A STUDY OF BIFLAVANONES FROM THE STEMS OF GARCINIA KOLA (GUTTIFERAE)

Kenji Terashima,^a Yoshihito Kondo,^{*} Mohammad Aqil,^b Maimuna Waziri,^b and Masatake Niwa^{**}

^aFaculty of Pharmacy, Meijo University, Tempaku, Nagoya 468-8503, Japan ^bDepartment of Chemistry, Faculty of Science, University of Maiduguri, P. M. B. 1069, Maiduguri, Borno State, Nigeria

Abstract — A new biflavanone (1) named (+)-GB-1b was isolated together with five known biflavonoids from the stems of *Garcinia kola* Heckel (Guttiferae) collected in Nigeria. The structure was characterized by analyses of the spectral data. The stereostructures of (-)-GB-1a, (+)-GB-1b and (-)-GB-2a are also discussed on the basis of chemical and spectroscopic evidence. Furthermore, 3,8"-biflavanones were successfully converted to 3,6"-biflavanone under thermal conditions.

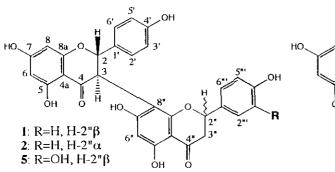
Many biflavonoids were reported as the constituents of the seeds and stem barks of *Garcinia kola* Heckel (Guttiferae) collected in Nigeria, Ghana and Zaire.^{1,2} In the previous papers, we also reported the isolation of arylbenzofurans, arylbenzopyran, biflavonoid and chromanols from the roots and seeds of *Garcinia kola* Heckel (Guttiferae) collected in Nigeria.³⁻⁶ Our further study on the constituents of the above plant led to the isolation of a new biflavanone (1) together with five known biflavonoids (2 - 6). In this paper, we describe the isolation and structural characterization of the biflavonoids (1 - 6) from the stems of *G. kola*, and a thermal conversion of 3,8"-biflavanones to 3,6"-biflavanone.

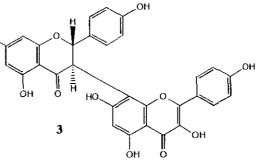
Isolation The methanol extract of the stems of *Garcinia kola* collected in Nigeria was successively partitioned between water and hexane, chloroform, ethyl acetate and butanol to give the corresponding solubles, respectively. The ethyl acetate soluble fraction was separated by medium-pressure column chromatography (MPCC) on silica gel using a mixture of chloroform and methanol (50 : 1) into five fractions. Each fraction was subjected to further separations by a combination of column chromatography on silica gel using a mixture of chloroform and methanol, MPCC on reversed-phase silica gel (C-8)

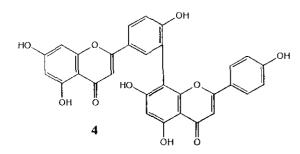
using a mixture of methanol and water and recycled HPLC on reversed-phase silica gel (C-8) using a mixture of methanol and water to give a new biflavanone named (+)-GB-1b (1) together with five known biflavonoids of (-)-GB-1a (2), 1 garcinianin (3), 5 amentoflavone (4), 7 (-)-GB-2a (5)² and 3,8"-biapigenin (6).⁹ These known compounds (2 - 6) were respectively identified by comparison with the spectral data described in the literature.^{1,2,5,7,9}

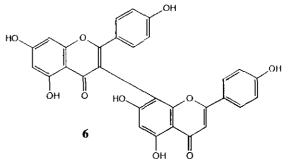
Table 1. ¹H and ¹³C NMR data of (+)-GB-1b (1) and (-)-GB-1a (2)

