Anikó Göblyös, László Lázár, Ferenc Evanics,[‡] and Ferenc Fülöp*

Institute of Pharmaceutical Chemistry, Albert Szent-Györgyi Medical University, H-6701 Szeged, POB 121, Hungary

^{*}Institute of Pharmaceutical Analysis, Albert Szent-Györgyi Medical University. H-6701 Szeged, POB 121, Hungary

Abstract – 1,2-Diaryl-substituted imidazolidines proved to be ring-chain tautomeric mixtures in CDCl₃ at 300 K. Both 1- and 2-aryl groups exerted significant electronic effect on the tautomeric equilibria, which could be described by the equation $\log K_X = \rho \sigma^+ + \log K_{X=H}$.

Physical and chemical properties of disubstituted organic compounds are influenced significantly by the electronic or steric effects of both substituents.¹⁻³ This phenomenon plays a crucial role in the ring-chain tautomerism of saturated 1,3-N,N-heterocycles.⁴⁻⁶ For 1-alkyl- or 1-phenyl-substituted 2-arylimidazolidines, tautomeric equilibria were determined not only by the electronic effects of the substituents on the 2-aryl group, but also by the steric effects of the N-alkyl group, which could be described by Equation (1):⁶

$$\log K_X = \rho \sigma^+ + \log K_{X=H} \qquad (Eq. 1)$$

As a continuation of our previous studies⁶ on the ring-chain tautomerism of imidazolidines. our present aim was to study the electronic effects of aryl groups in positions 1 and 2. Studies on the electronic effects of aryl groups on the tautomeric equilibria of 1,3-X,N-heterocycles (X = O, N, S) are restricted mostly to 2-aryl derivatives:⁷ the effects of aryl substituents at other positions have been investigated in only a few cases. For 4-aryl-2,2-dialkyl-substituted 1,3,4-oxadiazines, electron-withdrawing groups on the phenyl ring increased the ratios of the ring-closed tautomers.⁸ An aryl substituent at position 4 or 6 did not exert

^{*}e-mail: fulop@pharma.szote.u-szeged.hu

observable electronic effects on the ring-chain tautomeric ratios of 2,4- or 2,6-diaryl-substituted tetrahydro-1.3-oxazines.⁹

N-Arylethylenediamines, the starting materials for the synthesis of 1,2-diarylimidazolidines, were prepared according to the convenient method of Poindexter *et al.* by reacting equivalent amounts of 2-oxazolidinone (1) with the appropriate substituted aromatic amine hydrochlorides (Scheme 1).¹⁰ To provide large differences in electronic properties, *p*-nitro (2), *m*-chloro (3), *p*-methyl (5). *p*-methoxy (6) and *p*-dimethylamino (7) derivatives were chosen besides the unsubstituted *N*-phenylethylenediamine (4).

The ring-closures of ethylenediamines (2, 3, 5-7) with equivalent amounts of substituted benzaldehydes were carried out under mild reaction conditions (ambient temperature, 1 h) to give imidazolidines (8, 9, 11-13a-i) in good yields (Scheme 2). Compounds (10a-i) were prepared earlier.⁶

 $X = p-NO_2$: **a**; $m-NO_2$: **b**; m-Br: **c**; p-Br: **d**; p-Cl: **e**; H: **f**; p-Me: **g**; p-OMe: **h**; $p-NMe_2$: **i**

The ¹H NMR spectra of imidazolidines (8-13 a-i) unequivocally proved that these compounds exist as ring-chain tautomeric mixtures in CDCl₃ at 300 K. Data on (11a) was chosen to demonstrate the ¹H NMR spectra of the prepared 1,2-diarylimidazolidines. The chemical shifts and multiplicities of the aliphatic protons in the spectra of (11a) correspond to the values for 2-(*p*-bromophenyl)-1-phenylimidazolidine (10d).⁶ The ratios at equilibrium were determined by integration of the well-separated N-CHAr-N (ring) and N=CH (chain) singlets (Table 1).

