GENERAL STRATEGIES IN THE PREPARATION OF ANTIRHINE-TYPE INDOLE ALKALOIDS

Pirjo Hanhinen, Tiina Putkonen, and Mauri Lounasmaa*

Laboratory for Organic and Bioorganic Chemistry, Technical University of Helsinki, P.O. Box 6100, FIN-02015 HUT Espoo, Finland E-mail: mauri.lounasmaa@hut.fi

Abstract - Preparation of dimethyl malonyl-substituted indolo[2,3-a]quinolizidine derivative (9), which is a potential synthon in the antirhine (1) series, has been studied. Routes passing through intermediates (22) or (26) are superior to the route passing via intermediate (7), earlier preconized for that purpose.

Antirhine (1) and its derivatives form a small group of indole alkaloids of *Corynanthé-Strychnos* type without a C(16) substituent.^{1,2} In most cases, the C(3)H-C(15)H relationship is *trans* (biogenetic formation^{3,4}), although some derivatives with the *cis* relationship are known as well.⁵

In many synthetic routes to indole alkaloids of indoloquinolizidine type, the most tedious and intellectually least attractive part of the work is the preparation of pyridine derivatives appropriately substituted at β -and γ -positions. Methods that permit direct introduction of substituents into simpler and more easily accessible intermediates are thus an attractive alternative.

Continuing our synthetic efforts towards antirhine analogues^{6,7} we became interested in the application of the above principle to the preparation of indolo[2,3-a]quinolizidine derivatives possessing an appropriate substituent [e.g. CH₃-CO-CH-CO₂Me or -CH(CO₂Me)₂] at the C(2) position [corresponding to the C(15) position in the biogenetic numbering²].

About 15 years ago Husson and his research group^{8,9} and Lounasmaa and his research group^{10,11} independently described the use of 2-cyano-3-ethyl- Δ^3 -piperideines as synthons in a general synthetic approach to complex alkaloid structures. *N*-Methyl-3-ethyl-5,6-dihydropyridinium salt (3), regenerated *in situ* from *N*-methyl-2-cyano-3-ethyl- Δ^3 -piperideine (2), was condensed with sodium dimethyl malonate or sodium methyl acetoacetate (both generating a β -dicarbonyl anion) to yield *N*-methyl-1,2,3,4-tetrahydropyridines (4) and (5) (and/or 6), ¹² respectively (Scheme 1).

$$\begin{array}{c} 2\\ 3\\ \\ \end{array}$$

$$\begin{array}{c} N\\ \end{array}$$

Scheme 1. Preparation of N-methyl-1,2,3,4-tetrahydropyridines (4) and (5) (and/or 6).

A little later Husson and his group replaced the N-methyl-2-cyano-3-ethyl- Δ^3 -piperideine (2) with N_a -Boc- N_b -tryptophyl-2'-cyano- Δ^3 '-piperideine (7). Condensation of (7) with sodium dimethyl malonate was reported to afford N_a -Boc- N_b -tryptophyl-1',2',3',4'-tetrahydropyridine (8) in quantitative yield. Subsequent deprotection at N_a and ring closure, initiated with MeOH/HCl_{gas}, was described as leading to compound (9) [C(3)H-C(15)H *trans*, biogenetic numbering²], and the whole procedure [(7) \rightarrow (8) \rightarrow (9)] was reported to result in 45% overall yield (Scheme 2). 13

Scheme 2. Reported¹³ preparation of compound (9).

As the procedure seemed to be well suited for our present purposes and the reported overall yield (45%) reasonable, we decided to apply it in the preparation of indolo[2,3-a]quinolizidine derivative (10) (vide infra). Thus, the easily obtainable N_b -tryptophylpyridinium salt (11)¹⁵ was reduced with NaBH₄ to 1',2',5',6'-tetrahydropyridine (12), which by $[(Boc)_2O]$ treatment was transformed to the corresponding N_a -Boc-protected compound (13). Oxidation of compound (13) with mCPBA afforded the corresponding N_b -oxide (14). Polonovski-Potier reaction 1^{16-18} and subsequent addition of CN^{Θ} ions (Fry cyano-trapping method $1^{19,20}$) yielded the 2'-cyano- Δ^3' -piperideine (7) (Scheme 3).

Scheme 3. Transformation of compound (11) to compound (7) via compounds (12, 13, and 14).

Reaction of compound (7) with sodium methyl acetoacetate in the presence of AgBF₄ was expected to yield 1',2',3',4'-tetrahydropyridine (15) (and/or bicyclic compound (16); see Refs. 8 and 10), which would then be transformable to compound (10) with MeOH/HCl treatment. However, we failed to find either 1',2',3',4'-tetrahydropyridine (15) or bicyclic derivative (16) in the reaction mixture (Scheme 4).

Scheme 4. Attempt to prepare compound (10) via compound (15) (and/or 16).

These disappointing results incited us to investigate the reliability of the earlier reports; 13 *i. e.* the reaction of 2'-cyano- Δ^3 -piperideine (7) with β -dicarbonyl anions (vide supra). For this purpose we decided to utilize exactly the same anion [i. e. ${}^{\Theta}$ CH(CO₂Me)₂] as Husson et al. 13 Thus, our above-described 2'-cyano- Δ^3 -piperideine (7) was reacted with sodium dimethyl malonate in the presence of AgBF₄ or ZnCl₂. Despite our repeated efforts no 1',2',3',4'-tetrahydropyridine (8) was found in the reaction mixture. 13,14 Thus, the anticipated acid induced cyclization of compound (8) to compound (9) could not be carried through. Instead, piperidine derivative (17) was isolated in 58% yield. One explanation for the formation of (17) and the absence of compound (8) in the reaction mixture might be that compound (8) was indeed formed but rapidly transformed [e.g. via intermediate (18)] to compound (17) (Scheme 5).

