SYNTHESIS OF TETRAZOLO[1,5-*a*][1,4]BENZODIAZEPIN-6-ONES *VIA* INTRAMOLECULAR AZIDE CYCLOADDITIONS ONTO THE CYANO GROUP

Gianluigi Broggini,^b Luisa Garanti,^a* Giorgio Molteni,^a and Gaetano Zecchi^b

^aDipartimento di Chimica Organica e Industriale dell'Università and Centro CNR, Via Golgi 19, 20133, Milano, Italy

^bDipartimento di Scienze Chimiche, Fisiche e Matematiche, Università dell'Insubria, via Lucini 3, 22100 Como, Italy

<u>Abstract</u> - Intramolecular azide cycloadditions onto the cyano group are described as a synthetic tool for a number of tetrazolo[1,5-a][1,4]benzodiazepin-6-ones (3).

Intramolecular 1,3-dipolar cycloadditions have gained increasing popularity in the last two decades, owing to their versatility in the construction of ring-fused or ring-bridged heterocycles.¹⁻⁴ Among them, intramolecular azide cycloadditions have been exploited on a variety of dipolarophiles giving rise to interesting structures in which an annulated 1,2,3-triazole or tetrazole ring constitutes the main feature of the whole system.¹⁻⁵ On pursuing our research line in this field,⁶ we report here the synthesis of a number of tetrazolo[1,5-*a*][1,4]benzodiazepin-6-ones (**3**) by intramolecular azide cycloaddition onto the cyano group. It needs to be underlined that (i) the synthetic entries to the tetrazolo[1,5-*a*][1,4]benzodiazepine skeleton are still rare,^{7.8} and (ii) compounds (**3**) could show interesting pharmacological properties, in the light of the known sedative effect of 8-chloro-6-phenyl-4H-tetrazolo[1,5-*a*][1,4]benzodiazepine.⁹

The intermediate 2-aminocarbonylanilines (1) were accessible according to literature procedures.¹⁰ Diazotisation of the latter and subsequent treatment with sodium azide gave the properly *ortho*-substituted aryl azides (2), which were not obtained in the analytically pure state due to the presence of small amounts of cycloadducts (3). The intramolecular cycloadditions were performed by refluxing crude 2 in dry toluene. Reaction times, eluants in chromatography and yields are given in Table 1, while analytical and spectroscopic data of both reactants and products are collected in Tables 2 and 3.

The parent 4,5,7-unsubstituted term (6) was also devised as a valuable target. Hence, we synthesised 2-amino-N-cyanomethylbenzamide (4) by reacting isatoic anhydride with 2-aminoacetonitrile in dry dimethylformamide, and submitted it to diazotisation and subsequent treatment with sodium azide.

Scheme

Compd	Time ^a (h)	Products and yields (%)			Eluant	
		3	4	6		
2a	33	75			AcOEt - LP ^b (2:1)	
2b	77	95	_	_	_	
2c	64	30		—	Et ₂ O	
2d	15	57		_	$Et_2O - LP^b$ (2:1)	
2e	16	56	_	_	Et ₂ O	
2f	15	47	_	_	Et ₂ O	
2g	16	65		_	_	
5	480	-	5	6	CH ₂ Cl ₂ - AcOEt (10:1)	

Table 1 Thermal reaction of azides (2a-g) and (5).

 $^{\circ}0.02$ M in refluxing toluene. $^{b}LP =$ light petroleum, bp 45-60°C.

The formation yield of pure 5 was low because of the concurrent formation of 3-cyanomethylbenzotriazin-4-one (7). Refluxing 5 in dry toluene really gave 6, but the intramolecular cycloaddition was troublesome since a very long reaction time was required and extensive decomposition of the starting material took place (see Table 1). In addition, concurrent thermolysis of 5 occurred, with loss of molecular nitrogen, generating the corresponding nitrene intermediate which subsequently evolved to 4. This disappointing outcome was circumvented by preparing 6 in 37% yield upon benzyl group cleavage of 3a with 95% formic acid.¹¹

Intramolecular cycloaddition yields were usually satisfactory, despite the poor dipolarophilic character of nitriles towards azides,¹² with the exception of 5. The peculiar role played by the benzyl moiety remains to be underlined; perhaps its flexibility could facilitate the intramolecular approach of the addends in parallel planes, as required for 1,3-dipolar cycloadditions.¹³