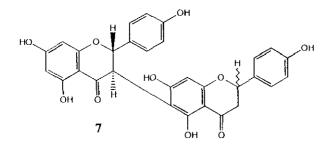
(+)-GB-1b $(1)^{a,b}$


(-)-GB-1a $(2)^{a,c}$


	¹³ C		¹ H	¹³ C		¹ H
2	81.0	(d)	5.58 (d, J=12.0 Hz)	81.3	(d)	5.57 (d, J=12.0 Hz)
3	47.4	(d)	4.47 (d, <i>J</i> =12.0 Hz)	47.3	(d)	4.58 (d, <i>J</i> =12.0 Hz)
4	196.6	(s)		195.5	(s)	
5	163.4	(s)		163.4	(s)	
6	96.0	(d)	5.88 (br s)	95.8	(d)	5.91 (br s)
7	166.2	(s)		166.0	(s)	
8	95.0	(d)	5.83 (br s)	95.2	(d)	5.84 (br s)
4 a	101.3	(s)		101.0	(s)	
8a	162.8	(s)		162.4	(s)	
1'	128.4	(\$)		128.9	(s)	
2', 6'	128.0	(d)	6.95 (d, <i>J</i> =8.3 Hz)	127.5	(d)	7.08 (d, J=8.0 Hz)
3', 5'	114.5	(d)	6.59 (d, J=8.3 Hz)	114.4	(d)	6.67 (d, <i>J</i> =8.0 Hz)
4'	157.4	(s)		157.3	(s)	
2"	79.2	(d)	4.55 (d, <i>J</i> =13.4 Hz)	78 .0	(d)	5.42 (d, <i>J</i> =12.2 Hz)
3"	42.2	(t)	3.08 (dd, J=13.4, 16.8 Hz)	42.6	(t)	3.10 (dd, <i>J</i> =12.2, 16.1 Hz)
			2.54 (d, J=16.8 Hz)			2.68 (d, J=16.1 Hz)
4"	196.6	(s)		196.2	(s)	
5"	162.3	(s)		162.4	(s)	
6"	96 .0	(d)	5.77 (s)	94.7	(d)	5.86 (s)
7"	164.6	(s)		164.6	(s)	
8"	101.9	(s)		101.2	(d)	
4"a	101.3	(s)		101.0	(s)	
8"a	162.8	(s)		161.9	(s)	
1""	128.7	(s)		128.9	(s)	
2‴, 6‴	128.0	(d)	7.25 (d, J=8.3 Hz)	127.5	(d)	7.16 (d, <i>J</i> =8.0 Hz)
3‴, 5‴	115.1	(d)	6.81 (d, J=8.3 Hz)	114.9	(d)	6.62 (d, <i>J</i> =8.0 Hz)
4""	157.5	(s)		157.3	(s)	


^a Assignments are based on COSY, HMQC and HMBC. ^b Dimethyl sulfoxide-d₆ at 25 °C.


^c Dimethyl sulfoxide-d₆ at 100 °C.


284

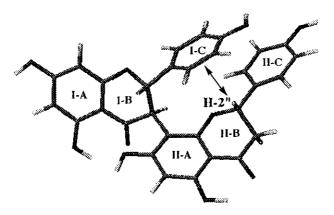


Figure 1. Stereostructure of (+)-GB-1b (1)

Structure of (+)-GB-1b Compound (1) named (+)-GB-1b, $[\alpha]_{D}$ +8.2° (*c* 0.22, MeOH) was found to have the molecular formula $C_{30}H_{22}O_{10}$ determined by high-resolution FABMS, which was the same molecular formula as that of (-)-GB-1a. (+)-GB-1b (1) was very similar to (-)- GB-1a in not only MS, IR and UV spectra but also ¹H and ¹³C NMR spectra as shown in Table 1. (+)-GB-1b (1) has four sets of an *ortho*-coupled aromatic, one set of a *meta*-coupled aromatic and non-coupled aromatic hydrogens and the corresponding carbons. The presence of the *trans*-AB type signals at δ_{H-2} 5.58 ppm and δ_{H-3} 4.47 ppm having a coupling constant *J*=12.0 Hz and of the ABB' type signals at δ_{H-2} 4.55 ppm (d, *J*=13.4 Hz), δ_{H-3} " 3.08 ppm (dd, *J*=13.4, 16.8 Hz) and δ_{H-3} 2.54 ppm (d, *J*=16.8 Hz) showed (+)-GB-1b (1) to be 3,6"- or 3,8"-binaringenin. The HMBC spectrum showed the following cross peaks: between C-2 and H-2'(6'), between C-2" and H-2'"(6'"), between C-6" and $C_{5"}$ -OH, between C-8" and H-6" and between C-8" and H-3. These cross peaks indicated (+)-GB-1b (1) to be 3,8"-binaringenin and to be a stereoisomer of the known compound, (-)-GB-1a (2) [α]_D -28.1° (*c* 0.22, MeOH) whose stereochemistry at the C-2/C-3 positions has the *trans* geometry and whose stereochemistry at the C-2" position remains still unknown. The structural relation between (-)-GB-1a and (+)-GB-1b was chemically confirmed as follows.

