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Abstract  - (~)-cis,cis-4-Benwyloxy-2,2,8a-trimethyldecahydroquinolinyl-N-oxyl 
reveals a reversible redox peak whose oxidation potential is at + 0.67 V vs. AgIAgCI. 

The compound catalyzed the selective oxidation reactions of primary and sefondry 

alcohols to aldehydes and ketones, respectively, in high currerlt efficiency (86.4- 

92.7 %)and selectivity (100 %). 

Oxidation of alcohols using metallic or nonmetallic catalysts is currently under a practical operation.' 

However, use of even a catalytic amount of hazardous metallic reagents is a matter of economic and 

environmental concern.' Oxoammonium ions as nonmetallic oxidizing reagents are available easily 

from the corresponding nitroxyl radicals by one-electron oxidation on the electrode.' Numerous studies 

have demonstrated the ability of nitroxyl radicals to mediate alcohol oxidation by electrolysis, apparently 

via the oxoammonium ion.'.' A considerable body of these works have used 2,2,6,6-tetramethyl- 

piperidinyl-N-oxyl (TEMPO) derivatives. We have also reported the electrocatalytic 

oxidation of benzyl alcohol and I-phenylethyl alcohol on decahydroquinolinyl-N- 

oxyl radical.' To examine the wide applicability of this type of catalyst to the 
6 

electrocatalytic oxidation of many different kinds of alcohols, we report here the - - 
electmcatalytic behavior of (i)-cis,cis4benwyloxy-2,2.8a-himethyldecahydro- = 0 I 
quinolinyl-N-oxyl in the electro-oxidation reactions of different types of primary 1 
and secondary alcohols. 

The cyclic voltammetry of 1 was carried out in an acetonimle solution containing 0.1 M NaCIO, as a 

supporting electrolyte." As shown in Figure 1, 1 shows a symmetrical reversible redox wave i n  the 

cyclic voltammogram. This redox wave corresponds to the one-electron oxidation of 1 to 

oxoammonium ion. This nitroxyl radical was quite stable during the repeated potential scan. The 

oxidation potential of 1 was found at + 0.67 V vs. AgIAgCI. This value was shifted anodically than 

that for the (*)-trms,cis-isomer of this nitroxyl radical.' This means that the oxidizability of 1 is 

stronger than the (+)-ncmr,cis-isomer of 1. The peak splitting between the anodic and cathodic peak 
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Figure 1. Cyclic voltammograms of 0.01 M 1 
in the presence of (- ) and absence (- - - - -) 
of 0.2 M benzy I alcohol and 0.4 M 2.6-lutidine in 
0.1 M NaCIO, I CH,CN at scan rate of 50 mV 
sec'. Working electrode: glassy carbon disk 
electrode (3 mm @). 
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Figure 2. Macroelecmlysis of benzyl alcohol 
by 1 in the presence of 2,6-lutidine. 0: benzyl 
alcohol, 0 : benzaldehyde and 0 : current 
efficiency. 

potential of 1 was 65 mV. This value was smaller than that for the (+)-@ms,cis-isomer of 1 and 4 

hydroxy-TEMPO benzoate, which means a progress of smooth electron transfer on electrode. In 

addition, the peak current is proportional to the square root of the scan rate, from which the diffusion 

coefficient of 1 was estimated to be 2.15 x 10' cm2 sec~'. ' I  

These observations suggest a possible use of 1 as a catalyst in the electrocaralytic oxidation reactions. 

The cyclic voltammogram of 1 in the presence of benzyl alcohol and 2,6-lutidine is also shown in Figure 

1. The oxidation peak current of the cyclic voltammogram was enhanced up to 260 pA at + 0.69 V vs. 

AgiAgCl in the presence of benzyl alcohol, as compared with 160 ~ A i n  the absence of benzyl alcohol, 

suggesting that 1 mediates an electron relay between the electrode and benzyl alcohol. 

Based on the cyclic voltammetric results, a preparative and controlled-potential electrolysis of alcohols at + 
0.8 V vs. AgIAgCl was performed. The electrolyte solution (5 mL) contained L mmol of alcohol (0.5 

mmol of diols), 0.05 mmol of 1, 0.5 mmol of tetralin as a standard for chromatography analysis, 2 

mmol of 2,6-lutidine as a deprotonating agent, and 0.25 mmol of supporting electrolyte (NaCIO,). A 
graphite felt electrode, the size of 0.5 x 0.5 x 0 .5  cm, was used as working anode electrode. During 

electrolysis, the substrates and products were occasionally analyzed by gas chromatography (GC) and 

high performance liquid chromatography (HPLC).I2 

A time course of the electrocatalytic oxidation of benzyl alcohol by 1 is shown in Figure 2. One mmol 

of benzyl alcohol reacted almost completely in about 10 h to yield benzaldehyde. The current efficiency 

in the electrolysis was c a  88% during the course of electrolysis, and no by-product was observed 

(100% selectivity). The turnover number (given by the ratio of mole of product x 2 I mole of 1 )  was 

calculated to be 38.5 at I0 h of electrolysis. 

The results from the oxidation reactions of a variety of alcohols are shown in Table I. The primary and 

secondary alcohols were oxidized to the corresponding aldehydes and ketones, respectively, in high current 

efficiency (86.4-92.7 %), high yield (94.7-96.2 %) and 100 % selectivity. The turnover numbers for the 

oxidation of primary and secondary alcohols are larger than 37. (R)- and (S)-forms of racemic 1- 
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Table 1.  Eiectrocatalytic Oxidation of Alcohols by 1 

Substrate Pmducl Charge Cumnt Seleftiw Yield Turnover 
passed 1 C efficiency i % --g6-IY --q6 number 

phenethyl alcohol were equally oxidized to acetophenone, though 1 contains chiral centers. On the 

other hand, the oxidation of I,& and 1,s-diols led toy- and Blactones, respectively, in adequate current 

efficiency (78.6-80.2 %) and yield (82.7-84.1 %). A slightly lower selectivity (87.5-89.2%) observed 

for the terminal diols was assumed to come from the formation of a small amount of intermolecular 

products. 

A possible reaction mechanism is shown in Figure 3, in which an addun made up of thealcohol and the 

oxoammonium ion as one-electron oxidized species of 1 is attacked by a Lewis base to form the second 

intermediate leading to the  product^.^ 

Figure 3. Schematic daiagram of the oxidation of alcohols with nitroxyl radical. 

In conclusion, the electrochemical oxidation of alcohols catalyzed by 1 afforded the corresponding 

aldehydes, ketones and lactones in high yield (82.7-96.2 %), high current efficiency (78.6-92.7 %) and 

high selectivity (87.5-100 %). It became apparent that decahydroquinolinyl-N-oxyl radical (1) has 

valuable potentiality as an electron mediator for electrocatalytic oxidation of many different types of 

alcohols. 
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