A CAUTIONARY NOTE ON THE USE OF COMMERCIAL (R) -MTPA-CL AND (S) -MTPA-CL IN DETERMINATION OF ABSOLUTE CONFIGURATION BY MOSHER ESTER ANALYSIS

Balawant S. Joshi* and S. William Pelletier

Institute for Natural Products Research and Department of Chemistry; The University of Georgia, Athens, Georgia 30602-2556, USA

Abstract – While the absolute configuration of a Mosher ester derivative (MTPAOR) is identical with that of the Mosher acid (MTPAOH) precursor, it is <u>opposite</u> that of the Mosher acid chloride (MTPA-CI). Since (R)-MTPA-CI and (S)-MTPA-CI are now commercially available, incorrect conclusions may be drawn in deriving the absolute configuration, if this fact is overlooked. The absolute configuration of (-)-vasicinone (1) derived by Mosher ester analysis (*Tetrahedron Asymmetry*, 1996, 7, 25) has been revised as 3S. Mosher ester analysis of (-)-vasicine (2) confirmed a 3S configuration for this alkloid.

Mosher's empirically derived technique of the use of MTPA [α -methoxy- α -(trifluoromethyl)phenylacetic acid] esters is an important and less cumbersome technique for determination of the absolute configuration of stereogenic centers bearing hydroxyl groups.¹ The chiral alcohol is condensed with each of the enantiomers of the Mosher acid chloride to form the MTPA-ester. The *R*- MTPA is converted to the acid chloride which gives the acid chloride of the *S*- configuration (*S*-MTPA-CI). The subsequently formed MTPA ester has an *R*- configuration, i.e. *R*- MTPA gives *S*-MTPA-CI and *R*- MTPA ester (Cahn-Ingold-Prelong nomenclature rules²). The ¹H-NMR spectra of *R*- MTPA ester and the *S*- MTPA ester are then determined. The absolute configuration of the chiral center is then derived by comparison of the ¹H chemical shift differences (Δ Ss) throughout the molecule of the Mosher esters.

The pyrrolo[2,1-*b*]quinazoline alkaloid (-)-vasicine from an Indian medicinal plant Adhatoda vasica was assigned a 3*R* absolute configuration on the basis of an X-Ray analysis of the hydrochloride.³ Our work on the X-Ray crystal structure of (+)-vasicine hydrobromide and the related alkaloid (+)-vasicinone hydrobromide showed a 3*S* absolute configuration based on the Flack parameter α and a consistent set of anomalous dispersion results.⁴ In order to determine the absolute configuration of (-)-vasicinone (1) by the Mosher ester derivatives, we prepared the enantiomers of the MTPA esters from the commercially procured (Aldrich) *R*- MTPA-CI and *S*- MTPA-CI.

Inadvertently, we assumed that the esters derived from these acid chlorides had the same *R*- and *S*configurations. This led us to incorrect conclusions that the Mosher's empirical correlations are not valid in deriving the absolute configurations of the alkaloids vasicine, vasicinone, vacicinol and vasicinolone.^{4,5} In fact the $\Delta\delta$ chemical shifts support a 3*S* stereochemistry for these alkaloids. It is reassuring to note that revised 3*S* configuration of (-)-vasicinone has been confirmed by synthesis of (*S*) -(-) vasicinone.⁶ We prepared the correct *R*- and *S*- MTPA esters of (-)-vasicine (**2**) from the commercial MTPA-CI taking in to conideration the CIP priority rules. The ¹H chemical shift values $\Delta\delta = (\delta S - \delta R)$ for H-2 α (-15 Hz), H-2 β (-7.5 Hz), H-1 α (0), H-1 β (-20 Hz), H-3 (+55 Hz) confirm that (-)-vasicine should have the 3*S* configuration.

The stereochemical nomenclature change has been pointed out in earlier literature.⁷ However, the priority interchange from MTPA to MTPA-CI and to MTPA ester should not be overlooked since the enantiomeric acid chlorides are now commercially available.

ACKNOWLEDGMENT

We thank Professor Thomas R. Hoye for bringing this pitfall to our attention.

REFERENCES AND NOTES

- a) J. A. Dale and H. S. Mosher, *J. Am. Chem. Soc.*, 1973, 95, 512; b) G. R. Sullivan, J. A. Dale, and H. S. Mosher, *J. Org. Chem.*, 1973, 38, 2143; c) I. Ohtani, T. Kusumi, M. O. Ishitsuka, and H. Kakisawa, *Tetrahedron Lett.*, 1989, 30, 3147; d) T. Kusumi, I. Ohtani, and Y. Inouye, *Tetrahedron Lett.*, 1988, 29, 4731; e) M. J. Rieser, Y-H. Hui, J. K. Rupprecht, J. F. Kozlowski, K. V. Wood, J. L. McLaughlin, P. R. Hanson, Z. Zhuang, and T. R. Hoye, *J. Am. Chem. Soc.*, 1992, 114, 10203.
- R. S. Cahn, C. K. Ingold, and V. Prelog, *Experientia*, 1956, **12**, 81-94. Angew. Chem., Int. Ed. Engl., 1966, **5**, 385.
- 3. K. Szulzewsky, J. Höhne, S. Jöhne, and D. Gröger, J. Prakt. Chem., 1976, 318, 463-470.
- 4. B. S. Joshi, M. G. Newton, D. W. Lee, A. D. Barber, and S. W. Pelletier, *Tetrahedron Asymmetry*, 1996, **7**, 25.
- 5. Sh. K. Latypov, J. M. Seco, E. Quiñoá, and R. Riguera, J. Org. Chem., 1996, 61, 8569.
- 6. S. Equelin, T. Suzuki, T. Okawa, and Y. Matsushita, J. Org. Chem., 1996, 61, 7316.
- 7. In above reference 1a, footnote 46 and reference 1e, footnote 9.