(-)-GB-1a (2) ($[\alpha]_D$ -28.1°) was heated in DMSO at 110 °C for 2 h to give a mixture of (-)-GB-1a (2) $[\alpha]_D$ -3.5° (*c* 0.26, MeOH), (+)-GB-1b (1) $[\alpha]_D$ +2.3° (*c* 0.29, MeOH) and a new compound (7) $[\alpha]_D$ -6.0° (*c* 0.39, MeOH), which were isolated by recycled HPLC in 18, 20 and 27 % yields, respectively. (+)-GB-1b (1) ($[\alpha]_D$ +8.2°) was also heated under the same conditions to give the same mixture except for the optical rotation values of 1 and 2. Both 1 and 2 obtained by the thermal reaction were partially racemized. However, compound (7) showed no change to 1 and/or 2 under the same reaction conditions.

Structure of Compound (7) The structure of compound (7) newly produced in the thermal reactions of GBs-1a (2) and/or -1b (1) was determined as follows. Compound (7) has the same partial structures as well as the molecular formula $C_{30}H_{22}O_{10}$ as those of GB-1a (2) and GB-1b (1). Compound (7) has four sets of an *ortho*-coupled aromatic at $\delta_{H-2',6'}$ 7.19 ppm (d, J=8.5 Hz), $\delta_{H-3',5'}$ 6.64 ppm (d, J=8.5 Hz), $\delta_{\text{H},2^{(n)},6^{(n)}}$ 7.27 ppm (d, J=8.2 Hz), $\delta_{\text{H},3^{(n)},5^{(n)}}$ 6.76 ppm (d, J=8.2 Hz), one set of *meta*-coupled aromatic hydrogens at δ_{H-6} 5.90 ppm (d, J=2.2 Hz) and δ_{H-8} 5.87 ppm (d, J=2.2 Hz), and a non-coupled aromatic hydrogen at $\delta_{H.8}$. 5.78 ppm (s), *trans*-AB type signals at $\delta_{H.2}$ 5.76 ppm (d, J=12.4 Hz) and $\delta_{H.3}$ 4.69 ppm (d, J=12.4 Hz), and ABB' type signals at $\delta_{H_{2}}$ 5.38 ppm (d, J=12.2 Hz), $\delta_{H_{3}}$ 3.14 ppm (dd, J=12.2, 16.1 Hz) and δ_{H3} 2.59 ppm (d, J=16.1 Hz). From these data, compound (7) seems to be a regionsomer of GB-1a (2) and GB-1b (1). The HMBC spectrum of 7 showed the following cross peaks: between C-2 and H-2'(6'), between C-5 and C₅ -OH, between C-5" and H-3, between C-5" and C_{5"} -OH, between C-6" and H-3 and between C-7" and H-3. These data indicated compound (7) to be 3,6"-binaringenin. The stereochemistry at the position of C-2" of compound (7) remains still unknown. Compound (7) showed further no change under the thermal reaction condition (140 °C, 2 h). This is the first report of the thermal conversion from 3,8"-biflavanone to 3,6"-biflavanone.