Scheme 5. Attempt to prepare compound (9) from compound (7). Formation of compound (17).

Attempts to transform compound (7) directly to compound (9), without isolation of the hypothetical intermediate (8) $[(7)\rightarrow(8)\rightarrow(9)]$, did not give better results.

It thus turned out that, at least in our hands, the preparation of the 15-substituted compound (9) (and/or 10) by the described route is not the *méthode de choix*. The desethyl analogue and its derivatives seem to be more unstable than the corresponding ethyl analogue and make the reaction path more unreliable (vide supra). Accordingly, we switched our attention to the alternative route that we recently developed for our hirsutine synthesis.²¹

The easily obtainable compound $(19)^{22}$ was oxidized with mCPBA to N_b -oxide (20). Polonovski-Potier reaction, followed by CN^{Θ} trapping, afforded 4-cyanoindolo[2,3-a]quinolizidine (21) (IUPAC numbering²³). Treatment of compound (21) with sodium dimethyl malonate in the presence of AgBF₄ yielded, via the corresponding iminium salt, compound (22), albeit in low yield. Catalytic hydrogenation (H₂, PtO₂·H₂O) of compound (22) yielded compound (9) (Scheme 6).

Scheme 6. Formation of compound (9) from compound (19) via compounds (20, 21, and 22).

As the total yield of the above procedure was relatively low, mainly due to resinification, compound $(19)^{22}$ was transformed by $(Boc)_2O$ treatment to the corresponding N_a -Boc protected compound (23), which was oxidized with mCPBA to a mixture of N_b -oxides (24a) and (24b). Polonovski-Potier reaction, followed by CN^{Θ} trapping, yielded the crude product as a complex mixture containing at least two cyano derivatives, 4-monocyano compound (25) (minor) and 2,4-dicyano compound (25a) (major). The crude product was submitted to TLC purification, which led to the isolation of compound (25b), formed during the purification procedure (Scheme 7).

Scheme 7. Formation of compounds (25) and (25a), and their transformation to compound (25b) during the purification.

To avoid the undesired substitution product (25b), we treated the crude product of the Polonovski-Potier reaction and CN^{Θ} trapping directly with sodium dimethyl malonate in the presence of $AgBF_4$. In this way compound (26) was obtained, after fractionation, in reasonable yield. Catalytic hydrogenation (H₂, PtO₂: H₂O) of compound (26) afforded compound (27), which was Boc deprotected in acidic conditions, yielding compound (9) (Scheme 8).

Scheme 8. Transformation of the mixture of compounds (25) and (25a) to compound (9) via compounds (26) and (27).

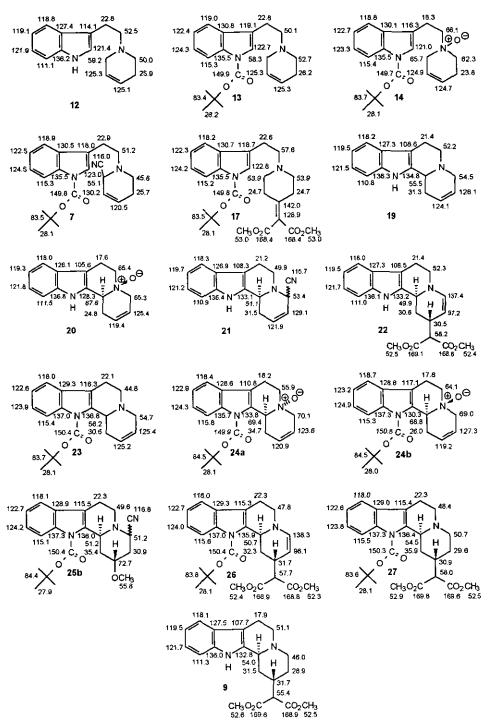


Chart 1. ¹³C NMR data of compounds (7, 9, 12-14, 17, 19-27). The values for compound (24a) are taken from the spectrum of the 2:1 mixture of compounds (24a) and (24b) (cf. Experimental). The influence of the endocyclic homoallylic effect is easily identifiable in most of the cases [compounds (7, 12-14, 19-26)]. ^{24,25}

CONCLUSIONS

We have shown that for the preparation of dimethyl malonyl-substituted indolo[2,3-a]quinolizidine derivative (9), a potential synthon in the antirhine (1) series, intermediates (21) and (25) [and eventually intermediate (25a)] are superior to intermediate (7), earlier¹³ preconized for that purpose. However, in all cases examined the total yields are relatively low. Thus, it seems to us recommended that the use of the desethyl derivatives (present case) is much more delicate than that of ethyl derivatives described earlier. 8-10

EXPERIMENTAL

IR spectra were recorded with a Perkin-Elmer 700 IR spectrophotometer using CHCl₃ as solvent. IR absorption bands are expressed in reciprocal centimetres (cm⁻¹). 1 H- and 13 C-NMR spectra were measured with a Varian Gemini-200 NMR spectrometer working at 199.975 MHz (1 H-NMR) and at 50.289 MHz (13 C-NMR) using CDCl₃ as solvent if not otherwise stated. Chemical shifts are given in ppm by reference to TMS (1 H-NMR; $\delta_{\rm H}$ =0.00 ppm) and CDCl₃ (13 C-NMR; $\delta_{\rm C}$ =77.00 ppm). Signal assignments were confirmed by APT and HETCOR (partly) experiments. Abbreviations s, d, t, q, m, def, and br are used to designate singlet, doublet, triplet, quartet, multiplet, deformed, and broad, respectively. For the 13 C-NMR data, see Chart 1. Mass spectrometry (EI and HRMS) was done on a Jeol DX 303/DA 5000 instrument.

