FIRST SYNTHESIS OF *gem*-DIFLUOROTHIIRANES FROM CYCLOALIPHATIC THIOKETONES AND DIFLUOROCARBENE¹

Grzegorz Mlostoń,^{a*} Jaroslaw Romański,^{a2} and Heinz Heimgartner^{b*}

^aInstitute of Organic and Applied Chemistry, University of Łódź, Narutowicza 68, PL-60-136 Łódź, Poland

^bInstitute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Abstract - The reaction of sterically crowded cycloaliphatic thioketones with phenyl(trifluoromethyl)mercury and sodium iodide in boiling benzene yielded *gem*-difluorothiiranes in fair yields whereas in the case of aromatic thioketones *gem*-difluoroalkenes were obtained. The formation of these products is rationalized by an addition of difluorocarbene onto the C,S-double bond, followed by the extrusion of sulfur.

INTRODUCTION

Reports on syntheses and properties of fluorinated thiiranes are very rare. An old protocol concerns the preparation of tetrafluorothiirane (1) starting with difluorothiophosgene and perfluoropropylene oxide.³ The yield of **1** was very low, however, and the product was contaminated with perfluorocyclobutane as reported by another group.⁴ Another access to a fluorinated thiirane based on the rather hardly available bis(perfluoropentyl) disulfide, which upon treatment with tris(diethylamino)phosphane was converted into 2-fluoro-3-hexafluoroisopropylidene-2-(trifluoromethyl)thiirane (**2**).⁵ The same research group described the synthesis of 2,2-difluoro-3,3-bis(trifluoromethyl)thiirane (**4**) *via* the cyclization of sulfenyl chloride (**3**) with borontrifluoride-triethylamine complex⁶ (*Scheme 1*).

On the other hand, thiocarbonyl compounds are versatile starting materials for simple preparation of various thiiranes. In the first place, the 1,3-dipolar cycloaddition of diazo compounds followed by N_2 extrusion should be mentioned.⁷⁻⁹ In the case of less reactive diazo compounds, thiiranes are formed in Rh-catalyzed reactions with thiocarbonyl

compounds, in which a carbenoid is involved.¹⁰ A mechanism *via* a thiocarbonyl ylide was postulated for reactions of thioketones with a free carbene generated photolytically at low temperature in an argon matrix.¹¹ Recently, we elaborated a preparative method for the synthesis of *gem*-dichlorothiiranes from non-enolizable thioketones under two-phase conditions.¹² In this case, a plausible reaction mechanism involving dichlorocarbene was postulated.

Fluorinated thioethers attract considerable attention due to their unusual properties; many of them were involved in the design of biologically active compounds.¹³ In view of the structural similarity of aliphatic thioethers and thiiranes we decided to develop a synthetically useful method for the preparation of fluorinated thiiranes. The most simple approach seemed to be the addition of difluorocarbene onto thioketones. Difluorocarbene is a widely used halogenated carbene and its chemistry has been reviewd by Dehmlov.¹⁴ Phenyl-(trifluoromethyl)mercury (PhHgCF₃, Seyferth's reagent) is recommended as the most convenient precursor. Whereas additions of :CF₂ onto C,C-double bonds are well documented, attempts to accomplish similar reactions with C,O-, C,N-, and C,S-double bonds failed.¹⁵ In the present paper, we describe first successful additions of :CF₂ with thioketones yielding *gem*-difluorothiiranes.

RESULTS AND DISCUSSION

Generally, the reactions of non-enolizable thicketones (5a-d) with $PhHgCF_3$ were carried out in boiling benzene in the presence of *ca.* equimolar amounts of dried NaI. Under these conditions, reactions were completed after 24-48 h and the products were isolated after chromatographic workup. Reactions with aromatic thicketones (5a,b) did not afford the expected thiiranes. Instead, *gem*-difluoroalkenes (**7a**,**b**) were obtained in 55 and 72% yields, respectively (*Scheme 2*).