Stereochemistry of (-)-GB-1a, (+)-GB-1b and (-)-GB-2a In the ¹H NMR, the chemical shift value (δ 4.55 ppm) at the H-2" position of (+)-GB-1b (1) was very different from that of (-)-GB-1a (2; δ 5.54 and 5.36 ppm at 25 °C, δ 5.42 ppm at 100 °C).¹⁰ The high field shift of the H-2" owing to an anisotropic effect indicated that H-2" was situated below a benzene ring (I-C), as shown in Figure 1. These data, together with the study using the Dreiding stereomodel, suggested the stereochemistry of GB-1b to be 2R,3R,2"R or 2S,3S,2"S. This conclusion also led the stereochemistry of GB-1a (2) to 2R,3R,2"S or 2S,3S,2"R. Furthermore, the chemical shift value (δ 4.66 ppm) at the H"-2 position of (-)-GB-2a (5) suggested the stereochemistry of 5 to be 2R,3R,2"R or 2S,3S,2"S. The absolute configurations of 1, 2 and 5 remain still unknown.

EXPERIMENTAL

Optical rotations were recorded on a JASCO P-1020 polarimeter at 25 °C, using a 100-mm length quartz cell, unless otherwise indicated. UV spectra were taken in MeOH with a JASCO V-560 spectrophotometer. IR spectra were taken on a JASCO FT/IR-410 spectrophotometer. MS spectra were obtained under EI conditions with a Hitachi M-80 spectrometer and under FAB conditions with a JEOL HX-110 spectrometer. ¹H-, ¹³C-, two-dimensional (2D) NMR and difference NOE spectra were measured with JEOL α -400 and α -600 spectrometers in DMSO-d₆, unless otherwise indicated.

Isolation Young stems of Garcinia kola (2.3 kg) collected in Nigeria were extracted with MeOH (8 L x 3) at rt for 3 days to yield an extract (105 g). The MeOH extract was subjected to the fractionization with hexane (2.2 g), CHCl₃ (3.8 g), EtOAc (7.8 g) and BuOH (7.8 g), successively. The EtOAc soluble fraction was separated by MPCC on SiO₂ (Fuji Silysia Co. Ltd., BW-820 MH, 140 g) using a mixture of CHCl₃ and MeOH (50 : 1, flow rate 3.0 mL/min) to give 4 fractions ; 306 mg, 690 mg, 202 mg and 176 mg and then using a mixture of CHCl₃ and MeOH (9 : 1) to give a fraction (5.25 g).

1) The second fraction (690 mg) was column chromatographed (CC) on SiO₂ (Fuji Silysia Co. Ltd., BW-820 MH, 25 g) with CHCl₃ and MeOH (50 : 1) to give 3 fractions (32 mg, 450 mg, 37 mg). The first fraction (32 mg) was separated by recycled HPLC [YMC Co. Ltd., YMC-Pack C8 { ϕ 20 x 250 cm, MeOH - H₂O (7 : 3), flow rate: 3.0 mL/min}] to give (-)-GB-1a (2) (14.1 mg) and (+)-GB-1b (1) (9.6 mg). The third fraction (37 mg) from CC was separated by recycled HPLC [YMC Co. Ltd., YMC-Pack C8 { ϕ 20 x 250 cm, MeOH - H₂O (8 : 2), flow rate: 3.0 mL/min}] to give garcinianin (3) (7 mg).

2) The third fraction (202 mg) was subjected to CC on SiO₂ (Fuji Silysia Co. Ltd., BW-820 MH, 25 g) with CHCl₃ and MeOH (50 : 1) to give 2 fractions (156 mg, 30 mg). The first fraction (156 mg) was separated by reversed phase MPCC [Nomura Chemical Co. Ltd., Develosil Lop C8 { ϕ 30 x 300 cm, MeOH - H₂O (6 : 4), flow rate: 3.0 mL/min}] to give three fractions (40 mg, 68 mg, 17 mg). The third fraction (17 mg) was separated by recycled HPLC [YMC Co. Ltd., YMC-Pack C8 { ϕ 20 x 250 cm, MeOH - H₂O (8 : 2), flow rate: 3.0 mL/min}] to give amentoflavone (4) (2.3 mg).

