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REACTION OF CYCLOHEXA-1,2,3-TRIENE WITH N, & -DIPHENYL-
NITRONE: FORMATION OF SEVEN-MEMBERED CYCLIC AMINES ViA
PIRADONE DERIVATIVES
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Abstract———Cvyclohexa—1,2,3-triene was generated in the
presence of N, a#—diphenylnitrones to form seven—membered cyclic
amines via piradone derivatives, which were formed through [4+2]
type cycloaddition of the central double bond of cyclohexa-

1,2,3-triene with nitrones.

Generally, cumulenes are recognized to have linear structures because of the sp-
hybridization of the carbon atoms. Cyclic cumulenes usually have high reactivity
owing to the high strain energy of the bent cumulene structures. The smallest cyclic
allene isolated is cyclonona-1,2-diene, although it dimerizes with a half life time of
ca. 10 min at 0 C. Cyclohexa~1,2-diene is known only as a reactive intermediate.’
A conjugated seven-membered cyclic allene, cyclohepta-1,2,4,6-tetraene, was
reported to be a tautomeric mixture of a conjugated seven—membered cyclic carbene,
cycioheptatrienylidene.2

Cyclic cumulenes, which have three double bonds in continued positions, have been
targets of syntheses and investigations. Cyclonona-1,2,3-triene has been isolated as
a stable compound.? However, cyclohepta~1,2,3-triene has been too unstable to be isolated
and known to exist as only a reactive intermediate.*

Recently, it has been reported that cyclohexa—1,2,3-triene (1) can be generated as a reactive
intermediate by treatment of a triflate (2) with cesium fluoride.®* As a part of our
research on the reactivity of strained double bonds,® we have now examined the
reaction of the triene (1) with N, a—diphenylnitrone and have found a formation
of seven—membered cyclic amines v/a piradone derivatives.

The typical experiment is as follows. To a solution of 2 and four molar equivalents of N, @~
diphenylnitrone (3a) in dry DMSO were added seven molar equivalents of cesium fluoride.

After stirring at room temperature for 3 h, the reaction mixture was purified by column and
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Table 1. Cycloaddition of Cyclohexa-1,2,3-triene(l) with Nitrone(3).
entry Nitrone X Y Product Yield (%)
1 3a H Ph 4a 54
2 3b H p~Me-CgH, ab 24
3 3¢ H 1-Naph 4c 19
4 3d H 2-Naph 4d 33
5 3e H p~Cl-CgH, 4e 28
6 3f H p-Br-CH, af 41
7 3¢ H p~CN-CgH, 4g 14
8 3h H -NO,~CH, 4h 6
9 3i Me Ph 4i 57
10 3j Cl Ph 4j 21

thin—layer chromatography on silica gei to give 4a in 54 % yield. The results of the analogous
reactions with various nitrones are summarized in Table [.

The structures of these products were deduced on the basis of their spectral properties
as follows. The molecular ion peaks in MS spectra showed these products to be
1:1 adducts between | and 3. The IR spectra indicated the existence of a carbonyl
gro'up. The broad singlet peak at ca. 3.6 ppm in 'H NMR spectra, which was
exchangeable with deuterium in deuterium oxide, was assigned to a proton attached to a
nitrogen atom. The detailed analysis of the signals of the aromatic protons clearly
showed existence of an o-disubstituted benzene moiety. These analyses lead to the
structures illustrated in the Figure, which were supported by good resemblance of the
spectral properties with those of an analogous compound.* Furthermore, the complete and

unequivocal structural characterization of 4 was accomplished by single crystal X-Ray analysis.
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Figure 1. ORTEP drawing the X-Ray structure of 4a.

