LATE STAGE OF BIOSYNTHESIS OF INTERMOLECULAR DIELS-ALDER TYPE ADDUCTS IN *MORUS ALBA* L. *CELL* CULTURES

Yoshio Hano,^a Taro Nomura,^{a*} and Shinichi Ueda^{b†}

aFaculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan bFaculty of pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Abstract \cdot The ¹³C-enrichments of chalcone type Diels-Alder type adducts, kuwanons $J(1)$, $R(3)$, and $V(4)$ resulting from administration experiment of [2-¹³Clacetate to *Morus alba* cell cultures as well as of 2-arylbenzofuran type adducts, chalcomoracin **(5)** and mulberrofuran E **(6),** revealed that major adducts **(1)** and **(5)** by the cell cultures arc presumably derived from 4 and **6,** respectively, through hydroxylation reaction. Kuwanon V **(4)** and mulberrofuran **E** (6) were found to be primary adducts in the *M. alba* cell cultures.

Morus alba callus and suspension cultures induced from the seedlings or the leaves¹ produce characteristic mulberry Diels-Alder type adducts, kuwanons J^2 (1), Q^2 (2), R^2 (3), V^2 (4), chalcomoracin^{1,3} (5), and mulberrofuran E4 **(6)** (Figure 1). Among them, compounds **(1)** and **(5)** are major secondary metabolites in the cell cultures and the productivity by the cell cultures is estimated by about 100 - 1000 times more than that by the intact plant.¹ The biosynthetic studies of the mulberry adducts have been examined by employing the cell cultures through administration experiments of various exogenous substrates and putative precursors. Through administration experiments with 13C-laheled acetates, kuwanon J **(1)** and chalcomoracin **(5)** have been found to be composed of two molecules of cimamoylpolyketide intermediates.⁵ Administration of precursory methoxychalcone to the cell cultures yielded several optically

Figure 1 Diels-Alder type adducts of *Morus alba* callus cultures.

active Diels-Alder type metabolites corresponding to methyl ethers of usual Diels-Alder type adducts by the cell cultures.⁶ Involvement of the precursory chalcone into the Diels-Alder type construction gave an evidence for biological intermolecular Diels-Alder type reaction in the M. alba cell cultures.⁶ The other interesting finding was the biosynthesis of an isoprenc unit for chalcomoracin (5) .^{7,8} The isoprene unit is built up through junction of the glycolysis and the pentose-phosphate cycle⁷ and participates in the Diels-Alder type cycloaddition reaction.⁸ Our further studies of the biosynthesis of the Diels-Alder type adducts were focused on minor adducts, such as kuwanon V (3) and mulberrofuran E (6) , in the M. alba cell cultures.

Minor Dicls-Alder typc adducts, kuwanons **Q (2),** R (3), V (4), and mulberrofuran E (6) are lacking onc or two hydroxyl groups at specified positions of kuwanon **J** (1) and chalcomoracin (5): respcctivcly (Figure 1). From the administration experiments with precursory methoxychalcones: these adducts cach arc supposcd to bc indcpcndcntly biosynthcsized through the Diels-Alder typc reaction between two molecules of isoprenylphenols. On the other hand, in the feeding experiment with $[2^{-13}$ Clacetate, the 13 Cenrichment factor at the polykctidc-derived aromatic rings of **1** and 5 was about 4 % and 17 %, respectivey, in spite of both having the same chalcone molecule.⁹ Such a large difference of the ¹³Cenrichment between 1 and 5 may be attributable to different time schedule on the formation of these adducts in thc ccll culturcs. In order to clarify the relationship among the major and the minor Diels-Alder type adducts in their biosynthcses, the ¹³C-enrichment factors of other minor adducts from $[2,13]$ C acetate were examined. This paper describes the late stage of biosynthesis of the Diels-Alder type adducts in the M. alba ccll culturcs.

After the *Morus alba* cclls were suspended in sterilized water, sodium [2-¹³C]acctate (180 mg) was fed for scven days in the dark at 25 °C .⁵ Separation and purification of the Diels-Alder type adducts from the lyophilizcd cells (4.9 g) by a combination of silica gel column chromatography, preparative TLC, and HPLC as previously reported afforded kuwanons J $(1, 12 \text{ mg})$, R $(3, 2 \text{ mg})$, V $(4, 1 \text{ mg})$, chalcomoracin $(5, 27 \text{ mg})$, and mulberrofuran E $(6, 2 \text{ mg})$.

The ¹³C-NMR spectra of kuwanons **J** (1), R (3), and V (4) resulting from the experiment exhibited high incorporation of labeled acctate into the polyketide-derived aromatic rings of the adducts (Charts $1a - c$). As described above, the ¹³C-cnrichment factors of kuwanon **J** (1) and chalcomoracin (5) were about 4 % and 17 %, respectively. Kuwanon R (3) , which is lacking one hydroxyl group at the C-2 of 1, showed high incorporation of the labeled acetate than that of 1, and the ¹³C-enrichment factor was about 14 % (Chart 1b). Furthermore, in the case of kuwanon $V(4)$, which is further lacking one hydroxyl group at the C-16" of **3**, the ¹³C-enrichment factor was about 24 % (Chart 1c). Accordingly, in a series of chalcone-chalcone typc adducts, the 13 C-enrichment factor was in inverse proportion to the number of hydroxyl group. Similar phenomenon was observed in chalcomoracin (5) and mulberrofuran E (6), in which the ¹³Ccnrichment of **6** was about 22 % to 17% of 5 (Figure 2).