3) The fourth fraction (176 mg) was separated by reversed phase MPCC [Nomura Chemical Co. Ltd., Develosil Lop C8 { ϕ 30 x 300 cm, MeOH - H₂O (6 : 4), flow rate: 3.0 mL/min}] to give six fractions (16 mg, 17 mg, 82 mg, 3 mg, 22 mg, 7 mg). The second and fifth fractions (17 mg and 22 mg) were separated by recycled HPLC [YMC Co. Ltd., YMC-Pack C8 { ϕ 20 x 250 cm, MeOH - H₂O (8 : 2), flow rate: 3.0 mL/min}] to give GB-2a (**5**) (7 mg) and 3,8"-biapigenin (**6**) (3.3 mg), respectively.

Characterization

(+)-GB-1b (1): $[\alpha]_D$ +8.2° (c 0.22, MeOH); UV (MeOH), λ 338 nm (log ε 3.8), 292 (4.4), 250 (3.9), 225 (4.9); IR (KBr), ν 3430 br, 1634 cm⁻¹; HRFABMS, m/z 543.1273 [M+H⁺] (C₃₀H₂₃O₁₀ requires: 543.1291); ¹H NMR see Table 1; ¹³C NMR see Table 1.

(-)-GB-1a (2): [α]_D-28.1° (c 0.22, MeOH); UV (MeOH), λ 332 nm (log ε 3.7), 292 (4.3), 253 (3.8), 227 (4.5); IR (KBr), v 3430 br, 1630 cm⁻¹; HRFABMS, m/z 543.1276 [M+H⁺] (C₃₀H₂₃O₁₀ requires: 543.1291); 'H NMR at 25 °C, & 5.67 (1H, d, J=12.0 Hz, H-2), 4.50 (1H, d, J=12.0 Hz, H-3), 5.89 (1H, br s, H-6), 5.84 (1H, br s, H-8), 7.12 (2H, d, J=8.0 Hz, H-2',6'), 6.79 (2H, d, J=8.0 Hz, H-3',5'), 5.54 (1H, d, J=12.7 Hz, H-2"), 2.92 (1H, dd, J=12.7, 16.8 Hz, H-3"), 2.72 (1H, d, J=16.8 Hz, H-3"), 5.76 (1H, s, H-6"), 7.09 (2H, d, J=8.0 Hz, H-2", 6"), 6.63 (2H, d, J=8.0 Hz, H=3", 5"), 5.37 (1H, d, J=12.0 Hz, H-2), 4.65 (1H, d, J=12.0 Hz, H-3), 5.91 (1H, br s, H-6), 5.89 (1H, br s, H-8), 7.20 (2H, d, J=8.0 Hz, H-2',6'), 6.83 (2H, d, J=8.0 Hz, H-3',5'), 5.36 (1H, d, J=12.7 Hz, H-2"), 2.90 (1H, dd, J=12.7, 16.8 Hz, H-3"), 2.72 (1H, d, J=16.8 Hz, H-3"), 5.80 (1H, s, H-6"), 7.09 (2H, d, J=8.0 Hz, H-2¹¹,6¹¹), 6.63 (2H, d, J=8.0 Hz, H=3¹¹,5¹¹); ¹³C NMR at 25 °C, δ 81.3 (d, C-2), 47.4 (d, C-3), 196.1 (s, C-4), 159.7 (s, C-5), 96.1 (d, C-6), 164.6 (s, C-7), 95.0 (d, C-8), 101.1 (s, C-4a), 162.7 (s, C-8a), 128.0 (s, C-1'), 126.7 (d, C-2', 6'), 114.7 (s, C-3', 5'), 157.1 (s, C-4'), 78.2 (d, C-2"), 42.7 (t, C-3"), 196.6 (s, C-4"), 163.6 (s, C-5"), 95.0 (d, C-6"), 166.4 (s, C-7"), 101.4 (s, C-8"), 101.3 (s, C-4"a), 162.0 (s, C-8"a), 129.0 (s, C-1"), 128.9 (d, C-2",6"), 115.0 (s, C-3",5"), 157.7 (s, C-4"), 81.8 (d, C-2), 47.4 (d, C-3), 196.1 (s, C-4), 160.7 (s, C-5), 96.1 (d, C-6), 165.0 (s, C-7), 95.0 (d, C-8), 101.1 (s, C-4a), 162.8 (s, C-8a), 128.0 (s, C-1'), 127.8 (d, C-2', 6'), 114.7 (s, C-3', 5'), 157.5 (s, C-4'), 78.4 (d, C-2"), 43.1 (t, C-3"), 196.8 (s, C-4"), 163.8 (s, C-5"), 95.0 (d, C-6"), 166.4 (s, C-7"), 101.6 (s, C-8"), 101.3 (s, C-4"a), 162.5 (s, C-8"a), 129.1 (s, C-1""), 128.9 (d, C-2"",6""), 115.2 (s, C-3"",5""), 157.7 (s, C-4""); ¹H NMR at 100 °C see Table 1; ¹³C NMR at 100 °C see Table 1.