Table 2. Atomic coordinates for 4a.

atom X y Z atom X Y z
[¢ 0.7042(3) 0.1403(3)  -0.20955(7) C(18) 0.9108(8) 0.6749(7)  -0.150(1}
N 0.7159(3) 0.1669(4) 0.1023(7) c(19) 0.8540(5) 0.0588(6) -0.077{1}
c(1) 0.6536(4) 0.1653(5) 0.1604(9) H(1) 0.674() 0.180(3) 0.405(7}
c(z) 0.6404(5) 0.1722(5) 0.324(1) H(2) 0.567(5) 0.183(8) 0.49(1)
c(3) D.5807(5) 0.1703(5) 0.386(1) H(3) 0.491(4) 0.144(5) 0.322(9}
C{4) 0.5320(5) 0.1499(6) 0.282(1) H(4) 0.514(3) 0.114(3) 0.043(8)
C{5) 0.5446(4) 0.1323(5} 0,118(1) H(5) 0.808(3) 0.239{6) 0.000(10)
C(6) 0.6046¢4) 0.1340(4) 0.0546(9) H(8) 0.903(6) 0.2634{7) -0.13(2)
c(7y 0.6126(4) 0.1145(5) -0.1296{9) H(T) 0.975(4) 0.165{5) -0.22(1)
C(8}) 0.5861(5b) 0.0288(5) -0.182{1) H(8) 0.938(4) 0.038(6) -0.18(1)
c{9) 0.6226(6) -0.0442(6) ~0.108{1) H(%) 0.844(4) 0.004({5) -0.063(10)
C{10) 0.6824(4)  -0.0208(6) -0.027(1) H(10) 0.593() 0.155{3) -0.192(6)
ci11) 0.7105(4) 0 0500(5} -0.0812(9) H(11) 0.760(2) 0.056(3) 0.149(8)
cl12) 0.6800(4) 0.1072¢(5%  -0.179{1) H(12) 0.540(4) 0.025(5) -0.143010)
C(13) 0.7536(4) 0.0947(5) 0.054(1) H(13) 0.585(4) 0.025(5) -0.31(1)
C(14) 0.8148(3) 0.1200(5)  -0.0246(9) H(:14) 0.591(4) -0.071(8) -0.02(1)
c1s) 0.8342(4) 0.1995(6)  -0.046(1) H(15) 0.623(4) -0.083(5) -0.20(1)
C(186) 0.8513(8) 0.2156(8) -0.116(2) H{16) 0.700(3) -0.056(4) 0.051(8)
cm 0.9303(5) 0.1547(7)  -0.165(1) H(LT) 0.738(4) 0.198(4) 0.171(9)
Table 3. Bond lengths for 4a.
bond distant bond distant bond distant
0-C(12) 1.204(8) C{5)-C(B) 1.39(1) C(11)-c(13) 1.50(1)
N-C(1) 1.431(9) C{6)-C(7) 1.53(1) C-caa) 1.52(1)
N-CO3) 1.482(10) C{T)-C(8) 1.57(1) C14)-c(15) 1.37(1)
C{1)-C(2) 1.379(10) C(H-C(12) 1.51(1) C(14)-C(19) 1.37(1)
C(1)-C(86) 1.399(10) C(8)-C(P) 1.556(1) C{15)-C(16) 1.38(1)
C(2)-C(3) 1.38(1) C(9)-C(10) 1.4941) C(16)-C{17) 1.3741)
C(3)-c) 1.38(1) C(10)-C(11) 1.330(10) C(1m-c(18) 1.37{1)
C{4)-C(5) 1.39(1) C(11)-C(12) 1.49{(1) C(18)-C{(19) 1.38{1)
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Table 4. Bond angles for 4a.

