THE REACTION OF 4,5-EPOXY-2(*E*)-HEXENOATE AND SECONDARY AMINES, TOTAL SYNTHESIS OF (-)-OSMUNDALACTONE AND (-)-FOROSAMINE

Machiko Ono,* Chikako Saotome, and Hiroyuki Akita*

School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

Abstract -A reaction of methy (4R,5R)-4,5-epoxy-2(*E*)-hexenoate (1) with *N*methylbenzylamine gave a diastereomerically pure (3S,4R,5R)-7 and (4S,5R)-8. The former was chemoenzymatically converted to (-)-osmundalactone (12) which is an aglycone of osmundalin. On the other hand, direct conjugated addition of dimethylamine to methyl (4S,5S)-4,5-epoxy-2(*E*)-hexenoate (1) followed by treatment with MeOH at 40°C exclusively provided (4R,5S)-17 which was converted into L-forosamine (19).

In the proceeding paper, we reported syntheses of the each optically pure stereoisomer of 4.5-epoxy-2(E)hexenoates (4S,5S)-1, (4R,5R)-1, (4R,5S)-2 and (4S,5R)-2 based on a chemoenzymatic method from an achiral precursor, methyl sorbate. As a part of useful application of (4S,5S)-1 to the syntheses of amino sugar or the related compounds, formal total syntheses of D-acosamine (3) and D-ristosamine (4) from The reaction of (4S,5S)-1 with 4 equivalents of benzylamine was carried (4S.5S)-1 were acheieved.² out to give the 1,4-addition products, (3R,4S,5S)-5 (53%) and (3S,4S,5S)-6 (32%). The intramolecular nucleophilic attack by ester carbonyl group upon epoxy ring of substrates, (3R,4S,5S)-5 and (3S,4S,5S)-6 results in the formal total syntheses of D-acosamine (3) and D-ristosamine (4), respectively.² In the course of our continuing interest in the reaction of 4.5-epoxy-2(E)-hexenoates (45.5S)-1 with amine, the reaction of (4S,5S)-1 with secondary amine aroused our interest. The reaction of (\pm) -1 with 2 equivalents of N-methylbenzylamine at 40°C for 4 days gave a diastereometrically pure (\pm) -7³ (68%) and (\pm) -8⁴ (22%), while this reaction in the presence of MeOH provided (\pm) -7 (30%) and (\pm) -8 (66%). In case of the latter, solvent effect appeared and product ratio of (\pm) -7 and (\pm) -8 was reversed. In order to determine the structure of (\pm) -7, possible two authentic samples were prepared. The reaction of (\pm) -(3,4)-syn 5 and (\pm) -(3,4)-anti 6 with an excess of methyl iodide at 0°C provided the N-methylated amines, (\pm) -(3,4)-syn 7 (48%) and (\pm) -(3,4)-anti 9 (33%), respectively. Physical data of the present (\pm) -7 were identical with those of authentic (\pm) -(3,4)-syn 7. For the purpose of determining the structure of (\pm) -8, compound (\pm) -8 was converted into the acetate (\pm) -10 (88%) and the acetal (\pm) -11 (47%) by applying

Chemical shift due to C_s-H of (\pm)-10 was appeared in the lower field (δ 5.21, dq, J=6, Evans method.⁵ 9 Hz) in comparison with that (δ 4.11, quintet, J=6 Hz) of (±)-8 and thence the hydroxyl group was The *anti*-stereochemistry of (\pm) -8 was confirmed by the following fact. located at C₅-position. NOE experiments of (\pm) -11 were shown in Figure 1 and the coupling constants of the C₃-axial and C₄-axial protons, and the C4-axial and C5-axial protons were 10 Hz and 10 Hz, respectively, clearly indicating the starting (\pm) -8 possessed the *anti*-configuration. Then, the formation of the diastereomerically pure (\pm) -7 and (4,5)-anti 8 was explained by the following experiments. When a solution of (\pm) -7 in MeOH was allowed to stand at 40°C for a long time (4 days), the rearranged (\pm) -8 was obtained in 54% yield along with the starting (\pm) -7 (30%). The same reaction was carried out for a short time $(2 \text{ days}), (\pm)$ -8 (43%) and the intermediary (\pm) -1 (16%) were obtained along with the starting (\pm) -7 (21%). A solution of (\pm) -Based on the inspection 8 in MeOH was exposed at 40°C for 4 days, no change of (\pm) -8 was observed. of the stability of (\pm) -7 and (\pm) -9 by using Dreiding Stereomodels, (\pm) -9 was presumably more unstable Because, in case of (\pm) -9, steric repulsion by between C₅-methyl group and C₃-substituents than (\pm) -7. appeared to be larger than that of (\pm) -7. Consequently, the rate of conversion of the unstable (\pm) -9 into (\pm)-1 is presumably faster than that of conversion of (\pm)-7 into (\pm)-1. Actually, an exposure of (\pm)-9 in MeOH at 40°C for 4 days gave exclusively (±)-8 in 83% yield. According to the above mentioned conversion experiments, the intermediary products on exposure of (\pm) -7 in MeOH for 2 days and (\pm) -9 in