				*				
Compd.			8	9	10 ^a	11	12	13
		Y	<i>p</i> -NO ₂	m-Cl	Η	<i>p</i> -Me	p-OMe	p-NMe ₂
	X	σ^+	0.79	0.4	0	-0.311	-0.778	-1.7
a	<i>p</i> -NO ₂	0.79	57.4	62.2	68.6	71.9	69.4	73.3
b	m-NO ₂	0.73	49.9	62.2	68.0	70.5	62.2	66.4
e	<i>m</i> -Br	0.405	45.6	49.5	52.6	56.2	63.9	55.8
d	<i>p</i> -Br	0.15	39.4	41.6	46.1	48.1	46.0	46.6
e	<i>p</i> -Cl	0.114	37.0	39.9	42.4	45.0	42.6	45.4
f	Н	0	37.7	35.2	35.7	37.1	33.3	34.5
g	p-Me	-0.311	30.8	26.9	27.5	28.4	25.6	26.9
h	p-OMe	-0.778	18.5	16.5	15.8	18.1	16.7	16.1
i	p-NMe ₂	-1.7	6.2	5.6	4.6	5.2	4.3	2.7

Table 1 Ring (B) percentages at tautomeric equilibriumfor compounds (8-13) in CDCl3 at 300K

^aLiterature⁶ data.

When Equation (1) was applied to the log K_X values, good linear correlations were obtained versus the Hammett-Brown parameter σ^+ of the substituent X on the 2-phenyl group for all five new sets of imidazolidines (8, 9, 11-13) (Figure 1, Table 2).

According to the data in Table 2, the value of ρ in Equation (1) is markedly influenced by the electronic character of substituent Y on the 1-phenyl group. A more electron-donating substituent Y produces a higher ρ value. This means that differences in the ring-chain tautomeric ratios in a set of 2-aryl-substituted imidazolidines are decreased by introducing an electron-withdrawing substituent on the nitrogen. Our efforts to find a mathematical relationship between the electronic parameters of substituent Y and the value of ρ have not resulted in an acceptable correlation. The electronic character of Y did not have any significant effect on the log K_{X=H} values of Equation (1).

Figure 1 Plots of log K for (8): •, (9): \circ , (10): ∇ , (11): ∇ , (12): and (13): \Box vs Hammett-brown parameter σ^+

Table 2	Linear	regression	analysis	data	on cor	npounds	(8-13))
---------	--------	------------	----------	------	--------	---------	--------	---

Compd	Y	No. of points	Slope (p) ^a	Intercept ^a	Correlation coefficient
8	p-NO ₂	9	0.49(3)	-0.27(6)	0.991
9	<i>m</i> -Cl	9	0.58(0)	-0.25(1)	0.999
10 ^b	Н	9	0.67(1)	-0.20(3)	0.997
11	<i>p</i> -Me	9	0.67(2)	-0.15(4)	0.997
12	<i>p</i> -OMe	8	0.68(4)	-0.20(9)	0.989
13	p-NMe ₂	7	0.77(3)	-0.20(6)	0.996

^aStandard deviations are given in parentheses. ^bLiterature⁶ data.

The above results demonstrate that the ring-chain tautomeric equilibria of 1,2-diaryl-substituted imidazolidines are significantly influenced by the electronic characters of both the aryl group at position 2 and (to a lesser extent) the aryl group at position 1. Efforts to explain the above results on the basis of electon densities at amine (NHC₆H₄Y) and imine (N=CHC₆H₄X) moieties are in progress.

EXPERIMENTAL

¹H NMR spectra were recorded on a Bruker AVANCE DRX 400 spectrometer at 300 K, using a "5 mm inverse Z gradient" probehead. The samples were dissolved in CDCl₃ containing 0.03% TMS as a reference. For the equilibria to be established, ¹¹ the solutions were left to stand at ambient temperature for 1 day before the ¹H NMR spectra were run. The number of scans was usually 64.