The formation of ethylene derivatives (7) results from a desulfurization of unstable 2,2-difluoro-3,3-diarylthiiranes (**6a**,**b**) which are believed to be primarily formed adducts. The instability of thiiranes of type (**6**) was also observed when they were prepared from **5a**,**b** and CF_3SiMe_3 (Ruppert's reagent) in the presence of specially dried tetrabutylammonium fluoride at room temperature.¹⁶ It is worth mentioning that 2,2-dichloro-3,3-diphenylthiirane is a fairly stable compound at room temperature¹² whereas the replacement of chlorine by fluorine atoms results in an easier elimination of sulfur.

In the case of the sterically crowded aliphatic 2,2,4,4-tetramethyl-3-thioxocyclobutane (**5c**) we were able to isolate the expected thiirane (**6c**) in 50% yield as a thick colorless oil (*Scheme 3*). The IR spectrum (neat) showed a very strong band at 1790 cm⁻¹ for the unchanged C=O group of cyclobutanone. In the ¹H-NMR spectrum (CDCl₃, 600 MHz), two signals for the methyl groups appeared, one of them as a singlet (1.23 ppm) and the other one as a triplet (1.39 ppm) with J = ca. 1 Hz. This coupling results from a 'through-space-interaction' with the fluorine atoms which absorb at -94.9 ppm in the ¹9F-NMR spectrum (CDCl₃). Finally, the ¹³C-NMR spectrum revealed the presence of a triplet with ¹*J*C,F = 307.8 Hz at 121.1 ppm which is attributed to C(2). The signal of C(3) was identified also as a triplet at 62.1 ppm (²*J*C,F = 9.3 Hz). The other signals are typical for the tetramethylcyclobutanone ring.¹⁷ The structure of **6c** shows that difluorocarbene reacted exclusively with the C=S group of **5c**.

The next thioketone selected for our studies was 2,2,4,4-tetramethylcyclobutane-1,3-dithione (5d). The typical red-orange color of this compound disappeared after heating the mixture with PhHgCF₃ for 48 h. Separation of the reaction mixture by column chromatography afforded mono-adduct (6d) (18%) and a mixture of the bis-adducts *cis*- and *trans*-8 (40%, *Scheme 4*).

Spectral data of **6d** were similar to those of **6c**; the signal of the C=S group in the ¹³C-NMR spectrum appeared typically at *ca.* 273 ppm.¹⁸ The separation of *cis-* and *trans-***8** was not achieved, neither by column chromatography nor *via* crystallization. Identification and characterization of both isomers were possible, however, due to the different symmetry of the two molecules. The centrosymmetric *trans-***8** showed only one Me resonance in the ¹H- and ¹³C-NMR spectra (1.29 and 24.7 ppm, respectively). In the ¹H-NMR, the signal of the Me groups appeared as a triplet with a 'through-space coupling' of *ca.* 1 Hz. For *cis-***8**, with a mirror symmetry, the Me groups resonated in the ¹H- and ¹³C-NMR spectra as two signals at 1.52/1.12 and 28.5/21.3 ppm, respectively.

In view of our successful protocol for the preparation of *gem*-dichlorothiiranes from thioketones and CHCl₃/NaOH/TEBA,^{12,19} we became interested in elaboration of a similar two-phase procedure for corresponding *gem*-difluorothiiranes. Recently, Balcerzak and Jończyk succeeded in preparation of a series of *gem*-difluorinated cyclopropanes using CHBr₃/CBr₂F₂/KOH/TBAHS²⁰ recognized as a convenient source of :CF₂.^{14,21} In our experiments with thiobenzophenone (**5a**), however, we could not obtain the expected *gem*-difluorothiirane (**6a**). Therefore, we conclude that Seyferth's reagent is the reagent of choice to convert thioketones into fluorinated thiiranes.

406

EXPERIMENTAL

Melting points were determined in a capillary on a *Büchi-SMP-125* apparatus and are uncorrected. IR spectra were recorded on a *Perkin-Elmer 781* instrument (cm⁻¹), 1H-NMR and 13C-NMR spectra on a *Bruker AC-300* (1H, 300 MHz) and *Bruker ARX-300* instrument (1³C, 75.5 MHz), respectively, in CDCl₃; chemical shifts in ppm, TMS as internal standard, *J* in Hz. ¹⁹F-NMR spectra were taken on a *Bruker AMX-600* Instrument (564.7 MHz) in CDCl₃; chemical shifts in ppm, CFCl₃ as internal standard. EI-MS spectra were recorded on a *Varian-MAT-112S* spectrometer at 70 eV; CI-MS with NH₃ as carrier gas. Microanalyses were performed at the microanalytical laboratory of the University of Zurich.