Preparation of $N_{\rm h}$ -tryptophylpyridinium salt (11)

For the preparation and analytical data of compound (11), see Ref. 26 [compound (1) in Ref. 26].

Preparation of N_b -tryptophyl-1',2',5',6'-tetrahydropyridine (12)

Compound (11) (200.0 mg, 0.662 mmol) was dissolved in MeOH (20 mL), and NaBH₄ (50.1 mg, 1.32 mmol) was added during 10 min to the cooled stirred solution. Stirring was continued for 0.5 h at rt (Ar atm) after which H₂O was added and MeOH evaporated. The reaction mixture was extracted with CH₂Cl₂ and the extract was dried with anhydrous Na₂SO₄ and evaporated to give essentially pure compound (12). Compound (12): 112.2 mg (75%). Amorphous (lit., oclorless solid). H-NMR (CDCl₃/CD₃OD: 70/1): 2.25 (2H, m, H-5'), 2.70 (2H, t, J = 6 Hz, -CH₂CH₂N<), 2.79 (2H, m, -CH₂CH₂N<), 3.01 (2H, m, H-6'), 3.11 (2H, m, H-2'), 5.76 (2H, m, H-3', H-4'), 7.02 (1H, s, H-2), 7.15 (2H, m, H-5, H-6), 7.36 (1H, d, J = 8 Hz, H-7), 7.62 (1H, d, J = 8 Hz, H-4), 8.35 (1H, br s, NH). MS: 226 (M⁺, 100%), 144, 143, 130, 96. HRMS: Calcd for C₁₅H₁₈N₂: 226.1470. Found: 226.1456. Anal. Calcd for C₁₅H₁₈N₂: C, 79.61; H, 8.02; N, 12.38. Found: C, 79.40; H. 7.88; N, 12.26.

Preparation of N_a-Boc-N_b-tryptophyl-1',2',5',6'-tetrahydropyridine (13)

Compound (12) (366.3 mg, 1.621 mmol), (Boc)₂O (97%) (389.1 mg, 1.73 mmol), and DMAP (19.8 mg, 0.162 mmol) were dissolved in CH₂Cl₂ (50 mL). The reaction mixture was stirred for 2.5 h at rt (Ar atm), after which the solvent was evaporated and the crude product was purified by column chromatography (silica gel, CH₂Cl₂/MeOH; 99.8/0.2) to give compound (13).

Compound (13): 386.6 mg (73%). Amorphous (lit., 13 colorless oil). IR: 1735 (C=0). 1 H-NMR (CDCl₃): 1.67 [9H, s, -C(CH₃)₃], 2.24 (2H, m, H-5'), 2.68 (2H, t, J = 6 Hz, -CH₂CH₂N<), 2.78 (2H, m, -CH₂CH₂N<), 2.95 (2H, m, H-6'), 3.10 (2H, m, H-2'), 5.76 (2H, m, H-3', H-4'), 7.26 (2H, m, H-5, H-6), 7.41 (1H, s, H-2), 7.55 (1H, d, J = 8 Hz, H-4), 8.12 (1H, d, J = 8 Hz, H-7). MS: 326 (M⁺, 100%), 269, 144, 143, 130, 96. HRMS: Calcd for $C_{20}H_{25}N_2O_2$: 326.1994. Found: 326.1986. Anal. Calcd for $C_{20}H_{25}N_2O_2$: C, 73.82; H, 7.74; N, 8.61. Found: C, 73.56; H, 7.82; N, 8.46.

Preparation of N_a -Boc- N_b -tryptophyl-1',2',5',6'-tetrahydropyridine N_b -oxide (14)

Compound (13) (375.0 mg, 1.15 mmol) was dissolved in CH₂Cl₂ (30 mL), and mCPBA (90%) (238.2 mg, 1.24 mmol) was added to the stirred solution. Stirring was continued for 2 h at rt (Ar atm), after which the solvent was evaporated and the crude product was purified by colum chromatography (alumina, CH₂Cl₂/MeOH; 99/1) to give compound (14).

Compound (14): 377.0 mg (96%). Amorphous (lit., 13 colorless foam). IR: 1730 (C=O). 1 H-NMR (CDCl₃): 1.67 [9H, s, -C(CH₃)₃], 3.97 (2H, t, def, H-2'), 5.67 (1H, br d, J = 10 Hz, H-4'), 5.93 (1H, br d, J = 10 Hz, H-3'), 7.29 (2H, m, H-5, H-6), 7.46 (1H, s, H-2), 7.61 (1H, d, J = 7 Hz, H-4), 8.13 (1H, d, J = 7 Hz, H-7). MS: 342 (M⁺, <1%), 326, 243, 187, 156, 143 (100%). HRMS: Calcd for $C_{20}H_{25}N_2O_3$: 342.1943. Found: 342.1932. Anal. Calcd for $C_{20}H_{25}N_2O_3$: C, 70.36; H, 7.38; N, 8.20. Found: C, 70.26; H, 7.26; N, 8.08.

Preparation of N_a -Boc- N_b -tryptophyl-2'-cyano- $\Delta^{3'}$ -piperideine (7)

Compound (14) (56.0 mg, 0.16 mmol) was dissolved in CH₂Cl₂ (30 mL), and trifluoroacetic anhydride (TFAA) (40 µL, 0.28 mmol) was added to the solution during 5 min. The reaction mixture was stirred for 2 h at rt (Ar atm), after which KCN (45.6 mg, 0.70 mmol) in H₂O (12 mL) was added, and stirring was continued for 45 min at rt (Ar atm). The reaction mixture was neutralized with saturated NaHCO₃ solution, extracted with CH₂Cl₂, and the extract was dried with anhydrous Na₂SO₄. The crude product was purified by flash chromatography (silica gel, CH₂Cl₂/MeOH; 99/1) to give compound (7).