angle angle angle

C(1)-N-C(13) 119.6(7) C{8)-C(7)-C(12) 101.8(7) N-C(13)-C(11} 102.3(6)
C(l)-N-HQT) 111(4) C(8)-C(7)-H(10} 108(3) N-C{13)-C{14) 111.7(7N
C{13)-N-H(Q1T) 169(4) C(12)-C(7)-H(10) 109(3) N-C(13)-H(11) 110(3)
N-C(1)-C(2) 118.7(7) C(7T)-C(8)-C(9) 113.3(8) C(11)-C(13)-C(14) 113.9(7)
N-C{1)-C{86) 122.3(6) C(7)-C(8)-H(12) 108(4) C{11)-C{13}>-H11) 106(2)
C(2)-C(1)-C(6) 118.8(8) C(7)-C(8)-H(13) 109(4) C{14)-C{13)-H1 D) 111¢2)
C(1)-C(2)-C(3) 122.5(9}) C(9)-C(8)-H(12) 108(4) C{13)-C(14)-C(15) 124.5(8)
Cl-C(2y-Hi1 120{3) C{-C(8)-Hi1y 1114(4) ciiz)-ci)-c19) 117.6(8)
C(3)-C(2)-H({1) 116(3) H(12)-C(8)-H(13) 106(6) C(15)-C{14)-C(19) 117.4(8)
C(2)-C(3)-C4) 119.2(10) C(8)-C(8)-C(10) 114.2(8) C(14)-C{15)-C(16) 120.2(10)
C(2)-C(3)-H(2) 129{6) C(8)-C(9)-H(14) 104(4) C(14)-C{15)-H(5) 114(5)
C(4)-C(3)-H(2) 111{8) C(8)-C(9)-H(15) 102(5) C(16)-C(15)-H(5) 124(5)
C(3)-C(4)-C() 118.9(10) C(10)-C(9)-H(14) 110(4) C(15)-Cc(18)-Cca17) 122(1)
C(3)-C(4)-H(3) 121(4} C{10)-C(9)-H(15) 119(5) C{15)-C(16}-H(6) 120(3)
C(5)-C(4)-H(3) 119(4) H(14)-C(9)-H({15) 104(6) C{17)-C(16)-H(B) 116(9)
C(4)-C(5)-C(8) 122.1¢9} C(9)-C(10)-C(11) 121.6(9) C{18}-C(17)-C(18) 117(1})
C{4)-C(5)-H{4) 123(3) C{9)-C(10)-H{18&) 119(3) C{16)-C(1T)-H(7) 124(4)
C(8)-C(5)-H(4) 114¢3) C(11)-C(10)-H(18} 118(4) C(18)-C(17)-H(T) 117¢4)
C(1)-C(6)-C(5) 118.4(7) C(10)-C(11)-C(12) 118.4(8) C{1T)-C{18)-C({19) 115(1)
C(1)-C(8)-C(T) 124.2(T) C(10)-C(11)-C(13) 124.9¢7) C{17)-C(18}-H(8) 114(6)
C(5)-C(8)-C(T) 117.4(8) Cc(12)-C(11)-Cc(13) 111.4(7) C(19)-C(18)-H(8) 125(6)
C(8)-C(7)-C(8) 114.1{7) o-c(12)-c(7) 125.9(8) C{14)-C(19)-C{18) 122.5{9)
C(6)-C(7)-C(12) 112.5¢7) 0-C(12)-C(11) 126.4(7) C(14}-C(19)-H{9) 121(5)
C{6)-C(7)-H(10) 109(3) C(7»-c2)-Cc(11) 107.6(8) C(18)-C(19)-H(9} 116(5)

Table 5. Torsion angles for 4a.

angle angle

C@)-C{0)-C(11)-C(12) 1(1) 0-C(12)-C(11)-C(10) -130.5(8)
C(3)-C10)-C(11)-C(13) 153.8(9) O-C(12}-C(11)-C(13) 73.4(10)
CO-CO1D-C{3A-Cae 130.2(8) O-C12-C(N-C(E) -131.0(8)
CW-COUD-CA3-N -108.2(8) O-CAN-C(Ty-C(8) 106,4(9)

Atomic positional parameters, bond lengths, and bond angles are given in Tables 2, 3, 4,
and 5, respectively.