Amentoflavone (4): $[\alpha]_p$ -3.4° (c 0.11, MeOH); UV (MeOH), λ 329 nm (log ε 2.8), 291 (2.8), 227 (3.0), 204 (3.2); IR (KBr), v 3420 br, 1643 cm⁻¹; FABMS, *m/z* 539 [M+H⁺]; ¹H NMR, δ 6.72 (1H, s, H-3), 6.50 (1H, d, *J*=2.0 Hz, H-6), 6.23 (1H, d, *J*=2.0 Hz, H-8), 8.14 (1H, d, *J*=2.0 Hz, H-2'), 7.22 (1H, d, *J*=8.5 Hz, H-5'), 8.02 (1H, dd, *J*=8.5, 2.0 Hz, H-6'), 6.65 (1H, s, H-3"), 6.42 (1H, s, H-6"), 7.66 (2H, d, *J*=8.5 Hz, H-2"), 6.81 (2H, d, *J*=8.5 Hz, H-3"); ¹³C NMR, δ 164.1 (s, C-2), 102.8 (d, C-3), 181.7 (s, C-4), 161.4 (s, C-5), 98.8 (d, C-6), 164.0 (s, C-7), 94.0 (d, C-8), 103.7 (s, C-4a), 157.4 (s, C-8a), 121.5 (s, C-1'), 128.2 (d, C-2'), 121.5 (s, C-3'), 160.5 (s, C-4'), 116.8 (d, C-5'), 131.4 (d, C-6'), 164.1 (s, C-2"), 102.6 (d, C-3"), 182.0 (s, C-4"), 160.9 (s, C-5"), 99.8 (d, C-6"), 161.4 (s, C-5), 161.4 (s, C-5), 162.0 (s, C-4"), 160.9 (s, C-5"), 99.8 (d, C-6"), 161.4 (s, C-6"), 161.4 (s, C-5"), 162.0 (s, C-4"), 160.9 (s, C-5"), 99.8 (d, C-6"), 161.4 (s, C-5"), 161.4 (s, C-5"),

7"), 103.7 (s, C-8"), 103.7 (s, C-4"a), 154.6 (s, C-8"a), 121.5 (s, C-1""), 128.2 (d, C-2"", 6""), 115.7 (d, C-3"", 5""), 160.9 (s, C-4"").

GB-2a (5): $[\alpha]_{\rm b}$ -10.5° (*c* 0.35, MeOH); UV (MeOH), λ 341 nm (log ε 2.7), 292 (3.4), 225 (3.5), 202 (3.7); IR (KBr), v 3420 br, 1639 cm⁻¹; FABMS, *m/z* 559 [M+H⁺]; ¹H NMR, δ 5.62 (1H, d, *J*=12.0 Hz, H-2), 4.66 (1H, d, *J*=12.0 Hz, H-3), 5.83 (1H, br s, H-6), 5.88 (1H, br s, H-8), 7.18 (2H, d, *J*=8.3 Hz, H-2', 6'), 6.62 (2H, d, *J*=8.3 Hz, H-3',5'), 4.66 (1H, d, *J*=12.2 Hz, H-2''), 3.20 (1H, dd, *J*=12.2, 16.1 Hz, H-3''), 2.68 (1H, d, *J*=16.1 Hz, H-3''), 5.85 (1H, s, H-6''), 6.89 (1H, d, *J*=3.0 Hz, H-2'''), 6.66 (1H, d, *J*=8.3 Hz, H=5'''), 7.03 (1H, dd, *J*=8.3, 3.0 Hz, H-6'''); ¹³C NMR, δ 81.1 (d, C-2), 47.3 (d, C-3), 196.2 (s, C-4), 165.2 (s, C-5), 95.8 (d, C-6), 166.0 (s, C-7), 95.8 (d, C-8), 101.3 (s, C-4a), 165.2 (s, C-3''), 128.5 (d, C-2', 6'), 114.4 (s, C-3', 5'), 157.2 (s, C-4'), 78.3 (d, C-2''), 41.9 (t, C-3''), 199.6 (s, C-4''), 165.2 (s, C-1''), 114.5 (d, C-2'''), 166.0 (s, C-7''), 101.3 (s, C-4'''), 115.2 (d, C-5'''), 128.2 (s, C-6''').