Compound (7): 11.5 mg (20%). Amorphous (lit., 13 colorless oil which turned to foam under vacuum). IR: 1730 (C=O). 1 H-NMR (CDCl₃): 1.67 [9H, s, -C(CH₃)₃], 4.26 (1H, br s, H-2'), 5.68-5.77 (1H, m, H-4'), 6.00-6.07 (1H, m, H-3'), 7.21-7.37 (2H, m, H-5, H-6), 7.46 (1H, s, H-2), 7.56 (1H, dd, $J_1 = 7$ Hz, $J_2 = 2$

Hz, H-4), 8.13 (1H, br d, J = 7 Hz, H-7). MS: 351 (M⁺), 251, 144, 143, 130, 121 (100%). HRMS: Calcd for $C_{21}H_{25}N_3O_2$: 351.1947. Found: 351.1939. Anal. Calcd for $C_{21}H_{25}N_3O_2$: C, 68.64; H, 6.86; N, 11.44. Found: C, 68.52; H, 6.68; N, 11.56.

Attempt to prepare methyl acetoacetyl-substituted N_a -Boc- N_b -tryptophyl-1',2',3',4'-tetrahydropyridine (15) [and/or bicyclic piperidine derivative (16)]

AgBF₄ (24.7 mg, 0.127 mmol) was added to the stirred solution of compound (7) (37.1 mg, 0.106 mmol) in THF (2 mL). Stirring was continued for 5 min at rt (Ar atm). Sodium methyl acetoacetate [NaH (60%, 6.7 mg, 0.167 mmol) and methyl acetoacetate (15 μL, 0.139 mmol) in THF (1 mL)] was added to the solution and the reaction mixture was stirred for 20 h at rt. Saturated NaHCO₃ solution was added and the reaction mixture was extracted with CH₂Cl₂ and the extract was dried with anhydrous Na₂SO₄. NMR and mass spectral examination of the crude product did not indicate the presence of any detectable amount of compound 15 (and/or compound 16) in the mixture.

Attempt to prepare dimethyl malonyl-substituted N_a -Boc- N_b -tryptophyl-1',2',3',4'-tetrahydropyridine (8); Formation of piperidine derivative (17)

AgBF₄ (7.0 mg, 0.036 mmol) was added to the stirred solution of compound (7) (11.5 mg, 0.033 mmol) in THF (1 mL). Stirring was continued for 5 min at rt (Ar atm). Sodium dimethyl malonate [NaH (60%, 4.2 mg, 0.105 mmol) and dimethyl malonate (10 μL, 0.088 mmol) in THF (0.5 mL)] was added to the solution and the reaction mixture was stirred for 15 h at rt. Saturated NaHCO₃ solution was added and the reaction mixture was extracted with CH₂Cl₂ and the extract was dried with anhydrous Na₂SO₄. The crude product, which did not contain compound (8) in detectable amount (no ¹H NMR signals between 4.5 - 7.2 ppm), was purified by CH₂Cl₂/hexane extraction to give compound (17).

Compound (17): 8.6 mg (58%). Amorphous. IR: 1730 (C=O). 1 H-NMR (CDCl₃): 1.67 [9H, s, -C(CH₃)₃], 3.69 (6H, s, 2 x -CO₂CH₃), 7.2-7.6 (3H, m, H-4, H-5, H-6), 7.31 (1H, d, J = 1 Hz, H-2), 8.13 (1H, d, J = 8 Hz, H-7). MS: 456 (M⁺), 226 (100%), 144, 143, 130. HRMS: Calcd for $C_{25}H_{32}N_2O_6$: 456.2260. Found: 456.2246. Anal: Calcd for $C_{25}H_{32}N_2O_6$: C, 65.77; H, 7.06; N, 6.14. Found: C, 65.52; H, 7.14; N, 6.04.

In a similar procedure, where AgBF₄ was replaced by a small amount (0.1 equiv.) of anhydrous ZnCl₂, ¹³ compound (8) was not detected.

Preparation of 1,4,6,7,12,12b-hexahydroindolo[2,3-a]quinolizine (19)

For the preparation and analytical data of compound (19), see Ref. 22 [compound (3a) in Ref. 22].

Preparation of 1,4,6,7,12,12b-hexahydroindolo[2,3-a] quinolizine N_b -trans-oxide (20)

Compound (19) (331.9 mg, 1.482 mmol) was dissolved in CH₂Cl₂ (20 mL) and mCPBA (90%) (319.5 mg, 1.67 mmol) was added to the stirred solution. Stirring was continued for 3 h at rt (Ar atm), after which the solvent was evaporated and the crude product was purified by column chromatography (alumina, CH₂Cl₂/MeOH; 99/1) to give compound (20).

Compound (20): 211.8 mg (60%). Amorphous. 1 H-NMR (CDCl₃/CD₃OD; 13/1): 4.44 (1H, dd, J₁ = 10 Hz, J₂ = 6 Hz, H-12b), 5.65 (1H, br d, J = 12 Hz, H-2), 5.88 (1H, br d, J = 12 Hz, H-3), 7.0-7.2 (2H, m, H-9, H-10), 7.28 (1H, dd, J₁ = 7.5 Hz, J₂ = 2.5 Hz, H-11), 7.49 (1H, dd, J₁ = 7.5 Hz, J₂ = 2.5 Hz, H-8). MS: 240 (M⁺, < 1%), 239, 224 (100%), 197, 170, 169. HRMS: Calcd for C₁₅H₁₆N₂O: 240.1263. Found 240.1242. Anal. Calcd for C₁₅H₁₆N₂O: C, 74.97; H, 6.71; N, 11.66. Found: C, 75.06; H, 6.56, N, 11.42.