	Ь		ľ			
Compd (Formula)	mp* (°C)	$v (cm^{-1})$	C Found (Calcd)	H Found (Calcd)	N Found (Calcd)	MS <i>m/z</i> M ⁺
2a (C. H. N.O)	oil	2240, 2130, 1650	_			e
$\frac{2b}{(C_{12}H_{12}N_{2}OC)}$	oil	2236, 2120, 1655	—	—	-	v
$\frac{2c}{(C_{10}H_{12}N_{2}OC)}$	oil	2434, 2130, 1650	—	-		¢
$\frac{2d}{(C_{22}H_{12}N_{2}O)}$	oil	2228, 2130, 1651	_	_		c
$\frac{(C_2)(1/(N_3O))}{2e}$	oil	2228, 2130, 1651	—		_	c
$\frac{2}{2} \frac{1}{2} \frac{1}$	oil	2245, 2130, 1650	_	—	_	¢
$\frac{2g}{(C_{23}H_{12}N_{2}OC)}$	oil	2245, 2130, 1650	—	_	_	c
$\frac{4}{(C_0 H_0 N_0 O)}$	95	3420, 3280, 1650	61.75	5.23	23.92	175
5 (C.H-N-O)	93	3380, 2140, 1655	53.77	3.56	34.91	¢
7 (C.H.N.O)	109	1690	58.12	(3.31) 3.21 (3.25)	30.02	186
$\frac{3a}{(C_{1}+1)}$	105	1652	65.90	(3.23) 4.46 (4.50)	(30.11) 23.96 (24.05)	291
3b (C+2H+2N+OCl)	167	1650	59.11	(4.50) 3.75 (3.72)	21.50	325
$\frac{3c}{(C_1-H_1-N_2O)}$	70	1640	66.91	5.01	(21.54) 23.04 (22.95)	305
$\frac{(C_{1})}{(C_{2})}$	110	1649	71.88	(4.93) 4.70 (4.67)	(19.07)	367
$\frac{3e}{(C_{22}H_{10}N_{2}O)}$	180	1630	72.45	4.95	18.46	381
3f	137	1640	(72.41) 69.52 (60.40)	(3.02) 4.79 (4.82)	17.70	397
$\frac{(C_{23}\Pi_{19}N_5O_2)}{3g}$	159	1637	(69.49) 65.88 (65.82)	(4.82) 3.99 (4.02)	(17.63) 17.53 (17.46)	401
6 (C ₉ H ₇ N ₅ O)	219	3360, 1660	(53.67 (53.71)	(1 .02) 3.55 (3.51)	34.90 (34.82)	201

Table 2. Characterisation of new compounds.^a

^aNMR data are given in Table 3. ^bFrom diisopropyl ether. ^cDetails on mass spectra for compounds 2a-g and 5 are given in the Experimental section.

Table 3. ¹H-NMR data of new compounds.