3,8"-Biapigenin (6): UV (MeOH), λ 329 nm (log ε 3.1), 271 (3.3), 202 (3.5); IR (KBr), v 3220 br, 1639 cm⁻¹; FABMS, *m/z* 539 [M+H⁺]; ¹H NMR, δ 6.24 (1H, d, *J*=2.0 Hz, H-6), 6.50 (1H, d, *J*=2.0 Hz, H-8), 7.34 (2H, d, *J*=8.5 Hz, H-2', 6'), 6.67 (2H, d, *J*=8.5 Hz, H-3', 5'), 6.72 (1H, s, H-3"), 6.23 (1H, s, H-6"), 7.66 (2H, d, *J*=8.5 Hz, H-2^{'''}, 6"'), 6.81 (2H, d, *J*=8.5 Hz, H-3^{'''}, 5"'); ¹³C NMR, δ 163.4 (s, C-2), 110.2 (s, C-3), 191.8 (s, C-4), 161.1 (s, C-5), 99.0 (d, C-6), 163.3 (s, C-7), 93.8 (d, C-8), 102.8 (s, C-4a), 157.4 (s, C-8a), 122.9 (s, C-1'), 129.7 (d, C-2', 6'), 115.9 (s, C-3', 5'), 161.5 (s, C-4'), 163.4 (s, C-2"), 102.9 (d, C-3"), 180.5 (s, C-4"), 159.8 (s, C-5"), 99.3 (d, C-6"), 163.3 (s, C-7"), 99.3 (s, C-8"), 102.9 (s, C-4"a), 154.9 (s, C-8"a), 121.4 (s, C-1"'), 128.0 (d, C-2"', 6"'), 115.2 (d, C-3"', 5"'), 161.1 (s, C-4"').

Thermal reaction

Thermal reaction of (-)-*GB-1a* A solution of (-)-GB-1a (2) (20 mg) in DMSO (0.5 mL) was heated at 110 °C for 2 h. After concentration *in vacuo*, the residue was separated by recycled HPLC [Nacalai Tesque Co. Ltd., Cosmosil C8 { ϕ 20 x 250 cm, MeOH - H₂O (7 : 3), flow rate: 3.0 mL/min}] to give (-)-GB-1a (2) (3.7 mg (18.5 %); [α]_D -3.5° (*c* 0.26, MeOH)), (+)-GB-1b (1) (4.0 mg (20.0 %); [α]_D +2.3° (*c* 0.29, MeOH)), and 7 (5.5 mg (27.5 %); [α]_D -6.0° (*c* 0.39, MeOH)).

Thermal reaction of (+)-GB-1b A solution of (+)-GB-1b (1) (19 mg) in DMSO (0.5 mL) was heated at 110 °C for 2 h. After concentration *in vacuo*, the residue was separated by recycled HPLC [Nacalai Tesque Co. Ltd., Cosmosil C8 { ϕ 20 x 250 cm, MeOH - H₂O (7 : 3), flow rate: 3.0 mL/min}] to give (-)-GB-1a (2) (3.1 mg (16.3 %); $[\alpha]_D$ -1.5° (*c* 0.16, MeOH)), (+)-GB-1b (1) (2.6 mg (13.7 %); $[\alpha]_D$ +3.0° (*c* 0.10, MeOH)), and 7 (5.5 mg (28.9 %); $[\alpha]_D$ -2.3° (*c* 0.28, MeOH)).