The torsion angles depicted in Table 5 show that the plane formed by the o,f-unsaturated
carbonyl group (O-C,,-C,,~C,,) of 4a is —~130.9 °, suggesting that the conjugation between the
C-C double bond and the C-O double bond is incomplete. The high wave number of the
absorption of the carbonyl group of 4a in the IR spectrum (1722 cm™) can be explained by this
weak conjugation. However, the rather low field resonance of the signal at H(C,,) proton

(6.05 ppm) tells that the conjugation still exists albeit weak.
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Zoch ef al. have investigated the analogous compound (5) by a single crystal X-Ray
analysis® and reported that 5 have the corresponding torsion angle but the magnitude is
smaller than that of 4a, showing the better planarity of & (4a: O-C,,-C,,-C,o; -130.9 °,
5: 0-C,;—C,,-C,;; -88.5 °). The low wave number of the carbonyl absorption in the IR
spectrum (1708 cm™: CHCI,) of 5 compared to that of 4a (1726 cm™: CHCI,) may be explained in
terms of less strain energy in b. A discrepancy ohserved is the chemical shift of the signal of the
proton attached to the conjugation system. The chemical shift of the proton in 5 is apparently
higher (H(C,,), 5.68 ppm) compared to that of 4a (H(C,;), 6.05 ppm). The better planarity
in 5 should result in the better conjugation, and as a result, in the low field resonance of
the proton. This is attributed to an anisotropic effect of the phenyl group, which wraps

up the proton more closely in 5.

X
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According to an investigation based on molecular orbital calculations” and measurements
of relative rate ratios,®® the reaction is considered to proceed as follows.* A nucleophilie?
stepwise (4+2] type cycloaddition reaction of the central deuble bond of 1with 3 leads to
formation of a piradene derivative (6), which generates an ionic intermediate (8) by cleavage
of the N-O bond. A C-C bond formation between the ionic center in 8 followed by an
appropriate hydrogen shift can afford the final product (4).

A failure of the reaction of @ -phenyl-A-methylnitrone with 1 to form the corresponding
adduct seems to suggest the importance of the stability of 8 through delocalization

of the ionic center.
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EXPERIMENTAL

IR spectra were taken with a JASCO FT/IR 5300 spectrophotometer. MS spectra were
measured with a Hitachi M-2000 spectrometer. NMR spectra were measured with
Hitachi R-90, Varian XL-200, or Varian GEMINI 2000 spectrometers with tetramethylsilane
as an internal standard. Melting points were recorded on a Yanagimoto Micro Melting Point
Apparatus and are uncorrected. X-Ray measurements were made on a Rigaku AFCTR
diffractometer with graphic monochromated Mo-Ka radiation and a rotating anode generator.
Wakogel C-200 and Wakogel B6-F were used for column and thin-layer chromatographies,
respectively. The solvents were purified according to the standard procedures. 2-Trifluoromethyi-
sulfonyl-3-trimethylsilyl-1,3-cyclohexadiene (2) and several nitrone derivatives (3) were prepared by a
method described in the literatures.®

Only typical reactions are mentioned below.

Reaction of Cyclohexa—1,2,3-triene (1) with N, o -Diphenyinitrone (3a). A solution of
N, a—diphenylnitrone (3a) (790 mg, 4.1 mmol) and CsF (920 mg, 6.0 mmol) in dry DMSO (13 mL) was
stirred at 25 C during a dropwise addition of 2-trifluoromethylsulfonyl-3-trimethylisilyl-1,3-
cyclohexadiene (2) (240 mg, 0.8 mmol) in dry DMSO(4 mL). After stirring for 2 h, the mixture was
poured into cold water, and extracted with ethyl acetate. The extract was washed with brine and
water. After evaporation of the solvent on a rotary evaporator, the residual oil was separated with
column chromatography on silica gel (hexane: ethyl acetate = 85: 15 elution) to give brown crystals (4a)
(120 mg, 54 %).

4a: brown crystals. mp 161-162 C {ethyl acetate—ethanol). HRMS m/z: 275.1330. Calcd for
C,H,,NO m/z: 275.1319. MS m/z (rel intensity): 275 (M’, 77), 257 (24), 219 (26), 206 (30),
185 (100). IR (KBr): 3350, 1722, 1599, 756 cm™. 'H NMR (CDCIl,) 8 ppm: 2.15-2.27 (m, 2H, Hp,
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2.48-2.60 (m, 2H, Hy), 3.6 (brs, H), 3.76 (t, H,), 5.00 (s, H,), 6.05 (t, H), 6.80-7.64 (m, 8H,
aromatic protons). Coupling constants in Hz: J,,= 4.3, J,.= 5.2. *C NMR (CDC]l,) 5 ppm:
20.7, 30.8, 53.1, 67.7, 123.0, 123.4, 126.8, 127.1, 127.8, 128.3, 128.8, 133.0, 135.7, 139.7,
142.2, 144.6, 209.0. Anal. Caled for C,;H ,NO: C, 82.88; H, 6.22; N, 5.09. Found:
C, 83.18; H,6.12; N, 5.08.