Compd	¹ H-NMR (CDCl ₃) δ, J (Hz)
2a	4.32 (2H, s), 4.49 (2H, s), 7.20-7.50 (9H, m)
2b	4.30 (2H, s), 4.46 (2H, s), 7.10-7.50 (8H, m)
2c	1.44 (3H, d, J=7.3), 4.47 (1H, AB, J=15.2), 4.54 (1H, AB, J=15.2), 5.48 (1H, q, J=7.3), 7.20-7.50 (9H, m)
2d	4.18 (1H, AB, J=15.4), 4.38 (1H, AB, J=15.4), 5.25 (1H, s), 7.00-7.50 (14H, m)
2e	2.45 (3H, s), 4.15 (1H, AB, J=15.4), 4.35 (1H, AB, J=15.4), 5.28 (1H, s), 7.00-7.50 (13H, m)
2f	3.80 (3H, s), 4.20 (1H, AB, J=15.4), 4.35 (1H, AB, J=15.4), 5.30 (1H, s), 6.70-7.40 (13H, m)
2g	4.20 (1H, AB, J=15.6), 4.42 (1H, AB, J=15.6), 5.24 (1H, s), 6.80-7.50 (13H, m)
4	4.25 (2H, d, J=7.0), 6.30 (2H, br s), 6.50-7.50 (4H, m), 8.80 (1H, br t, J=7.0)
5	4.40 (2H, d, J=6.7), 7.25-8.20 (4H, m), 8.10 (1H, br t, J=6.7)
7	5.30 (2H, s), 7.85-8.40 (4H, m)
3a	4.58 (2H, s), 4.85 (2H, s), 7.25-7.40 (5H, m), 7.60-7.80 (2H, m), 7.92 (1H, dd, J=8.2, 1.2), 8.22 (1H, dd, J=8.4, 2.6)
3b	4.59 (2H, s), 4.84 (2H, s), 7.28-7.37 (5H, m), 7.71 (1H, dd, J=9.3, 3.4), 7.90 (1H, d, J=9.3), 8.21 (1H, d, J=3.4)
3с	1.21 (3H, d, J=6.9), 4.53 (1H, AB, J=14.8), 5.05 (1H, AB, J=14.8), 5.30 (1H, q, J=6.9), 7.08- 7.15 (5H, m), 7.22 (1H, dt, J=8.0, 2.2), 7.28 (1H, dt, J=7.60, 1.2), 7.97 (1H, dd, J=8.0, 2.2), 8.24 (1H, dd, J=7.8, 1.2)
3d	4.94 (1H, AB, J=14.4), 5.19 (1H, AB, J=14.4), 6.44 (1H, s), 7.00-7.50 (12H, m), 7.70 (1H, dd, J=8.1, 0.8), 7.96 (1H, dd, J=8.1, 1.3)
3e	2.12 (3H, s), 4.90 (1H, AB, J≈13.9), 5.18 (1H, AB, J=13.9), 6.38 (1H, s), 6.60-7.50 (11H, m), 7.70 (1H, dd, J=8.3, 0.8), 8.00 (1H, dd, J=8.2, 1.4)
3f	3.62 (3H, s), 4.92 (1H, AB, J=15.0), 5.13 (1H, AB, J=15.0), 6.38 (1H, s), 6.50-7.50 (11H, m), 7.72 (1H, dd, J=8.4, 0.8), 7.96 (1H, dd, J=8.4, 1.4)

- **3g** 5.00 (2H, s), 6.39 (1H, s), 6.60-7.55 (11H, m), 7.72 (1H, dd, J=8.4, 0.6), 7.96 (1H, dd, J=7.8, 1.2)
- 6 4.70 (2H, d, J=7.2), 6.85 (1H, br t, J=7.2), 7.65-8.22 (4H, m)

EXPERIMENTAL

Melting points were determined with a Büchi apparatus and are uncorrected. IR spectra were recorded on a FT IR Perkin Elmer 1725 X spectrophotometer. MS spectra were determined with a VG-70EQ apparatus. ¹H-NMR spectra were taken with a Bruker AC 300 instrument in CDCl₃ solutions; chemical shifts are given as ppm from Me₄Si and J values are given in Hz.

N-Cyanomethyl-2-aminobenzamide (4). A solution of isatoic anhydride (8.00 g, 49.0 mmol) and 2aminoacetonitrile hydrochloride (6.81 g, 74.0 mmol) in dry dimethylformamide (60 mL) was heated to 80°C. Triethylamine (7.58 g, 75.0 mmol) was slowly added (1 h) and the mixture was heated to 80°C for further 2.5 h. The crude was poured in water (600 mL), basified with 10% aqueous NaOH (35 mL) and extracted with dichloromethane (3×100 mL). The organic layer was dried (Na₂SO₄) and evaporated at reduced pressure. The residue was washed with cold hexane (50 mL), filtered off, and the solid material was recrystallised from diisopropyl ether giving pure 4 with 70% yield (Tables 2 and 3).

N-Cyanomethyl-2-azidobenzamides (2a-g) and (5); General Procedure. Sodium nitrite (2.00 g, 28.9 mmol) was added portionwise to a solution of 1 or 4 (19.3 mmol) in 2N aqueous HCl (34 mL) under stirring and cooling at 0°C. After addition of cold ether (75 mL), NaN₃ (6.5 g, 0.10 mol) was added portionwise under vigorous stirring and ice-cooling. After 1 h, the organic layer was separated, washed firstly with 5% aqueous NaHCO₃ (50 mL), then with water (75 mL), and dried (Na₂SO₄). The solvent was evaporated under reduced pressure affording 2a-g in the crude state: 2a, 70%; MS *m/z* (rel. intensity) 291 (12%), 263 (5%); 2b, 86%; MS *m/z* (rel. intensity) 325 (15%), 297 (8%); 2c, 30%; MS *m/z* (rel. intensity) 305 (10%), 277 (5%); 2d, 70%; MS *m/z* (rel. intensity) 367 (20%), 339 (16%); 2e, 44%; MS *m/z* (rel. intensity) 381 (15%), 353 (10%); 2f, 56%; MS *m/z* (rel. intensity) 397 (25%), 369 (4%); 2g, 72%; MS *m z* (rel. intensity) 401 (18%), 373 (6%). In the case of 4 the residue was chromatographed on a silica gel column with CH₂Cl₂-AcOEt 10:1 as eluant. *N*-Cyanomethyl-2-azidobenzamide (5) was eluted first, followed by the 3-cyanomethylbenzotriazin-4-one (7). Subsequent recrystallisation from diisopropyl ether gave 5 (20%); MS *m/z* (rel. intensity) 201 (7%), 173 (3%); and 7 (26%) in the pure state (Tables 2 and 3).