Preparation of 1,4,6,7,12,12b-hexahydro-4-cyanoindolo[2,3-a]quinolizine (21)

Compound (20) (377.1 mg, 1.57 mmol) was dissolved in CH₂Cl₂ (30 mL) and trifluoroacetic anhydride (TFAA)(310 µL, 2.19 mmol) was added to the solution during 5 min. The reaction mixture was stirred for 2 h at rt (Ar atm), after which KCN (306.9 mg, 4.71 mmol) in H₂O (12 mL) was added, and stirring was continued for 45 min at rt (Ar atm). The reaction mixture was neutralized with saturated NaHCO₃ solution, extracted with CH₂Cl₂, and the extract was dried with anhydrous Na₂SO₄. The crude product was purified by flash chromatography (silica gel, CH₂Cl₂/MeOH; 99/1) to give compound (21).

Compound (21): 20 mg (7.5%). Amorphous. 1 H-NMR (CDCl₃): 2.31 (1H, ddd, $J_{1} = 10.5$ Hz, $J_{2} = 4$ Hz, $J_{3} = 2$ Hz, H-1 α), 2.54 (1H, ddd, $J_{1} = 17$ Hz, $J_{2} = 4.5$ Hz, $J_{3} = 4.5$ Hz, H-6 β), 2.82 (1H, m, H-7 α), 3.0-3.1 (2H, m, H-6 α , H-7 β), 3.98 (1H, dd, $J_{1} = 11$ Hz, $J_{2} = 3.5$ Hz, H-12b), 4.38 (1H, br dd, $J_{1} = 12$ Hz, H-4), 5.79-5.84 (1H, m, H-2), 6.04-6.08 (1H, m, H-3), 7.12 (1H, t, $J_{1} = 7$ Hz, H-9), 7.17 (1H, t, $J_{1} = 7$ Hz, H-10), 7.32 (1H, d, $J_{1} = 7$ Hz, H-11), 7.50 (1H, d, $J_{1} = 7$ Hz, H-8), 7.80 (1H, br s, NH). MS: 249 (M⁺), 221, 170 (100%), 169. HRMS: Calcd for $C_{21}H_{23}N_{3}O_{2}$: 349.1790. Found: 349.1778. Anal. Calcd for $C_{21}H_{23}N_{3}O_{2}$: C, 72.18; H, 6.63; N, 12.03. Found: C, 72.26; H, 6.52; N, 11.84.

Preparation of dimethyl malonyl-substituted indolo[2,3-a] quinolizidine derivative (22)

AgBF₄ (18.8 mg, 0.096 mmol) was added to the stirred solution of compound (21) (20.0 mg, 0.080 mmol) in THF (2 mL). Stirring was continued for 5 min at rt (Ar atm). Sodium dimethyl malonate [NaH (60%, 7.7 mg, 0.19 mmol) and dimethyl malonate (20 μL, 0.175 mmol) in THF (1 mL)] was added to the solution and the reaction mixture was stirred for 16 h at rt. Saturated NaHCO₃ solution was added and the reaction mixture was extracted with CH₂Cl₂, and the extract was dried with anhydrous Na₂SO₄. The crude product was purified by flash chromatography (silica gel, CH₂Cl₂/MeOH; 99.8/0.2) to give compound (22).

Compound (22): 14.8 mg (52%). Amorphous. IR: 1730 (C=O). 1 H-NMR (CDCl₃): 3.75 (3H, s, -CO₂CH₃), 3.80 (3H, s, -CO₂CH₃), 4.26 (1H, br d, J = 8 Hz, H-3), 4.34 (1H, br dd, J₁ = 8 Hz, J₂ ≈ 4 Hz, H-16), 6.08 (1H, dd, J₁ = 8 Hz, J₂ = 1.5 Hz, H-17), 7.10 (1H, t-like, J = 8 Hz, H-10), 7.15 (1H, t-like, J = 8 Hz, H-11), 7.34 (1H, d, J = 8 Hz, H-12), 7.47 (1H, d, J = 8 Hz, H-9), 7.92 (1H, br s, NH). MS: 354 (M⁺), 223 (100%) 170, 169. HRMS: Calcd for $C_{20}H_{22}N_2O_4$: 354.1580. Found: 354.1558. Anal. Calcd for $C_{20}H_{22}N_2O_4$: C, 67.78; H, 6.26; N. 7.90. Found: C, 67.62; H, 6.38, N, 7.72.

Preparation of dimethyl malonyl-substituted indolo[2,3-a]quinolizidine derivative (9) from compound (22) Catalytic hydrogenation (H₂, PtO₂: H₂O, 15 mg, 1 atm, 1 h) of compound (22) (8.9 mg, 0.025 mmol) in MeOH (3 mL) afforded the crude product, which was purified by TLC (silica gel, CH₂Cl₂/MeOH; 95/5)

to give compound (9).

Compound (9): 3.1 mg (35%). Amorphous. For the analytical data, see below.

Preparation of N_a -Boc-1,4,6,7,12,12b-hexahydroindolo[2,3-a]quinolizine (23)

Compound (19) (184.7 mg, 0.825 mmol), (Boc)₂O (97%) (265.5 mg, 1.18 mmol), and DMAP (10.2 mg, 0.0835 mmol) were dissolved in CH₂Cl₂ (10 mL). The reaction mixture was stirred for 1 h at rt (Ar atm), after which the solvent was evaporated and the crude product was purified by column chromatography (silica gel, CH₂Cl₂/MeOH; 99/1) to give compound (23).