Starting materials. They were prepared according to known protocols: thiobenzophenone (**5a**) and 4,4'-dimethoxythiobenzophenone (**5b**) from corresponding ketones and Lawesson's reagent in boiling toluene,²² 2,2,4,4-tetramethyl-3-thioxocyclobutanone (**5c**) and 2,2,4,4-tetramethylcyclobutane-1,3-dithione (**5d**) from commercially available 2,2,4,4-tetramethylcyclobutane-1,3-dione using P_4S_{10} in pyridine.²³ Phenyl(trifluoromethyl)mercury was prepared according to Seyferth *et al.*²⁴ Commercial Nal has been dried overnight in high vacuum at 150°C.

Reactions of thicketones with phenyl(trifluoromethyl)mercury; general procedure. To a solution of thicketone 5 (2 mmol) in dry benzene (5 mL), PhHgCF₃ (767.7 mg, 2.2 mmol) and Nal (314.8 mg, 2.1 mmol) were added at rt. The stirred mixture was heated to reflux under N₂ atmosphere. When the reaction came to an end, the solution was cooled to rt and the solvent was evaporated. The residues were purified chromato-graphically (SiO₂, pentane with increasing amounts of CH₂Cl₂).

Reaction with thiobenzophenone (**5a**). After 36 h, the reaction mixture was colorless. *1*, *1*-*Difluoro-2,2-diphenylethene* (**7a**). 238 mg (55%), colorless, viscous oil. IR (neat): 3060*w*, 3020*w*, 1710*vs*, 1500*m*, 1450*s*, 1250*s* (br), 1210*m*, 1000*m*, 990*s*, 910*m*, 760*s*, 700*s*, 630*m*. 1H-NMR: 7.35-7.25 (*m*, 10 arom. H). 13C-NMR: 153.8 (*t*, ¹*J*(C,F) = 294.0, =CF₂); 134.4 (*s*, 2 arom. C); 129.6 (*dt*, ⁴*J*(C,F) = 3.0, 4 arom. CH); 128.4, 127.6 (2*d*, 6 arom. CH); 96.3 (*t*, ²*J*(C,F) = 16.0, *C*=CF₂). ¹⁹F-NMR: -88.3 (*s*, =CF₂). EI-MS: 216 (100, *M*+·), 196 (32), 167 (16), 165 (84), 82 (11). Anal. Calcd for C₁₄H₁₀F₂: C, 77.76; H 4.66. Found: C, 76.97; H, 4.86.

Reaction with 4,4'-dimethoxythiobenzophenone (**5b**). After 24 h, the reaction mixture was colorless. 1,1-Difluoro-2,2-bis(4-methoxyphenyl)ethene (**7b**). 397 mg (72%), colorless crystals, mp 53-54°C (pentane). IR (KBr): 1700*s*, 1610*s*, 1510*vs*, 1310*m*, 1280*s*, 1240*vs*, 1210*m*, 1180*s*, 1110*m*, 1030*s*, 980*m*, 840*vs*. 1H-NMR: 6.83, 6.20 (*AB*, *J*(A,B) = 7.0, 8 arom. H); 3.79 (*s*, 2 MeO). 13C-NMR: 158.9 (*s*, 2 arom. C); 153.8 (*t*, ¹*J*(C,F) = 294.0, =CF₂); 137.3 (*s*,

2 arom. C); 130.7, 113.8 (2*d*, 8 arom. CH); 95.3 (*t*, ${}^{2}J(C,F) = 16.0$, $C=CF_{2}$); 55.3 (*q*, 2 MeO). ¹⁹F-NMR: -90.2 (*s*, =CF₂). CI-MS: 277 ([*M*+1]⁺). Anal. Calcd for C₁₆H₁₄O₂F₂: C, 69.56; H 5.11. Found: C, 68.94; H, 5.47.