Tetrazolo[1,5-a][1,4]benzodiazepin-6-ones (3a-g) and (6); General Procedure. A solution of 2 or 5 (2.5 mmol) in dry toluene (125 mL) was refluxed for the time indicated in Table 1. The solvent was evaporated and the residue was recrystallised from diisopropyl ether in the case of 2b and 2g or chromatographed on a silica gel column (see Table 1) to give 3 or 6 in the analytically pure state (Tables 2 and 3).

4H-Tetrazolo[1,5-a][1,4]benzodiazepin-6-one (6). A solution of 3a (1.0 mmol) in 95% formic acid (1.0 mL) was stirred at rt for 2 h, and then at 80°C for 5 h. The mixture was taken up with dichloromethane (15 mL) and washed firstly with 5% aqueous NaHCO₃ (5 mL), then with water (10 mL). The organic layer was dried (Na₂SO₄) and evaporated, and the residue was recrystallised from diisopropyl ether giving pure 6 with 37% yield.

ACKNOWLEDGEMENTS

We thank MURST and CNR for financial support.

REFERENCES

- 1. A. Padwa, '*1,3-Dipolar Cycloaddition Chemistry*,' Vol. 2, ed. by A. Padwa, Wiley-Interscience, New York, 1984, Chapter 12.
- 2. A. G. Schultz, 'Advances in cycloaddition,' Vol. 1, ed. by D. P. Curran, JAI Press, 1988, pp.53-85.
- 3. A. Padwa and A. M. Schoffstall, '*Advances in Cycloaddition*,' Vol. 2, ed. by D. P. Curran, JAI Press, 1990, pp. 1-89.
- 4. P. A. Wade, 'Comprehensive Organic Synthesis,' Vol. 4, ed. by B. Trost and I. Fleming, Pergamon Press, New York, 1992, Chapter 4/10, pp. 1111-1168.
- 5. E. F. V. Scriven and K. Turnbull, Chem. Rev., 1988, 88, 297.
- L. Garanti, G. Molteni, and G. Zecchi, *Heterocycles*, 1994, 38, 291; G. Broggini, G. Molteni, and G. Zecchi, *Synthesis*, 1995, 647; G. Broggini, L. Garanti, G. Molteni, and G. Zecchi, *J. Chem. Res.*, 1997, (S) 380, (M) 2215; G. Broggini, L. Garanti, G. Molteni, and G. Zecchi, *J. Chem. Res.*, 1998, (S) 688, (M) 2801.
- 7. N. P. Peet and S. Sunder, J. Heterocycl. Chem., 1977, 14, 561.
- 8. D. H. Klaubert, S. C. Bell, and T. W. Pattison, J. Heterocycl. Chem., 1985, 22, 333.
- 9. J. B. Jackson Jr., U. S. Patent n 3717653 (Chem. Abstr., 1973, 78, 136348n).
- 10. G. Broggini, L. Garanti, G. Molteni, and G. Zecchi, Tetrahedron, 1998, 54, 14859.
- 11. J. E. Semple, P. C. Wang, Z. Lysenko, and M. M. Joullé, J. Am. Chem. Soc., 1980, 102, 7505.
- 12. A. I. Meiers and C. J. Sircar, '*The Chemistry of the Cyano Group*,' ed. by Z. Rappoport, Wiley-Interscience, London, 1970, Chapter 8.
- R. Huisgen, '1,3-Dipolar Cycloaddition Chemistry,' Vol. 1, ed. by A. Padwa, Wiley-Interscience, New York, 1984, Chapter 1.