Compound (23): 248.6 mg (93%). Amorphous. IR: 1730 (C=O). 1 H-NMR (CDCl₃): 1.66 [9H, s, -C(CH₃)₃], 4.14 (1H, dd, J₁ = 10 Hz, J₂ = 3 Hz, H-12b), 5.79 (2H, m, H-2, H-3), 7.2-7.3 (2H, m, H-9, H-10), 7.43 (1H, dd, J₁ = 7 Hz, J₂ = 2 Hz, H-8), 8.07 (1H, dd, J₁ = 7 Hz, J₂ = 2 Hz, H-11). MS: 324 (M⁺), 268, 267, 214, 170, 169 (100%). HRMS: Calcd for $C_{20}H_{24}N_2O_2$: 324.1838. Found: 324.1826. Anal. Calcd for $C_{20}H_{24}N_2O_2$: C, 74.05; H, 7.46; N, 8.63. Found: C, 74.16; H, 7.32; N, 8.46.

Preparation of N_a -Boc-1,4,6,7,12,12b-hexahydroindolo[2,3-a]quinolizine N_b -cis-oxide (24a) and N_a -Boc-1,4,6,7,12,12b-hexahydroindolo[2,3-a]quinolizine N_b -trans-oxide (24b)

Compound (23) (216.3 mg, 0.668 mmol) was dissolved in CH_2Cl_2 (15 mL) and mCPBA (90%) (172.4 mg, 0.899 mmol) was added to the stirred solution. Stirring was continued for 3 h at rt (Ar atm), after which the solvent was evaporated and the crude product was purified by column chromatography (alumina, $CH_2Cl_2/MeOH$; 99/1) to give compounds (24a) (cis) and (24b) (trans) as ~2:1 mixture.

The 2:1 mixture of compounds (24a) and (24b): 219.8 mg (97%). Amorphous. IR: 1730 (C=O). MS: 340 (M^+ , <1%), 324, 268, 267, 252, 221, 170, 169 (100%). HRMS: Calcd for $C_{20}H_{24}N_2O_2$ ($C_{20}H_{24}N_2O_3 - O$) = 324.1838. Found: 324.1828. For the ¹H-NMR spectrum and elemental analysis of compound (24b), see below.

Attempt to prepare N_a -Boc-1,4,6,7,12,12b-hexahydro-4 ξ -cyanoindolo[2,3-a]quinolizine (25); Formation of N_a -Boc-1,4,6,7,12,12b-hexahydro-2 α -methoxy-4 α -cyanoindolo[2,3-a]quinolizine (25b)

The mixture of compounds (24a) and (24b) (135.8 mg, 0.400 mmol) was dissolved in CH₂Cl₂ (2 mL), and trifluoroacetic anhydride (TFAA) (140 µL, 0.991 mmol) was added to the solution during 5 min. The reaction mixture was stirred for 1 h at rt (Ar atm), after which KCN (52.7 mg, 0.809 mmol) in H₂O (2 mL) was added, the pH was adjusted to pH 4 (NaOAc), and stirring was continued for 1 h at rt (Ar atm). The reaction mixture was neutralized with saturated NaHCO₃ solution, extracted with CH₂Cl₂, and the extract was dried with anhydrous Na₂SO₄. The complex crude product mixture, containing (according to MS) two cyano derivatives [monocyano derivative (25) (minor)(M⁺ at m/z 349) and dicyano compound (25a) (major)(M⁺ at m/z 376)], was submitted to TLC purification (silica gel, CH₂Cl₂/MeOH; 99/1). This led to the isolation of compound (25b), formed by substitution during purification.

Compound (25b): 19.2 mg (13%). Amorphous. IR: 1730 (C=O). 1 H-NMR (CDCl₃): 1.47 (1H, ddd, J₁ = 13 Hz, J₂ = 12.5 Hz, J₃ = 2.5 Hz, H-1 β), 1.69 [9H, s, -C(CH₃)₃], 3.49 (3H, s, -OCH₃), 4.61 (1H, br d, J = 12.5 Hz, H-12b), 7.2-7.3 (2H, m, H-9, H-10), 7.42 (1H, dd, J₁ = 6 Hz, J₂ = 2 Hz, H-8), 8.05 (1H, dd, J₁ = 6 Hz, J₂ = 2 Hz, H-11). MS: 381 (M⁺), 324, 281, 265, 241, 221 (100%), 197, 169. HRMS: Calcd for C₂₂H₂₇N₃O₃: 381.2052. Found: 381.2038. Anal. Calcd for C₂₂H₂₇N₃O₃: C, 69.27; H, 7.13; N, 11.02. Found: C, 69.08; H, 7.02; N, 10.86.

Preparation of dimethyl malonyl-substituted N_a -Boc-indolo[2,3-a] quinolizidine derivative (26)

The mixture of compounds (24a) and (24b) (178.6 mg, 0.525 mmol) was dissolved in CH₂Cl₂ (4 mL), and trifluoroacetic anhydride (TFAA) (110 μL, 0.779 mmol) was added during 5 min. The reaction mixture was stirred for 1 h at rt (Ar atm), after which KCN (39.1 mg, 0.600 mmol) in H₂O (4 mL) was added, the pH was adjusted to pH 4 (NaOAc), and stirring was continued for 0.5 h at rt (Ar atm). The reaction mixture was neutralized with saturated NaHCO₃ solution, extracted with CH₂Cl₂, and the extract was dried with anhydrous Na₂SO₄. AgBF₄ (102.3 mg, 0.525 mmol) was added to the stirred solution of crude product (165.6 mg) in THF (4 mL). Stirring was continued for 5 min at rt (Ar atm). Sodium dimethyl malonate [NaH (60%, 47.2 mg, 1.181 mmol) and dimethyl malonate (90 μL, 0.787 mmol) in THF (3 mL)] was added to the solution and the reaction mixture was stirred for 17 h at rt. Saturated NaHCO₃ solution was added and the reaction mixture was extracted with CH₂Cl₂ and the extract was dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography (alumina, CH₂Cl₂/MeOH; 99.9/0.1, 99.5/0.5, 99/1) to give compounds (23, 26, and 24b).