MeOH for 4 days are the retro-Michael reaction product, 4,5-epoxy-2(E)-hexenoate ((\pm)-1). From these experimental evidences, the epoxy ester $((\pm)-1)$ is generated from $(\pm)-7$ or/and $(\pm)-9$ and the liberated N-methylbenzylamine again attacks at C₄-position of (\pm) -1 in the manner of anti-stereochemistry to afford the (4,5)-anti 8 corresponding to the thermodynamic controlled product. On the whole, the At first, competitive attack by the reaction of (\pm) -1 with N-methylbenzylamine is explained as follows: nucleophile at C_3 - and C_4 -positions of (\pm) -1 presumably occurs to afford (\pm) -7, (\pm) -9 and the (4,5)-anti 8. Then more unstable (\pm) -9 could be converted into (\pm) -8 and partial conversion of (\pm) -7 into (\pm) -8 is probably occurred. Finally, the reaction of (\pm) -1 with N-methylbenzylamine gave the (3.4)-syn 7 corresponding to the kinetic controlled product and the (4,5)-anti 8 corresponding to the thermodynamic controlled product. The difference of product ratio of (\pm) -7 and (\pm) -8 between absence of MeOH and presence of MeOH is explained by the solvent effect. Methanol presumably accelerates the rate of the retro-Michael process to afford (\pm) -1 and then the thermodynamic (\pm) -8 could be obtained from (\pm) -1 as a major product.

This reaction was effectively applied for the synthesis of osmundalactone (12) which is an aglycone of osmundalin isolated from *Osmunda japonica* Thunberg (Akaboshi zenmai), exhibiting a feeding inhibitor for the larvae of butterfly *Eurema hecabe mandrarina*.^{6a,b} The reaction of (+)-(4*R*,5*R*)-1 with *N*-methylbenzylamine gave (+)-(3*S*,4*R*,5*R*)-7 (65%, $[\alpha]_D$ +17.3° (c=0.98, CHCl₃)) and (+)-(4*S*,5*R*)-8 (25%, $[\alpha]_D$ +52.2° (c=1.01, CHCl₃)). Treatment of (+)-7 with trifluoromethanesulfonic acid (CF₃SO₃H) provided exclusively δ -lactone ((+)-(3*S*,4*R*,5*S*)-13) (72% $[\alpha]_D$ +53.2° (c=0.76, CHCl₃)) which was subjected to acetylation⁷ with Ac₂O-AcOH (2:1) to afford an acetate (-)-(4*R*,5*S*)-14 (82%, $[\alpha]_D$ -169.8° (c=0.73, CHCl₃)) with an elimination of *N*-methylbenzylamine. In this case, the liberated *N*-

methylbenzylamine was acetylated in 98% yield and did not work as a nucleophilic reagent against the 2*H*-pyran-2-one moiety of the generated substrate (-)-14. The physical data ($[\alpha]_D$ and NMR) of (-)-14 were identical with those ($[\alpha]_D -172^\circ$ (c=2.8, CHCl₃) and NMR) of the reported (-)-14.^{6a} Finally, the acetate ((-)-14) was exposed to the enzymatic hydrolysis using the lipase "Amano P" from *Pseudomonas* sp. and converted to the hydroxy δ -lactone ((-)-(4*R*,5*S*)-12) (92%, $[\alpha]_D -69.0^\circ$ (c=0.46, H₂O)) whose physical data ($[\alpha]_D$ and NMR) were identical with those ($[\alpha]_D -70.6^\circ$ (c=2.0, H₂O)) of the natural (-)-osmundalactone (12).^{6a}

