⁺).

REFERENCES

- 1. Photochemistry of the Nitrogen-Thiocarbonyl Systems. 32. Part 31: K. Oda, H. Tsujita, M. Sakai, and M. Machida, *Chem. Pharm. Bull.*, in press.
- (a) Y. Otsuji, T. Kuroda, and E. Imoto, Bull. Chem. Soc. Japan, 1968, 41, 2713; (b) H. Bartoń J. Mokrosz, J. Bojarski, and M. Klimczak, Pharmazie, 1980, 35, 155; (c) H. Bartoń, J. Bojarski, and J. Mokrosz, Tetrahedron Lett., 1982, 23, 2133; (d) H. Bartoń, A. Żurowska, J. Bojarski, and W. Welna, Pharmazie, 1983, 38, 268; (e) H. J. Bartoń, J. Bojarski, and A. Żurowska, Arch.

Pharm., 1986, 319, 457; (f) H. J. Bartoń, M. H. Paluchowska, J. L. Mokrosz, and E. Szneler, Synthesis, 1987, 156; (g) H. Aoyama and H. Hatori, *Tetrahedron*, 1990, 46, 3781.

- 3. H. Gotthardt, S. Nieberl, and J. Donecke, Liebigs Ann. Chem., 1980, 873.
- 4. (a) M. Machida, K. Oda, E. Yoshida, and Y. Kanaoka, J. Org. Chem., 1985, 50, 1681; (b) M. Machida, K. Oda, E. Sato, and Y. Kanaoka, Yuki Gosei Kagaku Kyoukai-Shi, 1986, 44, 1071;
 (c) K. Oda, E. Yoshida, K. Ohno, M. Machida, and Y. Kanaoka, Chem. Pharm. Bull., 1989, 37, 642; (d) H. Takechi, M. Machida, and Y. Kanaoka, Synthesis, 1992, 778, and references cited therein.
- (a) K. Oda, M. Machida, and Y. Kanaoka, *Tetrahedron Lett.*, 1989, 30, 4421; (b) K. Oda and M. Machida, *Chem. Pharm. Bull.*, 1993, 41, 1299; (c) K. Oda, H. Tsujita, K. Ohno, and M, Machida, J. Chem. Soc., Perkin Trans. 1, 1995, 2931 and references cited therein.
- 6. (a) H. Takechi, M. Machida, and Y. Kanaoka, Chem. Pharm. Bull., 1989, 37, 1431; (b) H. Takechi and M. Machida, Chem. Pharm. Bull., 1997, 45, 1.
- (a) E. Campaigne and R. E. Cline, J. Org. Chem., 1956, 21, 39; (b) E. Campaigne and B. G. Heaton, J. Org. Chem., 1964, 29, 2372.
- 8. J. D. Coyle, Tetrahedron, 1985, 41, 5393.

Received, 15th June, 1998