Compound (23): 14.5 mg (9%). For the spectral data, see above.

Compound (26): 28.6 mg (12%). Amorphous. IR: 1730 (C=O). 1 H-NMR (CDCl₃): 1.66 [9H, s, -C(CH₃)₃], 3.75 (6H, s, 2 x -CO₂CH₃), 4.29 (1H, br dd, $J_{1} = 8$ Hz, $J_{2} \approx 4$ Hz, H-16), 4.57 (1H, dd, $J_{1} = 10$ Hz, $J_{2} = 10$ Hz, $J_{3} = 10$ Hz, $J_{4} = 10$ Hz, $J_{5} = 10$ Hz,

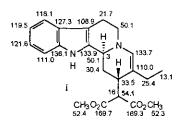
2.5 Hz, H-3), 6.17 (1H, dd, $J_1 = 8$ Hz, $J_2 = 1.5$ Hz, H-17), 7.20-7.29 (2H, m, H-10, H-11), 7.41 (1H, dd, $J_1 = 8$ Hz, $J_2 = 2$ Hz, H-9), 7.93 (1H, dd, $J_1 = 8$ Hz, $J_2 = 2$ Hz, H-12). MS: 454 (M⁺), 398, 340, 324, 284, 267 (100%), 214, 170, 169. HRMS: Calcd for $C_{25}H_{30}N_2O_6$: 454.2104. Found: 454.2092. Anal. Calcd for $C_{25}H_{30}N_2O_6$: C, 66.06; H, 6.65; N, 6.16. Found: C, 65.88; H, 6.42; N, 6.02.

Compound (24b): 36.2 mg (20%). ¹H-NMR (CDCl₃): 1.66 [9H, s, -C(CH₃)₃], 3.94 (1H, br d, J = 15.5 Hz, H-4 α), 4.20 (1H, dd, J₁ = 15.5 Hz, J₂ = 2 Hz, H-4 β), 4.79 (1H, br d, J = 10 Hz, H-12b), 5.68 (1H, br d, J = 10 Hz, H-3), 6.08 (1H, m, H-2), 7.21-7.34 (2H, m, H-9, H-10), 7.48 (1H, dd, J₁ = 7 Hz, J₂ = 2 Hz, H-8), 7.94 (1H, dd, J₁ = 7 Hz, J₂ = 2 Hz, H-11). For the other spectral data, see above. Anal. Calcd for C₂₀H₂₄N₂O₃: C, 70.57; H, 7.11; N, 8.23. Found: C, 70.72; H, 7.208; N, 8.36.

Preparation of indolo[2,3-a]quinolizidine derivative (27)

Catalytic hydrogenation (H₂, PtO₂ H₂O, 30 mg, 1 atm, 1 h) of compound (26) (22.4 mg, 0.049 mmol) in MeOH (5 mL) afforded the crude product, which was purified by TLC (silica gel, CH₂Cl₂/MeOH; 95/5) to give compound (27).

Compound (27): 10.1 mg (45%). Amorphous. IR: 1730 (C=O). 1 H-NMR (CDCl₃): 1.65 [9H, s, -C(CH₃)₃], 2.17 (1H, br d, J = 15 Hz, H-14 α), 3.75 (3H, s, -CO₂CH₃), 3.81 (3H, s, -CO₂CH₃), 3.98 (1H, d, J = 11.5 Hz, H-20), 4.27 (1H, br d, J = 9 Hz, H-3), 7.17-7.28 (2H, m, H-10, H-11), 7.41 (1H, dd, J₁ = 7 Hz, J₂ = 3 Hz, H-9), 7.92 (1H, dd, J₁ = 7 Hz, J₂ = 3 Hz, H-12). MS: 456 (M⁺), 399 (100%), 355, 283, 269, 223, 170, 169. HRMS: Calcd for C₂₅H₃₂N₂O₆: 456.2260. Found: 456.2252. Anal. Calcd for C₂₅H₃₂N₂O₆: C, 65.77; H, 7.06; N, 6.14. Found: C, 65.62; H, 7.18; N, 6.02.


Preparation of indolo[2,3-a]quinolizidine derivative (9) from compound (27)

Compound (27) (9.2 mg, 0.020 mmol) was dissolved in HCOOH (3 mL) and the reaction mixture was stirred at rt for 20 h (Ar atm). HCOOH was evaporated, the residue was dissolved in CH_2Cl_2 , neutralized with NaHCO₃, and the extract was dried with anhydrous Na₂SO₄. The solution was evaporated to yield crude compound (9), which was purified by flash chromatography (alumina, $CH_2Cl_2/MeOH$; 99/1). Compound (9): 6.8 mg (95%). Amorphous (lit., 9 pale yellow oil). IR: 1730 (C=O). 1H-NMR (CDCl₃): 3.39 (1H, d, J = 10 Hz, H-20), 3.71 (3H, s, -CO₂CH₃), 3.80 (3H, s, -CO₂CH₃), 4.30 (1H, br, H-3), 7.11 (1H, ddd, $J_1 = 7$ Hz, $J_2 = 7$ Hz, $J_3 = 1.5$ Hz, H-10), 7.18 (1H, ddd, $J_1 = 7$ Hz, $J_2 = 7$ Hz, $J_3 = 1.5$ Hz, H-11), 7.41 (1H, dd, $J_1 = 7$ Hz, $J_2 = 1.5$ Hz, H-12), 7.49 (1H, dd, $J_1 = 7$ Hz, $J_2 = 1.5$ Hz, H-9), 8.05 (1H, br s, NH). MS: 356 (M⁺, 100%), 355, 341, 325, 297, 225, 223, 197, 169. HRMS: Calcd for $C_{20}H_{24}N_2O_4$: 356.1736. Found: 356.1728. Anal. Calcd for $C_{20}H_{24}N_2O_4$: C, 67.40; H, 6.79; N, 7.86. Found: C, 67.32; H, 6.58; N, 7.66.