4b: brown oil. HRMS m/z: 289.1476. Caled for C,;H,,NO m/z: 289.1467. MS m/z (rel intensity):
289 (M*, 15), 271 (7), 210 (8), 195 (100}, 121 (25). IR (KBr): 3433, 1726, 1599, 756 cm !.
'H NMR (CDCl,) 8§ ppm: 2.15-2.27 (m, 2H, H,), 2.48-2.60 (m, 2H, H,), 2.37 (s, 3H, Me), 3.61
(br s, H,), 3.75 (¢, H,), 4.90 (s, H,), 6.02 (¢, H,), 6.60-7.50 (m, 8H, aromatic protons).
Coupling constants in Hz: J,= 4.5, J,.= 5.0. '"*C NMR (CDCl;) § ppm: 22.5, 22.8, 32.7, 54.9,
69.3, 124.8, 125.2, 128.5, 128.8, 130.6, 130.9, 134.4, 137.6, 138.6, 139.3, 144.5, 1486.5, 210.7.

4c: brown oil. MS m/z (rel intensity): 401 (M*, 1), 396 (37), 307 (100), 305 (60). IR (KBr):
3339, 1728, 1597, 783 cm™. 'H NMR (CDCly & ppm: 2.20-2.35 {(m, 2H, Hy), 2.48-2.70 (m, 2H, H,),
3.67 (br s, H,), 3.78 (dd, H,), 5.80 (s, H,), 6.27 (t, H), 6.85-8.14 (m, 11H, aromatic protons).
Coupling constants in Hz: J,,= 5.9, 2.8, J,.= 5.2. '*C NMR (CDCl,) 8 ppm: 20.9, 30.6, 53.2,
63.7, 121.9, 123.3, 123.7, 124.3, 125.3, 125.4, 125.5, 126.1, 127.3, 128.3, 128.7, 129.0, 129.1,
133.8, 134.3, 136.1, 141.6, 144.9, 208.5.

4d: brown oil. MS m/z (rel intensity): 401 (M", 1), 396 (20), 325 (100}, 307 (71). IR (KBr): 3439,
1726, 1599, 754 cm™. 'H NMR (CDCl,) § ppm: 2.15-2.29 (m, 2H, H,), 2.50-2.61 (m, 2H, HY, 3.71
(br s, H,), 3.78 (t, H,), 5.14 (s, H, 6.10 (t, H), 6.83-8.05 (m, 11H, aromatic protons).
Coupling constants in Hz: J,,= 4.8, J,.= 5.2. *C NMR (CDCl,) 8 ppm: 20.9, 31.0, 53.3, 67.8,
123.2, 123.6, 125.2, 125.5, 125.8, 126.0, 127.2, 127.6, 128.1, 128.2, 128.9, 133.2, 133.9, 135.8,
137.3, 142.2, 144.7, 209.0.

de: brown crystals. mp 202-203 “C (ethyl acetate~ethanol). HRMS m/z: 309.0908. Calcd for
C,H:NOCl m/z: 309.0919. MS m/z (rel intensity): 309 (M, 62), 290 (24), 253 (20), 228 (13), 178 (100).
IR (KBr): 3354, 1722, 760 cm™. 'H NMR (CDCL) § ppm: 2.14~2.27 (m, 2H, H,), 2.46-2.60 (m, 2H,
H,), 3.47 (br s, H), 3.67 {dd, H,), 4.95 (s, Hy), 6.02 (t, H), 6.80-7.55 (m, 8H, aromatic protons).
Coupling constants in Hz: J,= 5.0, 4.0, J,=5.5. '3C NMR (CDClI,) § ppm: 20.8, 30.8, 53.2, 67.0,
123.2, 123.5, 127.2, 128.3, 128.5, 128.8, 132.1, 133.53, 135.6, 138.3, 141.7, 144.4, 209.0.