On the other hand, considering the results of the administration cxpcrimcnts with precursory methoxychalcones, kuwanon J (1) would be biosynthesized from two molecules of chalcone $(=$ morachalcone A,³ 7) with 4 % of the ¹³C-enrichment factor (Figure 3). Similarly, kuwanon V (4) is composed of two molecules of the chalconc derivative **(8)** with 24 % of the ¹³C-enrichment factor (Figure *3).* In this point of view, kuwanon R (3) sccms to be formed from two chalcone parts (7) and **(8)** cach

Chart 1¹³C-NMR spectra of (a) kuwanon J (1), (b) kuwanon R (3), and (c) kuwanon V (4) resulting from the feeding experiment with [2-13C]acetate.

Figure 2 Enriched positions (\blacksquare) with [2-¹³C]acctatc. Parenthes (%) denote enrichment factor.

Figure 3 \quad Hypothesis on the formation of 1, 3, and 4 from monomers (7) and (8).

Figure 4 Late stage of the biosynthesis of the Diels- Alder type adducts in *M, alba* cell cultures.

having 4 % and 24 % of ¹³C-enrichment factors, respectively. However, the ¹³C-NMR spectrum of kuwanon R (3) indicated that both chalconc parts (7) and **(8)** have the same 13C-enrichment factor (14%). The agreement of the 13C-enrichment factor of 7 with that of **8** in kuwanon R **(3)** was unexplainable result, if the Diels-Alder type adducts cach are independently formed through the Dicls-Alder typc cycloaddition reaction (Figure 3). Thc most important point, however, was that, in the chalcone-chalconc type Diels-Alder type adducts $(1, 3, \text{ and } 4)$, the two chalcones forming one molecule of the adduct arc always enriched with the same degrees of the ^{13}C . In addition to the fact, the ^{13}C -enrichment of the adduct was diluted as incrcasing the number of hydroxyl group. A possible explanation on this fact is that foremost biosynthesis of lcsscr hydroxylated adduct (4) in the cell cultures followed by successive hydroxylation reactions of 4 to form kuwanon R **(3)** and then kuwanon **J (1)** (Figure 4). Thus, the 13C-enrichments of the diene and dienophilc parts must be always the same degree in every adducts. On thc other hand, in the

series of the 2-arylbenzofuran type adducts, chalcomoracin (5) and mulberrofuran E (6) , the relationship between the 13 C-enrichment and the number of hydroxyl group was the same as that in the series of chalcone-chalcone type adducts. Furthermore, the 13 C-enrichment of the 2-arylbenzofuran moiety of 6 was lager than that of 5, inspite of the same structure. This fact also suggested that chalcomoracin (5) is formed by the hydroxylation at the **C-16"** position of mulberrofuran E (6) primarily biosynthesized in the cell cultures (Figure 4).

It was thus concluded that the major adducts $(1 \text{ and } 5)$ in the *M. alba* cell cultures are presumably derived through the hydroxylation of 4 and 6, respectively, which are primary adducts in the cell cultures (Figure 4). Present study revealed thc late stage of the biosynthesis for the intermolecular Diels-Alder type adducts in the *M. alba* cell cultures.

ACKNOWLEDGEMENT

A pant of this work was supported by Grant-in-Aids for Scientific Research (No. 09672168) from the Ministry of Education Science and Culture of Japan.

REFERENCES AND NOTES

t Dedicated to the late Dr. S. Ueda.

- 1. S. Ueda, T. Nomura, T. Fukai, and **J.** Matsumoto, *Chem. Pharm. Bull.,* 1982, 30, 3042.
- 2. **1.** Ikuta(nee Matsumoto), T. Fukai, T. Nomura, and S. Ueda, *Chem. Pharm. Bull.,* 1986, 34, 2471.
- 3. M. Takasugi, S. Nagao, T. Masamune, A. Shirata, and K. Takahashi, *Chem. Lett.,* 1980, 1573.
- 4. S. Ueda, **J.** Matsumoto, and T. Nomura, *Chem. Pharm. Bull.,* 1984,32, *350.*
- *5.* Y. Hano, T. Nomura, and S. Ueda, *Chrm. Phurm. Bull.,* 1989,37, 554.
- 6. Y. Hano, T. Nomura, and S. Ueda, *J. Chem.* **Soc.,** *Chem. Commun.,* 1990, **610.**
- 7. Y. Hano, A. Ayukawa, T. Nomura, and S. Ueda, *J. Am. Chem.* **Soc.,** 1994,116, 4189.
- 8. Y. Hano, A. Ayukawa, T. Nomura, and **S.** Ueda, *Naturwissenschafte~~* 1992,79, 180.
- 9. ¹³C-Enrichment factor was calculated by the ¹³C signal intensity of the compound resulting from the feeding experiment to that in natural abundance.

Received, 28th September, 1998