Then the reaction of (-)-(4*S*,5*S*)-1 with dimethylamine was carried out. The reaction of (-)-(4*S*,5*S*)-1 with dimethylamine hydrochloride (2 equivalents)-triethylamine (2 equivalents) in MeOH gave a 1.7 : 1 diastereomeric mixture of (3*R*,4*S*,5*R*)-15 and (3*S*,4*S*,5*S*)-16 in 81% yield. This mixture was again exposed in MeOH at 40°C for 2 days provided the rearranged (-)-(4*R*,5*S*)-17 (61%, $[\alpha]_D$ -115.9° (c=1.02, CHCl₃)) and (4*S*,5*S*)-1 (13%) along with the starting mixture (25% recovery) of 15 and 16. In the first place, the retro-Michael reaction in the mixture of 15 and 16 occurred to give the elimination product 4,5-epoxy-2(*E*)-hexenoate (1) and the generated dimethylamine again attacked at C₄-position of (4*S*,5*S*)-1 in

the manner of *anti*-stereochemistry to afford the (4,5)-*anti* 17. Hydrogenation of (-)-(4*R*,5*S*)-17 followed by treatment with 80% AcOH gave the δ -lactone ((4*R*,5*S*)-18) which was reduced with diisobutylaluminum hydride (DIBAH) to provide an amino sugar (-)-(4*R*,5*S*)-19 (20% from (-)-17, $[\alpha]_D$ -85.7° (c=0.78, MeOH)) and a diol (+)-(4*R*,5*S*)-20 (24% from (-)-17, $[\alpha]_D$ +10.7° (c=0.93, MeOH)). The physical data of the synthesized (-)-19 were consistent with those ($[\alpha]_D$ +86.1° (c=0.9, MeOH) and NMR) of D-forosamine 19.⁸

In conclusion, in the reaction of 4,5-epoxy-2(*E*)-hexenoate (1) with secondary amine, 1,4-conjugated addition of secondary amine to the α,β -unsaturated ester moiety may occur at first to provide a diastereomeric mixture of (4,5)-epoxy-3-*N*-substituted amino esters. From this mixture, the product distribution between 4,5-*anti*-2(*E*)-hexenoate such as 8 or 17 and the enantiomerically pure 4,5-epoxy-3-*N*-substituted amino ester such as 7 was found to be depended upon the reaction condition and the nature of the used secondary amine.

ACKNOWLEDGEMENTS

This work was supported by a grant for the "Biodesign Research Program" from Riken (The Institute of Physical and Chemical Research) to H.A.

REFERENCES AND NOTES

- 1. M. Ono, C. Saotome, and H. Akita, Tetrahedron: Asymmetry, 1996, 7, 2595.
- 2. M. Ono, C. Saotome, and H. Akita, Heterocycles, 1997, 45, 1257.
- 3. Satisfactory analytical data were obtained for all new compounds.
- 4. (±)-8; ¹H-NMR(CDCl₃) δ 1.20 (3H, d, J=6 Hz, C₅-Me), 2.22 (3H, s, NMe), 2.88 (1H, dd, J=6, 10 Hz, C₄-H), 3.49, 3.67 (each 1H, d, J=13 Hz, NCH₂Ph), 3.77 (3H, s, COOMe), 4.11 (1H, quintet, J=6, 6 Hz, C₅-H), 5.98 (1H, d, J=16 Hz, C₂-H), 7.01 (1H, dd, J=10, 16 Hz, C₃-H), 7.23-7.34 (5H, m, aromatic-H). IR (neat); 3439, 1723 cm⁻¹. FAB-MS (*m/z*); 264 (M*+1).
- 5. D. A. Evans and J. A. Gauchet-Prunet, J. Org. Chem., 1993, 58, 2446.
- 6. isolation and bioactivity: a) K. H. Hollenbeak and M. E. Kuehne, *Tetrahedron*, 1974, 30, 2307.
 b) A. Numata, K. Hokimoto, T. Takemura, T. Katsuno, and K. Yamamoto, *Chem. Pharm. Bull.*, 1984, 32, 2815. Synthesis of (±)-12: a) K. Torssell and M. P. Tyagi, *Acta Chem. Scand.*, B, 1977, 31, 297. b) S. Yamagiwa, H. Sato, N. Hoshi, H. Kosugi, and H. Uda, *J. Chem. Soc.*, *Perkin Trans. I*, 1979, 570. Synthesis of (-)-12: a) T. Murayama, T. Sugiyama, and K. Yamashita, *Agric. Biol. Chem.*, 1986, 50, 2347. b) T. Noshita, T. Sugiyama, Y. Kitazumi, and T. Oritani, *Tetrahedron Lett.*, 1994, 35, 8259.
- 7. As a preliminary experiment, acetylation of (\pm) -13 with Ac₂O-pyridine gave the corresponding acetate (95%) which was treated with Ac₂O/AcOH (2:1) to afford (\pm) -14 (87%) and *N*-methylbenzylamine acetate (68%).
- 8. I. Dyong R. Knollmann, and N. Jersch, Angew. Chem., Int. Ed. Engl., 1976, 15, 302.

1508