Compound (7) : UV(MeOH), λ 334 nm (log ε 3.7), 292 (4.3), 253 (3.5), 226 (4.5); IR (KBr), ν 3400 br, 1634 cm⁻¹; FABMS, *m*/*z* 543 [M+H⁺]; ¹H NMR, δ 5.76 (1H, d, *J*=12.4 Hz, H-2), 4.69 (1H, d, *J*=12.4 Hz, H-3), 5.90 (1H, d, *J*=2.2 Hz, H-6), 5.87 (1H, d, *J*=2.2 Hz, H-8), 7.19 (2H, d, *J*=8.5 Hz, H-2',

6'), 6.64 (2H, d, *J*=8.5 Hz, H-3', 5'), 5.38 (1H, d, *J*=12.2 Hz, H-2"), 3.14 (1H, dd, *J*=12.2, 16.1 Hz, H-3"), 2.59 (1H, d, *J*=16.1 Hz, H-3"), 5.78 (1H, s, H-8"), 7.27 (2H, d, *J*=8.2 Hz, H-2", 6"), 6.76 (2H, d, *J*=8.2 Hz, H-3"', 5"), 12.60 (2H, s, C_{5,5"}-OH); ¹³C NMR, δ 81.1 (d, C-2), 46.4 (d, C-3), 196.9 (s, C-4), 163.6 (s, C-5), 96.0 (d, C-6), 166.4 (s, C-7), 95.0 (d, C-8), 101.3 (s, C-4a), 162.9 (s, C-8a), 128.0 (s, C-1'), 129.0 (d, C-2', 6'), 114.8 (d, C-3', 5'), 157.6 (s, C-4'), 78.6 (d, C-2"), 48.7 (t, C-3"), 196.6 (s, C-4"), 163.6 (s, C-5"), 101.7 (d, C-6"), 164.4 (s, C-7"), 96.0 (s, C-8"), 106.3 (s, C-4"a), 161.6 (s, C-8"a), 128.8 (s, C-1"), 128.4 (d, C-2", 6"), 115.3 (d, C-3", 5"), 157.7 (s, C-4").

REFERENCES AND NOTES

- 1. P. J. Cotterill, F. Scheinmann, and I. A. Stenhouse, J. Chem. Soc., Perkin Trans. 1, 1978, 532.
- 2. K. Kabangu, C. Galeffi, E. Aonzo, M. Nicoletti, and I. Messana, Planta Medica, 1987, 53, 275.
- 3. M. Niwa, K. Terashima, J. Ito, and M. Aqil, Heterocycles, 1994, 38, 1071
- 4. M. Niwa, J. Ito, K. Terashima, and M. Aqil, Heterocycles, 1994, 38, 1927.
- 5. K. Terashima, M. Aqil, and M. Niwa, Heterocycles, 1995, 41, 2245.
- K. Terashima, T. Shimamura, M. Tanabayashi, M. Aqil, J. A. Akinniyi and M. Niwa, *Heterocycles*, 1997, 45, 1559.
- V. M. Chari, M. Ilyas, H. Wagner, A. Neszmelyi, F.-C. Chen, L.-K. Chen, Y.-C. Lin, and Y.-M. Lin, *Phytochemistry*, 1977, 16, 1273.
- 8. B. Jackson, H. D. Locksley, and F. Scheinmann, J. Chem. Soc. (C), 1981, 3791.
- 9. R. Berghöfer and J. Hölyl, Planta Medica, 1987, 53, 216.
- 10. (-)-GB-1a (2) has mainly two conformers at 25 °C in dimethyl sulfoxide-d₆; ¹H and ¹³C NMR spectral data at 25 °C were shown in the EXPERIMENTAL. The assignments for each conformer were mainly based on 2D-NMR spectra.

Received, 29th June, 1998