REFERENCES AND NOTES

- M. Lounasmaa and A. Tolvanen, "Monoterpenoid Indole Alkaloids", ed. by J. E. Saxton, 2nd Edition, Wiley, New York, 1994, pp. 57-159. See also, L. F. Tietze, J. Bachmann. J. Wichmann, Y. Zhou, and T. Raschke, Liebigs Ann/Recueil, 1997, 881.
- J. Le Men and W. I. Taylor, Experientia, 1965, 21, 508. Biogenetic numbering applied to the antirhine series. See also, R. T. Brown, "The Monoterpenoid Indole Alkaloids", ed. by J. E. Saxton, Wiley, New York, 1983, pp. 114-115 and J. Bruneton, Pharmacognosie, Phytochimie, Plantes médicinales, Technique et Documentation Lavoisier, Paris, 1993, pp. 819-823.
- 3. S. R. Johns, J. A. Lamberton, and J. L. Occolowitz, Aust. J. Chem., 1967, 20, 1463. See also, S. R. Johns, J. A. Lamberton, and J. L. Occolowitz, J. Chem. Soc., Chem. Commun., 1967, 229.
- 4. Atta-ur-Rahman and A. Basha, *Biosynthesis of Indole Alkaloids*, Clarendon Press, Oxford, 1983, pp. 45-93.
- C. Kan, M. H. Brillanceau, and H.-P. Husson, J. Nat. Prod., 1986, 49, 1130. See also, T. Kimura and Y. Ban, Chem. Pharm. Bull., 1969, 17, 296.
- M. Lounasmaa and R. Jokela, Tetrahedron, 1989, 45, 7449. See also, M. Lounasmaa and R. Jokela, Recl. Trav. Chim. Pays-Bas, 1990, 109, 397 and M. Lounasmaa, R. Jokela, and L.-P. Tiainen, Tetrahedron, 1990, 46, 7873.
- M. Lounasmaa, R. Jokela, P. Mäkimattila, and B. Tirkkonen, Tetrahedron, 1990, 46, 2633. See also, M. Lounasmaa and R. Jokela, Tetrahedron, 1978, 34, 1841.
- 8. D. S. Grierson, M. Harris, and H.-P. Husson, J. Am. Chem. Soc., 1980, 102, 1064.
- 9. D. S. Grierson, M. Vuilhorgne, H.-P. Husson, and G. Lemoine, J. Org. Chem., 1982, 47, 4439. See also, F. Guibé, D. S. Grierson, and H.-P. Husson, Tetrahedron Lett., 1982, 23, 5055.
- 10. A. Koskinen and M. Lounasmaa, J. Chem. Soc., Chem. Commun., 1983, 821.
- 11. A. Koskinen and M. Lounasmaa, Tetrahedron Lett., 1983, 24, 1951.
- M. Lounasmaa and A. Tolvanen, "Comprehensive Heterocyclic Chemistry II", Vol. 5, ed. A. McKillop, Elsevier, Oxford, 1996, pp. 135-165.
- 13. D. S. Grierson, M. Harris, and H.-P. Husson, Tetrahedron, 1983, 39, 3683.
- 14. The ¹H-NMR data, few in number, given in Ref. 13 for compound (8) (compound (24) in Ref. 13) are confusing: δ 2.52 [9H, s, -C(CH₃)₃], 4.15 (1H, dd, J₁ \approx 10 Hz, J₂ \approx 4 Hz, H-3; corresponding to H-6' in our numbering), no chemical shift value is given (1H, dd, J₁ = 10 Hz, J₂ \approx 1.5 Hz, H-14; corresponding to H-5' in our numbering).
- 15. T. Hoshino and K. Shimodaira, Ann. Chem., 1935, 520, 19.
- 16 P. Potier, Rev. Latinoamer. Quim., 1978, 9, 47.

- 17. M. Lounasmaa and A. Koskinen, Heterocycles, 1984, 22, 1591.
- 18. D. S. Grierson, Organic Reactions, 1991, 39, 85.
- 19. E. M. Fry, J. Org. Chem., 1964, 29, 1647. See also, E. M. Fry, J. Org. Chem., 1963, 28, 1869.
- M. Lounasmaa, R. Jokela, B. Tirkkonen, and T. Tamminen, *Tetrahedron*, 1989, 45, 7615 and references therein.
- 21. M. Lounasmaa, J. Miettinen, P. Hanhinen, and R. Jokela, *Tetrahedron Lett.*, 1997, 38, 1455. See also note 25.
- 22. M. Lounasmaa and R. Jokela, Tetrahedron, 1989, 45, 3975.
- For IUPAC numbering, see e.g. R. Panico and J.-C. Richer, Nomenclature UICPA des Composés Organiques, Masson, Paris, 1994.
- E. Wenkert, D. W. Cochran, E. W. Hagaman, F. M. Schell, N. Neuss, A. S. Katner, P. Potier, C. Kan, M. Plat, M. Koch, H. Mehri, J. Poisson, N. Kunesch, and Y. Rolland, J. Am. Chem. Soc., 1973, 95, 4990.
- 25. N.B. After reconsideration of the ¹³C-NMR data of compound (5) in Ref. 21 we have interchanged the assignments of the C(3) and C(16) signals (biogenetic numbering² applied to the corynantheine series) (see compound i below).

26. P. Hanhinen, T. Putkonen, and M. Lounasmaa, Heterocycles, 1999, 51, 785.

Received, 8th March, 1999