Melting points were determined on a Kofler micro melting point apparatus and are not corrected. The physical data on compounds (8, 9, 11-13) are listed in Table 3. N-(m-Chlorophenyl)- (3), N-(p-tolyl)- (5), N-(p-methoxyphenyl)- (6) and N-(p-dimethylaminophenyl)ethylenediamine (7) were prepared by known procedures.¹⁰

N-(p-Nitrophenyl)ethylenediamine (2)

Equimolar quantities (0.2 mol) of 2-oxazolidone and *p*-nitroaniline were heated neat in a 160-170 °C oil bath under nitrogen until all CO₂ evolution had ceased. The dark reaction mixture was allowed to cool to rt. It was then dissolved in 150 mL of 10% NaOH and extracted with CHCl₃. The combined organic extracts were washed with brine and then dried over anhydrous Na₂SO₄. The solvent was distilled off *in vacuo* and the resulting crystalline substance was purified by column chromatography on silica gel (eluent: methanol). Yield: 5.41 g (17.3%). mp 135-137 °C (lit.,¹² mp 139-141 °C). The NMR and IR spectra of compound (2) correspond to the literature¹² data.

General method for the synthesis of 2-arylimidazolidines (8, 9, 11-13a-i)

To a solution of the appropriate diamine (3 mmol) in 20 mL of absolute methanol, an equivalent amount of aromatic aldehyde was added (in the case of liquid aldehydes, a freshly distilled sample was used), and the mixture was left to stand at ambient temperature for 1 h. The solvent was evaporated off and the evaporation was repeated after the addition of 10 mL of toluene. The oily products were dried in a vacuum desiccator for 24 h. The NMR spectra proved that the purities of these compounds were greater than 95%. Crystalline products were filtered off and recrystallized.

¹H NMR spectroscopic data on 2-(p-nitrophenyl)-1-(p-tolyl)imidazolidine (11a)

The protons of the open form (A) are numbered according to the corresponding protons of the ring form (B) (δ in ppm; in brackets the multiplicity, couplings in Hz and assignment, respectively).

(11Aa): 8.35 (*s*, 1H, N=CH), 8.25 (*d*, 2H, J = 8.8, C₆H₅NO₂), 7.88 (*d*, 2H, J = 8.8, C₆H₅NO₂), 6.99 (*d*, 2H, J = 8.5, C₆H₅Me), 6.58 (*d*, 2H, J = 8.5, C₆H₅Me), 3.88 (*dt*, 2H, J = 5.8, 1.3, 4-CH₂), 3.49 (*t*, 2H, J = 5.7, 5-CH₂), 2.24 (*s*, 3H, CH₃); (11Ba): 8.17 (*d*, 2H, J = 8.8, C₆H₅NO₂), 7.58 (*d*, 2H, J = 8.8, C₆H₅NO₂).