4f: brown oil. HRMS m/z: 353.0402. Calcd for C,,H,;NOBr m/z: 353.0414. MS m/z (rel intensity):
353 (M", 100), 336 (26), 297 (34), 261 (28). IR (KBr): 3356, 1726, 1599, 760 cm™. 'H NMR (CDCl,)
& ppm: 2.16-2.30 (m, 2H, 1), 2.47-2.60 (m, 2H, H,), 3.54 (br s, H), 3.74 (dd, H)), 4.92 (s, H,), 6.03
(t, H), 6.80-7.57 (m, 8H, aromatic protons). Coupling constants in Hz: ],,= 4.7, 3.8, ], = 5.3.
“C NMR (CDCIL,) & ppm: 20.8, 30.8, 53.2, 67.1, 121.8, 123.3, 123.5, 127.2, 128.6, 129.1, 131.5,
133.6, 135.6, 138.8, 141.6, 144.4, 209.0.

4g: brown oil. HRMS m/z: 300.1243. Caled for C,,H,.N,O m/z: 300.1261. MS m/z (rel intensity):
300 (M", 53), 244 (21), 222 (29), 209 (77), 185 (100). IR (KBr): 3327, 2228, 1724, 1601, 768 cm .
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'"H NMR (CDCI,) & ppm: 2.15-2.29 {m, 2H, H,), 2.49-2.60 (m, 2H, H,), 3.74 (dd, H,), .02 (s, H,), 6.07
{t, H), 6.70-7.30 (m, 8H, aromatic protons). <Coupling constants in Hz: J,= 5.8, 2.8, J,.= 5.2.
C NMR (CDCly) & ppm: 21.4, 30.9, 53.4, 67.3, 115.6, 116.2, 123.6, 123.8, 127.8, 127.9, 129.4,
132.4, 134.7, 1356.5, 140.9, 144.3, 145.3, 2089,

4h: brown oil. HRMS m/z: 320.1182. Caled for CjHN,O, m/z: 320.1160. MS m/z (rel intensity):
320 (M", 19), 250 (18), 242 (55), 226 (27), 185 (100). IR (KBr): 3447, 1720, 1801, 1346, 754 cm™,
'H NMR (CDCI,) 8 ppm: 2.16-2.29 (m, 2H, H,), 2.43-2.60 (m, 2H, Hy), 3.73 (dd, H,), 5.09 (s, H,), 6.09
(t, HY, 6.70-7.55 {m, 8H, aromatic protons). Coupling constants in Hz: J,= 5.7, 3.1, ], = 5.2.
BC NMR (CDCI,) & ppm: 21.1, 30.8, 53.3, 67.1, 123.5, 123.7, 123.8, 127.5, 127.7, 128.0, 128.5,
129.6, 129.9, 130.3, 134.9, 137.5, 209.0.

4i:  brown oil. FHRMS m/z: 289.1472. Caled for CogH,(NO m/z: 289.1467. MS m/z (rel intensity):
289 (M", 100), 233 (19), 194 (11), 144 (5), 131 (7). [R (KBr): 3018, 1728, 1215, 756 cm™. 'H NMR
(CDCly) 8 ppm: 2.10-2.24 (m, 2H, H,), 2.27 (s, 3H, Me), 2.43-2.56 (m, 2H, H,), 3.47 (br s, H),
3.68 (t, H), 4.92 (s, H,), 6.00 (t, H), 6.67-7.62 (m, 8H, aromatic protons). Coupling constants
in Hz: J,,= 4.5, J,.= 5.1. *C NMR (CDC],) 6 ppm: 20.6, 20.7, 30.9, 53.1, 67.9, 123.3, 126.9,
127.6, 127.8, 128.4, 129.4, 132.5, 132.8, 135.6, 140.0, 142.0, 142.5, 209.1.