Reaction with 2,2,4,4-tetramethyl-3-thioxocyclobutanone (**5c**). After 24 h, the reaction mixture was colorless. Chromatography yielded a small amount of starting material and *2,2-difluoro-4,4,6,6-tetramethyl-1-thiaspiro[2.3]hexan-5-one* (**6c**) as the less polar fraction: 140 mg (50%), colorless oil. IR (neat): 2970*m*, 2930*m*, 1790*vs* (C=O), 1460*m*, 1380*s*, 1150*s*, 1100*m*, 1030*m*, 1000*s*, 960*m*, 790*s*. ¹H-NMR: 1.39 (*t*, *J*(H,F) = *ca*. 1.0, 2 Me); 1.23 (*s*, 2 Me). ¹³C-NMR: 216.4 (*s*, C=O); 121.1(*t*, ¹*J*(C,F) = 307.8, CF₂); 62.5 (*t*, ³*J*(C,F) = 3.3, C(4), C(6)); 62.1 (*t*, ²*J*(C,F) = 9.3, C(3)); 22.9, 20.3 (2*q*, 4 Me). ¹⁹F-NMR: -94.9 (br *s*, CF₂). EI-MS: 206 (3, *M*^{+.}), 163 (45), 146 (100), 131 (65), 81 (75), 70 (70).

Reaction with 2,2,4,4-tetramethylcyclobutane-1,3-dithione (5d). After 48 h, the reaction mixture was colorless. A preliminary separation by column chromatography (SiO₂) yielded a mixture of 1:1 and 1:2 adducts. Additional separation on PLC plates coated with SiO2 and pentane as eluent gave the 1:1 adduct 6d as the minor component ($R_f = 0.7$) along with an inseparable mixture of two 1:2 adducts as the major fraction ($R_f = 0.8$). 2,2-Difluoro-4,4,6,6tetramethyl-1-thiaspiro[2.3]hexane-5-thione (6d): 80 mg (18%), pale red crystals, mp 115-117°C (after sublimation). IR (neat): 2970s, 2920s, 1460s (br), 1390s, 1300m, 1140s, 1090m, 1010*m*, 990*s*, 950*m*, 790*s*. ¹H-NMR: 1.44 (*t*, *J*(H,F) = *ca*. 1.0, 2 Me); 1.30 (*s*, 2 Me). ¹3C-NMR: 273.2 (s, C=S); 121.0 (t, $^{1}J(C,F) = 310.0, CF_{2}$); 66.0 (s, C(3)); 64.6 (s, C(4), C(6)); 26.9, 24.2 (2q, 4 Me). EI-MS: 222 (37, M+), 207 (31), 189 (30), 175 (20), 86 (100, [Me₂C=C=S]+). cis- and trans-2,2,7,7-Tetrafluoro-4,4,8,8-tetramethyl-1,6-dithiadispiro[2.1.2.1]octanes (cisand trans-8): 220 mg (40%) of a 4:1 mixture, colorless solid, mp 155-162°C (pentane). IR (KBr): 2980m, 1460m, 1390m, 1370m, 1350vs (br), 1180m, 1130s, 1110m, 1030m, 1020m. 950s, 790s. ¹H-NMR: 1.52, 1.12 (2s, 4 Me of cis-8); 1.29 (t, J(H,F) = ca. 1.0, 4 Me of trans-8). ¹³C-NMR: 120.7, 120.5 (2t, ¹J(C,F) = 310, 2 CF₂ of *cis*-8 and 2 CF₂ of *trans*-8); 65.3, 64.9 (2s, C(3), C(5) of cis/trans-8); 46.7, 46.2 ((2s, C(4), C(8) of cis/trans-8); 28.5, 21.3 (2g, 4 Me of cis-8); 24.7 (*q*, 4 Me of *trans*-8). ¹⁹F-NMR: -94.2 (*s*, 2 CF₂ of *cis*-8); -93.6 (*s*, 2 CF₂ of *trans*-8). CI-MS: 272 (82, M+-), 257 (100), 256 (19), 255 (37), 198 (82), 190 (37), 187 (59), 175 (56). Anal. Calcd for C₁₀H₁₂F₄S₂: C, 44.11; H 4.44. Found: C, 44.38; H, 4.58.