 Table 3 Physical and analytical data on imidazolidines (8, 9, 11-13 a-i)^a

Compd	mn (°C)	Yield	Formula	Analysis			δ N=CHAr	δ N-CHAr-N
Compa	mp(c)	(%)		$\begin{bmatrix} Calcul \\ C \end{bmatrix}$	ated/Fou H	na (%) N	(s) chain (A)	$ring(\mathbf{B})$
8a	179-181 ^b	72	C ₁₅ H ₁₄ N ₄ O ₄	57.32 57.07	4.49 4.38	17.83 17.65	8.33	5.61
8b	oil	~100	$C_{15}H_{14}N_4O_4$	57.32	4.49 -	17.83	8.32	5.62
8c	oil	~100	$C_{15}H_{14}N_3O_2Br$	51.74	4.05	12.07	8.18	5.48
8d	128-133 [°]	69	C ₁₅ H ₁₄ N ₃ O ₂ Br	51.74 51.69	4.05 4.84	$12.07 \\ 11.90$	8.20	5.48
8e	140-143 ^c	76	C ₁₅ H ₁₄ N ₃ O ₂ Cl	59.31 59.18	4.65 4.72	13.83 13.77	8.21	5.49
8f	oil	~100	$C_{15}H_{15}N_3O_2$	66.90 -	5.61	15.60	8.25	5.51
8g	109-110 ^c	64	C ₁₆ H ₁₇ N ₃ O ₂	67.83 67.94	6.05 7.82	14.83 14.69	8.21	5.47
8h	oil	~100	C ₁₆ H ₁₇ N ₃ O ₃	64.20	5.72	14.04	8.17	5.46
8i	oil	~100	$C_{17}H_{20}N_4O_2$	65.37	6.45	17.94	8.08	5.39
9a	oil	~100	C ₁₅ H ₁₄ N ₃ O ₂ Cl	59.31	4.65 -	13.83	8.37	5.49
9b	oil	~100	C ₁₅ H ₁₄ N ₃ O ₂ Cl	59.31 _	4.65 -	13.83	8.36	5.49
9c	oil	~100	C ₁₅ H ₁₄ N ₂ BrCl	53.36	4.18	8.30 -	8.21	5.35
9d	oil	~100	$C_{15}H_{14}N_2BrCl$	53.36	4.18	8.30 -	8.23	5.35
9e	oil	~100	$C_{15}H_{14}N_2Cl_2$	61.45	4.81	9.55 -	8.24	5.36
9f	oil	~100	$C_{15}H_{15}N_2Cl$	69.63 -	5.84	10.83	8.29	5.39
9g	oil	~100	$C_{16}H_{17}N_2Cl$	70.45	6.28 _	10.27	8.25	5.36
9h	oil	~100	$C_{16}H_{17}N_2OCI$	66.55 _	5.93 -	9.70 -	8.22	5.35
9i	oil	~100	C ₁₇ H ₂₀ N ₃ Cl	67.65 -	6.68 -	13.92	8.16	5.32
11a	69-71°	55	$C_{16}H_{17}N_3O_2$	67.83 67.59	6.05 5.81	14.83 14.66	8.35	5.44
11b	74-75 ^d	49	$C_{16}H_{17}N_3O_2$	67.83 67.95	6.05 6.10	14.83 14.79	8.35	5.44
11e	oil	~100	$C_{16}H_{17}N_2Br$	60.58	5.40	8.83 -	8.19	5.30
11d	72-74 [°]	64	$C_{16}H_{17}N_2Br$	60.58 60.71	5.40 5.27	8.83 8.79	8.22	5.31

Table 3 (continued)

11e	58-61 ^d	52	C ₁₆ H ₁₇ N ₂ Cl	70.45 70.18	6.28 6.07	10.27 10.33	8.23	5.32
11f	oil	~100	$C_{16}H_{18}N_2$	80.63	7.61 _	11.75	8.28	5.35
11g	68-70 ^d	49	$C_{17}H_{20}N_2$	80.91 81.03	7.99 8.16	11.10 10.95	8.24	5.32
11h	51-53 ^d	45	$C_{17}H_{20}N_2O$	76.09 75.84	7.51 7.35	10.44 10.28	8.21	5.31
11i	52-54 ^d	52	$C_{18}H_{23}N_3$	76.83 76.62	8.24 8.17	14.93 14.80	8.20	5.27
12a	oil	~100	$C_{16}H_{17}N_3O_3$	64.20	5.72	14.04	8.36	5.39
12b	oil	~100	$C_{16}H_{17}N_3O_3$	64.20	5.72	14.04	8.28	5.39
12c	oil	~100	C ₁₆ H ₁₇ N ₂ OBr	57.67	5.14	8.41	8.21	5.26
12d	62-64 ^d	48	C ₁₆ H ₁₇ N ₂ OBr	57.67 57.40	5.14 4.93	8.41 8.26	8.23	5.26
12e	51-53 ^d	51	C ₁₆ H ₁₇ N ₂ OCI	66.55 66.34	5.93 5.86	9.70 9.71	8.24	5.27
12f	oil	~100	$C_{16}H_{18}N_2O$	75.56	7.13	11.01	8.28	5.28
12g	81-83 ^d	55	$C_{17}H_{20}N_2O$	76.09 76.18	7.51 7.43	10.44 10.38	8.25	5.26
12h	58-60 ^d	58	$C_{17}H_{20}N_2O_2$	71.81 71.64	7.09 6.81	9.85 9.78	8.21	5.25
12i	80 -8 2 ^c	60	C ₁₈ H ₂₃ N ₃ O	72.70 72.56	7.80 7.67	14.13 14.14	8.15	5.21
13a	79-81 ^d	47	$C_{17}H_{20}N_4O_2$	65.37	6.45 _	17.94	8.35	5.37
13b	oil	~100	$C_{17}H_{20}N_4O_2$	65.37	6.45 _	17.94 _	8.34	5.37
13c	oil	~100	$C_{17}H_{20}N_3Br$	58.97 -	5.82	12.13	8.19	5.24
13d	89-91 ^d	49	$C_{17}H_{20}N_3Br$	58.97 58.71	5.82 5.58	12.13 12.04	8.23	5.24
13e	82 -8 5 [°]	52	$C_{17}H_{20}N_3Cl$	67.65 67.49	6.68 6.38	13.92 13.75	8.24	5.25
13f	oil	~100	$C_{17}H_{21}N_3$	76.37	7.92	15.72	8.22	5.28
13g	60-62 ^d	52	$C_{18}H_{23}N_3$	76.83 76.70	8.24 7.99	14.93 15.08	8.25	5.25
13h	78-79 ^c	48	C ₁₈ H ₂₃ N ₃ O	72.70 72.58	7. 8 0 7.63	$\begin{array}{c} 14.13\\ 14.01 \end{array}$	8.21	5.23
13i	oil	~100	$C_{19}H_{26}N_4$	73.51	8.44	18.05	8.14	5.19