4j: brown oil. HRMS m/z: 309.0892. Calcd for C,;H NOCI m/z: 309.0919. MS m/z (rel intensity):
309 (M, 100), 253 (20), 214 (13), 183 (8), 140 {6). IR (KBr): 3018, 1728, 1215, 756 cm™. 'H NMR
(CDCly 8 ppm: 2.17-2.27 (m, 2H, H,), 2.43-2.62 {m, 2H, H,), 3.54 (brs, H,), 3.68 (t, H,), 4.98 (s, H,),
6.03 (t, H,}, 6.53-7.61 (m, 8H, aromatic protons). Coupling constants in Hz: J,= 4.1, J, .= 5.1.
3C NMR (CDCL,) § ppm: 20.7, 30.8, 53.1, 67.8, 116.1, 122.1, 124.7, 126.8, 127.1, 128.0,
128.5, 128.8, 128.9, 133.5, 141.9, 143.3, 208.0.

Single Crystal X—-Ray Analysis of 4a.

A colorless prismatic crystal of C ,H NO having approximate dimensions of 0.20 x 0.20 x 0.20 mm
was mounted in a glass capillary. All measurements were made on a Rigaku AFCTR diffractometer
with graphic monochromated Mo—Ka radiation and a rotating anode generator. Cell constants and
an orientation matrix for data collection, obtained from a least—squares refinement using the setting
angles of 25 carefully centered reflections in the range 22.36 < 26 < 24.28 ° corresponded to a primitive
orthorhombic cell with dimensions: a = 21.479(@), b = 16.300(), ¢ = 8.093@ A ; v = 2833(3)A%. For
Z =8 and F.W. = 274,34, the calculated density is 1.29 g/em®. The space group was established
from systematic absences as Phca(#61). The data were collected at a temperature of 23£1°C
using the ®—20 scan technique to a maximum 28 value of 55.0 °. Omega scans of several intense
reflections, made prior to data collection, had an average width at half-height of 0.31 ° with
a take~off angle of 6.0 °. The linear absorption coefficient, pu, for Mo—Ka radiation is 0.8 cm™,
An empirical absorption correction using the program DIFABS' was applied which resulted in
transmission factors ranging from 0.75 to 1.00. The data were corrected for Lorentz and polarization

effects, A correction for secondary extinction was applied (coefficient = 1.72830e-7).
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X
@ N

1 3
Table 6. Net atomic charge of 3 (Calcd by the PM3 method).
X=H X=H X=H X=Me X=Cl
Nitrone

Z=H Z= Me Z=Cl 7Z=H Z=H
C -0.523 -0.519 -0.531 -0.527 -0.519
N +1.059 +1.057 +1.064 +1.063 +1.058
o) -0.638 -0.639 -0.632 -0.639 -0.638

The net atomic charge of 1 and several nitrone derivatives were calculated as
shown in Table 6. The sp—carbon atoms of 1 are negatively charged and the
nitrogen atom of 3 is positively charged, suggesting the Michael type nucleophilic

attack of the sp—carbon atom of 1 to the sp*—carbon atom of 3.
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The MO calculations were carried out using an NEC PC-9801 RA 32-bit personal
computer with “PASOCON MOPAC/386” program which is based on the MOPAC (Ver.
5.0, QCPA No0.455) by Toray System Center.

The relative rate ratios (k,/ky) between several types of nitrones (3) for the reactions of 1
with 3 were measured by a similar method to our previous way.? The relationship
between the logarithms of the relative rate ratios (log(k,/k,)) against Hammett’s sigma
values (gp) is shown in the following figures.

A rate promotion tendency of chlorine atom in the case of substituents X is thought
to reflect a stabilization of the cationic center on the ionic intermediate (8) by the
electron donating effect of the n—orbital of the chlorine atom.

Comparing the rate ratios between Z= H, Me, Br, a tendency of accelerative effect
of Z= Br can be seen. This is recognized to be a result of promotion of the initial

nucleophilic attack of nitrone by the eleciron withdrawing effect of Br.
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Figure 2. Plot of Hammett’s sigma values (o) versus logarithms of relative rate ratios

(log(ky/k,) or loglk,/k,)).
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