ACKNOWLEDGMENTS

We thank the analytical sections of the Institute of Organic Chemistry, University of Zurich, for elemental analyses, IR, NMR and mass spectra, the *Polish National Committee for Scientific*

Research (KBN), the Swiss National Science Foundation, and F. Hoffmann-La Roche AG, Basel, for financial support.

REFERENCES

- 1. Presented in preliminary form by *G.M.* at the '12th European Symposium on Fluorine Chemistry', Berlin, 1998.
- 2. Postdoctoral stay at the Institute of Organic Chemistry of the University of Zurich, February, 1997 - July, 1998.
- 3. W.R. Brasen, H.N. Cripps, C.G. Bottomley, M.W. Farlow, and C.G. Krespan, *J. Org. Chem.*, **1965**, *30*, 4188.
- 4. B. Beagley, R. Calladine, R.G. Pritchard, and S.F. Taylor, *J. Mol. Structure*, **1987**, *158*, 309.
- 5. V.Ya. Popkova, M.V. Galakhov, and J.L. Knunyants, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1989**, 116 (*Chem. Abstr.*, **1989**, *111*, 77762t).
- R.A. Bekker, V.Ya. Popkova, and J.L. Knunyants, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1980, 1692 (*Chem. Abstr.*, 1980, *93*, 186054u).
- 7. D.C. Dittmer, in 'Comprehensive Heterocyclic Chemistry', ed. by A.R. Katritzky and C.W. Rees, Vol. 7, Pergamon Press, Oxford, 1984, p. 131.
- 8. A.V. Fokin and A.F. Kolomiets, *Russ. Chem. Rev.* (Engl. Transl.), **1975**, *44*, 138; **1976**, *45*, 25.
- 9. G. Mlostoń, M. Petit, A. Linden, and H. Heimgartner, *Helv. Chim. Acta*, **1994**, *77*, 435; M. Petit, A. Linden, G. Mlostoń, and H. Heimgartner, *ibid.*, **1994**, *77*, 1076.
- 10. G. Mlostoń and H. Heimgartner, *Helv. Chim. Acta*, **1996**, *79*, 1785, and refs. cited therein.
- 11. G. Mlostoń, J. Romański, C. Schmidt, H.P. Reisenauer, and G. Maier, *Chem. Ber.*, **1994**, *127*, 2527.
- 12. G. Mlostoń, J. Romański, A. Linden, and H. Heimgartner, *Helv. Chim. Acta*, **1998**, *81*, in the press.
- 13. T. Billard and B.R. Langlois, Tetrahedron Lett., 1996, 37, 6865, and refs. cited therein.
- 14. E.V. Dehmlov, in 'Methoden der organischen Chemie (Houben-Weyl)', ed. by M. Regitz, Thieme Verlag, Stuttgart 1989, Band E19/b, p. 1467.
- 15. D. Seyferth and S.P. Hopper, J. Org. Chem., 1972, 37, 4070.
- 16. G.A. Olah, G.K.S. Prakash, and G. Mlostoń, '18th International Symposium on the Organic Chemistry of Sulfur', Firenze (Italy), 1998, Abstracts P-47, p. 145.
- 17. R. Huisgen, G. Mlostoń, and C. Fulka, Heterocycles, 1985, 23, 2207.
- 18. G. Mlostoń and H. Heimgartner, *Helv. Chim. Acta*, **1995**, *78*, 1298; G. Mlostoń, J. Romański, A. Linden, and H. Heimgartner, *ibid.*, **1995**, *78*, 1499.

- 19. TEBA = benzyltriethylammonium chloride.
- 20. TBAHS = tetrabutylammonium hydrosulfate.
- 21. P. Balcerzak and A. Jończyk, J. Chem. Res. (S), 1994, 200.
- 22. L. Spruce, Phosphorus, Sulfur and Silicon, 1985, 22, 337.
- 23. E.W. Elam, J. Org. Chem., 1967, 32, 1563.
- 24. D. Seyferth, S.P. Hopper, and G.J. Murphy, J. Organometal. Chem., 1972, 46, 201.

Received, 27th July, 1998