^aAnalitical data were determined only for recrystallized new compounds. ^bRecrystallized from iPr_2O - EtOAc. ^cRecrystallized from *n*-hexane- iPr_2O . ^dRecrystallized from *n*-hexane. 6.99 (*d*, 2H, J = 8.5, C₆*H*₅Me), 6.38 (*d*, 2H, J = 8.5, C₆*H*₅Me), 5.44 (*s*, 1H, 2-C*H*), 3.68 (*ddd*. 1H, J = -8.5, 6.9, 3.8, 5-C*H*₂), 3.41 (*q*, 1H, J = 7.5, 5-C*H*₂), 3.29 (*ddd*, 1H, J = -11.6, 6.6, 3.5, 4-C*H*₂), 3.16 (*ddd*, 1H, J = -11.6, 7.5, 6.6, 4-C*H*₂), 2.23 (*s*, 3H, C*H*₃).

REFERENCES

- 1. R. Arnaud and Y. Vallée, J. Chem. Soc., Perkin Trans. 2, 1997, 2737.
- H.-J. Zhu, B.-T. Zhao, W.-M. Dai, J. Zhou, and X.-J. Hao, *Tetrahedron: Asymmetry*, 1998, 9, 2879.
- 3. S. Uchiyama, T. Santa, T. Fukushima, H. Homma, and K. Imai, J. Chem. Soc., Perkin Trans. 2, 1998, 2165.
- 4. C. Chapuis, A. Gauvreau, A. Klaebe, A. Lattes, and J. J. Perie, Bull. Soc. Chim. Fr., 1973, 977.
- 5. G. Parrinello and R. Mülhaupt, J. Org. Chem., 1990, 55, 1772.
- 6. L. Lázár, A. Göblyös, F. Evanics, G. Bernáth, and F. Fülöp, Tetrahedron, 1998, 54, 13639.
- 7. R. E. Valters, F. Fülöp, and D. Korbonits, Adv. Heterocyclic Chem., 1996, 66, 1.
- 8. B. L. Milman and A. A. Potekhin, Khim. Get. Soedin., 1973, 902.
- 9. F. Fülöp, L. Lázár, G. Bernáth, R. Sillanpää, and K. Pihlaja, Tetrahedron, 1993, 49, 2115.
- 10. G. S. Poindexter, D. A. Owens, P. L. Dolan, and E. Woo, J. Org. Chem., 1992, 57, 6257.
- M. E. Alva Astudillo, N. C. J. Chokotho, T. C. Jarvis, C. D. Johnson, C. C. Lewis, and P. D. McDonnell, *Tetrahedron*, 1985, 41, 5919.
- 12. T. F. Chung, Y. M. Wu, and C. H. Cheng, J. Org. Chem., 1984, 49, 1215.

ACKNOWLEDGEMENT

The authors' thanks are due to the Hungarian Research Foundation (OTKA grant No. T 20454) for financial support.

Received, 11th May, 1999