SYNTHESIS AND EMISSION BEHAVIOR OF DOUBLE-ARMED TETRATHIACROWN CARRYING TWO NAPHTHALENES

Kanji Kubo,*^a Yoshihiro Miyazaki,^b Katsuhito Akutsu,^b and Tadamitsu Sakurai^b

^aInstitute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan ^bDepartment of Applied Chemistry, Faculty of Engineering, Kanagawa University, Kanagawa-ku, Yokohama 221-0802, Japan

<u>Abstract</u>—Double-armed tetrathiacrown having two naphthalenes shows specific photophysical properties for Pd^{2+} and Au^{3+} ions selectively, based on cooperative actions of parent thiacrown and fluorometric side arms.

Photoresponsive supramolecular systems are of great significance particularly for their potential application to nanoscale devices for cation sensor and switch.¹ Recently, there are extensive investigations toward the characterization of fluoroionophores including podand, crown ether, calixarene, cyclophane, and cyclodexitrin derivatives with fluorophore.² Thus, it is interesting to investigate the complex formation with guest cations using fluorescence spectroscopy. While, armed crown ethers such as lariat ethers and double armed crowns are a class of cation-host molecules, which are characterized by parent macrocyclic ring and ligating arms.³ Since their cation-binding properties are essentially determined by coordination characters of macrocycle and donor arms, wide variations of basic structures may lead to the design of new and specific host molecules for a given guest cation.⁴ By combining armed crown ether and fluorophore, ^{3,5} a fluoroionophore having a novel property could be produced. Here, we describe the synthesis and fluorescence behavior of the double-armed tetrathiacrown containing two naphthyl pendants.

The naphthalene-functionalized tetrathiacrown derivatives were obtained as a mixture of *cis* and *trans* isomers by reaction of 1,5,9,13-tetrathiacyclohexadecane-3,11-diol (1:1 mixture of *cis* and *trans*), NaH, and the corresponding naphthylmethyl chloride or naphthoyl chloride. The structure and purity of $1, ^6 2^7$ and 3^8 were ascertained by NMR spectroscopy and elemental analysis. Fortunately, the *cis* (3a) and *trans*

(3b) isomers of 2-naphthoyl derivative could be separated by silica gel column chromatography. ¹³C NMR spectrum of 3a showed methylene carbons of thiacrown at higher field region (δ =29.51, 31.45, 34.89, 72.93) than that of 3b, let us to assign it as the "*cis*"-isomer. On the other hand, the higher mp isomer (3b) might be the "*trans*"-isomer, showed methylene carbon signals at lower field region (δ =29.89, 31.63, 35.12, 73.36).

Extraction of metal ions into the chloroform solutions containing 1-3 was checked by fluorescence spectroscopy; Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Ag⁺, Mg²⁺, Ca²⁺, Ba²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Pt⁴⁺, revealed no change, but Pd²⁺ and Au³⁺ showed a spectral change. In Figure 1 are shown the fluorescence spectra of 1-3 obtained with and without Pd²⁺ and Au³⁺. By addition of metal salts, the fluorescence spectra of 1-3 changed dramatically; the spectrum of free 1-3 was typical as that of derivatives, showing the emission band at 336 nm for 1, 374 nm for 2, and 364 nm for 3, which were decreased by addition of Pd²⁺ and Au³⁺.

that was equilibrated with aqueous $PdCl_2$ and $HAuCl_4$ (2.00 x 10⁻⁴ M); as excited at 282 nm for 1, 299 nm for 2, and 284 nm for 3.

Figure 2 illustrated the relative emission intensity of 1-3 against the guest salt concentration. The composition of the complexes was determined as 2 (metal):1 (ligand) for the Pd²⁺-thiacrown (1-3) system

Figure 2. Dependence of fluorescence intensities of 1-3 (2.00 x 10^{-5} M) at 336 nm for 1, 374 nm for 2, and 364 nm for 3 on concentration of PdCl₂ and HAuCl₄ in chloroform.

by the molar ratio method. The extraction equilibrium constants were determined by the non-liner curvefitting method.⁹ The equilibrium constants of Pd²⁺ complex were larger than those of Au³⁺ complex and the increasing order of equilibrium constants for Au³⁺ was 2 ($2500 \pm 750 \text{ M}^{-1}$) < 3 ($3280 \pm 980 \text{ M}^{-1}$) < 1 ($25000 \pm 5000 \text{ M}^{-1}$). This result means that the ester sidearm does not participate in the coordination with

Au³⁺. The relative emission intensities of **3a**, **3b**, and **3** against the guest salt concentration are shown in Figure 3. The equilibrium constant of **3a** $(2600 \pm 390 \text{ M}^{-1})$ for Au³⁺ complex was similar to that of **3b** $(2730 \pm 120 \text{ M}^{-1})$. Comparison of the selectivity order for **1–3**, **3a**, and **3b** confirms that the thiacrown and fluorometric side arm property may control the selectivity of the host toward guest cations in a delicate manner.

In conclusion, the double armed tetrathiacrown (1-3) recognized Pd^{2+} and Au^{3+} , based on cooperative actions of parent thiacrown and fluorometric side arms. These double-armed tetrathiacrown having naphthyl pendants may be utilized as a new fluorescent sensor for guest salts. Further investigations are now in progress and will be reported elsewhere.

REFERENCES AND NOTES

- A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, *Chem. Rev.*, 1997, 97, 1515; E. Kimura and T. Koike, *Chem. Soc. Rev.*, 1998, 27, 179.
- H. G. Löhr and F. Vögtle, Acc. Chem. Res., 1985, 18, 65; J. -M. Lehn, "Supramolecular Chemistry", VCH Verlagsgesellschaft mbH, Weinheim, 1995; L. Fabrizzi and A. Poggi, Chem. Soc. Rev., 1995, 197; A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, C. P. McCoy, R. S. Maxwell, J. T. Rademacher, and T. E. Rice, Pure & Appl. Chem., 1996, 48, 1443; K. Kubo, N. Kato, and T. Sakurai, Bull. Chem. Soc. Jpn., 1997, 70, 3041; K. Kubo, R. Ishige, N. Kato, E. Yamarnoto, and T. Sakurai, Heterocycles, 1997, 45, 2365; K. Kubo, E. Yamarnoto, and T. Sakurai, *ibid.*, 1998, 48, 2133.
- M. Takagi, H. Nakamura, and K. Ueno, Anal. Lett., 1977, 10, 1115; H. Nishida, Y. Katayama, H. Katsuki, M. Takagi, H. Nakamura, and K. Ueno, Chem. Lett., 1982, 1853; H. Tsukube, K. Takagi, T. Higashiyama, and N. Hayama, Tetrahedron Lett., 1985, 26, 881.
- H. Tsukube, Coord. Chem. Rev., 1996, 48, 1; H. Tsukube, S. Shinoda, Y. Mizutani, M. Okano, K. Takagi, and K. Hori, Tetrahedron, 1997, 53, 3487.
- 5. K. Kubo, S. Sakaguchi, and T. Sakurai, *The Reports of Institute of Advanced Material Study, Kyushu Univ.*, 1998, **12**, 11; K. Kubo, S. Sakaguchi, and T. Sakurai, *Talanta*, in press.

- 6. 1 (mixture of *cis* and *trans*): yellow oil, ¹H NMR (CDCl₃) $\delta = 1.79-1.89$ (8H, m), 2.45–2.86 (32H, m), 3.75 (4H, qui, J = 6.1 Hz), 5.07 (4H, s), 5.08 (4H, s), 7.41 (4H, dd, J = 8.2, 7.0 Hz), 7.44–7.55 (12H, m), 7.79 (4H, d, J = 8.2 Hz), 7.83 (4H, d, J = 8.9 Hz), 8.18 (2H, d, J = 8.2 Hz), and 8.19 (2H, d, J = 8.2 Hz); ¹³C NMR (CDCl₃) $\delta = 29.50$, 29.72, 31.66, 31.72, 35.59, 35.71, 70.67, 78.14, 78.23, 124.39, 124.44, 125.19, 125.87, 126.12, 126.81, 126.90, 127.71, 127.92, 128.23, 128.50, 128.84, 131.79, 133.56, and 133.80. Anal. Calcd for C₃₄H₄₀O₂S₄: C, 67.06; H, 6.62. Found: C, 66.86; H, 6.41.
- 7. 2 (mixture of *cis* and *trans*): yellow oil, ¹H NMR (CDCl₃) $\delta = 2.01-2.09$ (8H, m), 2.67–2.87 (16H, m), 2.96–3.00 (8H, m), 3.07-3.11 (8H, m), 5.45 (4H, qui, J = 6.1 Hz), 7.44-7.53 (8H, m), 7.58–7.02 (4H, m), 7.84 (4H, d, J = 7.9 Hz), 7.97 (4H, d, J = 8.6 Hz), 8.21-8.25 (4H, m), and 8.94 (4H, d, J = 8.6 Hz); ¹³C NMR (CDCl₃) $\delta = 29.54$, 29.97, 31.36, 31.55, 34.86, 35.11, 72.52, 72.91, 124.49, 124.54, 125.77, 125.80, 126.22, 126.99, 127.78, 128.80, 128.53, 130.34, 131.35, 133.46, 133.48, 133.80, 166.85 and 166.17. Anal. Calcd for C₃₄H₃₆O₄S₄: C, 64.12; H, 5.70. Found: C, 64.42; H, 6.12.
- 8. **3a**: yellow powder, mp 144–145°C (Recrystallization from ethyl acetate:hexane (1:1 v/v)), ¹H NMR $(CDCl_3) \delta = 2.06 (4H, qui, J = 7.0 Hz), 2.78-2.88 (8H, m), 3.02 (4H, dd, J = 14.2, 6.1 Hz), 3.13$ (4H, dd, J=13.7, 6.1 Hz), 5.42 (2H, qui, J=6.1 Hz), 7.54 (2H, ddd, J=8.2, 7.9, 1.1 Hz), 7.59 (2H, ddd, J =8.2, 7.9, 1.1 Hz), 7.87 (2H, d, J =7.9 Hz), 7.88 (2H, d, J =8.5 Hz), 7.96 (2H, d, J =8.2 Hz), 8.07 (2H, dd, J = 8.5, 1.1), and 8.63 (2H, s); ¹³C NMR (CDCl₃) $\delta = 29.51$ (2C), 31.45 (4C), 34.89 (4C), 72.93 (2C), 125.30 (2C), 126.68 (2C), 127.19 (2C), 127.78 (2C), 128.24 (2C), 128.36 (2C), 129.43 (2C), 131.35 (2C), 132.51 (2C), 135.67 (2C), and 166.17 (2C). Anal. Calcd for C₃₄H₃₆O₄S₄: C, 64.12; H, 5.70. Found: C, 64.18; H, 5.91. **3b**: colorless powder, mp 148~149°C (Recrystallization from ethyl acetate:hexane (1:1 v/v)), ¹H NMR (CDCl₃) $\delta = 2.05$ (4H, qui, J = 7.0 Hz), 2.17-2.88 (8H, m), 3.02 (4H, dd, J = 14.0, 6.1 Hz), 3.12 (4H, dd, J = 14.0, 6.1 Hz), 5.42 (2H, qui, J=6.1 Hz), 7.53 (2H, ddd, J=7.9, 6.7, 1.2 Hz), 7.59 (2H, ddd, J=7.9, 6.7, 1.2 Hz), 7.86 (2H, d, J = 6.4 Hz), 7.88 (2H, d, J = 6.7 Hz), 7.96 (2H, d, J = 7.9 Hz), 8.07 (2H, dd, J = 8.9, 1.8), and 8.63 (2H, s); 13 C NMR (CDCl₃) δ = 29.89 (2C), 31.63 (4C), 35.12 (4C), 73.36 (2C), 125.30 (2C), 126.68 (2C), 127.20 (2C), 127.77 (2C), 128.25 (2C), 128.36 (2C), 129.45 (2C), 131.35 (2C), 132.51 (2C), 135.67 (2C), and 166.28 (2C). Anal. Calcd for C34H36O4S4: C, 64.12; H, 5.70. Found: C, 64.15; H, 5.97.
- K. A. Connors (Ed.), Binding Constants, John Wiley & Sons, New York, 1987; K. Kubo, J. Kubo, C. Kaminaga, and T. Sakurai, *Talanta*, 1998, 45, 963.

Received, 8th January, 1999