A CONVENIENT SYNTHESIS OF (2)-3-(α -CYANO- α -ALKOXY-CARBONYLMETHYLENE)-2-PIPERAZINONES AND THEIR DERIVATIVES

Yoichi Yamada,* Heinosuke Yasuda, and Masaaki Kasai

Department of Chemistry, Faculty of Education, Utsunomiya University, Mine, Utsunomiya 321-8505, Japan

Abstract - (Z)-3- $(\alpha$ -Cyano- α -alkoxycarbonylmethylene)-2-piperazinone derivatives (3) and trans-(Z)-3- $(\alpha$ -cyano- α -alkoxycarbonylmethylene)octahydro-2(1H)-quinoxalinone derivatives (5) possessing various alkoxycarbonyl groups are prepared directly from the reaction of dialkyl (E)-2,3-dicyanobutenedioates (1) with ethylenediamine (2) and with trans-1,2-diaminocyclohexane (4), respectively. Furthermore, cis-1,2diaminocycloheptane (6) and meso-2,3-diaminobutane (8) were reacted with the diethyl ester 1b to give cis-(Z)-3- $(\alpha$ -cyano- α -ethoxycarbonylmethylene)decahydro-2H-cycloheptapyrazin-2-one (7) and cis-(Z)-3- $(\alpha$ cyano- α -ethoxycarbonylmethylene)-5,6-dimethyl-2-piperazinone (9), respectively. The structural studies of 3, 5, 7, and 9 were carried out by NMR experiments in some details.

It is known that the piperazine ring is an important moiety of various biologically active compounds.¹⁻³ Continuing with our research on the reaction of dialkyl (E)-2,3dicyanobutenedioates (1) with the nucleophiles having two reactive functional groups,⁴⁻⁶ we have designed a simple synthesis for several new 2-piperazinones having a 3-(α -cyano- α alkoxycarbonyl)methylene group *via* the reaction of aliphatic 1,2-diamines, such as ethylenediamine (2) or *trans*-1,2-diaminocyclohexane (4), with 1 bearing alkyl groups such as methyl, ethyl, propyl, butyl, and benzyl, respectively. We now wish to report a convenient method for one-step synthesis of (Z)-3-(α -cyano- α -alkoxycarbonylmethylene)-2-piperazinones (3) from 1 and 2, and *trans*-(Z)-3-(α -cyano- α -alkoxycarbonylmethylene)octahydro-2(1H)-quinoxalinones (5) from 1 and *trans*-4, respectively (Scheme 1). This method consists of the reaction of 1 with the small excess amount of *vic*-diamine (2) or (4) (in a 1:1.3 molar ratio), carried out in acetonitrile at room temperature for thirty minutes. A possible reaction process is illustrated in Scheme 2. Presumably, a Michael addition by an amino group of the diamine to the ethylenic double bond leads to open-chain adduct, which cyclizes by intramolecular nucleophilic attack at the ester group to form the piperazine ring.

Scheme 2

The IR spectra of 3 and 5 showed absorption bands due to the lactam NH stretching vibration of the 1-position in the 3292-3198 cm⁻¹ region and the enamine NH stretching vibration of the 4-position in the 3208-3082 cm⁻¹ region, an α,β -unsaturated nitrile C \equiv N at 2208-2198 cm⁻¹, and an ester and an amide C=O groups at 1688-1705 cm⁻¹ and 1664-1654 cm⁻¹, respectively. Furthermore, ¹H NMR spectra (DMSO-*d*₆) of 3 and 5 revealed signals at δ 9.83-10.18 and at δ 8.58-9.01 each corresponding to one proton. These were assigned to the 4- and 1- protons, respectively. Appearance of the IR absorption band at 1675-1705 cm⁻¹ and ¹H NMR signal at δ 9.83-10.18 would indicate the formation of an intramolecular hydrogenbond between the 3-unsaturated ester C=O and 4-proton.

In view of NMR spectroscopy, (Z)-3- $(\alpha$ -cyano- α -alkoxycarbonylmethylene)octahydro-2(1H)quinoxalinones (5) are of interest because of their *cis/trans* isomerization of 4a- and 8apositions on the octahydro-2(1H)-quinoxalinone ring. The *trans*-isomer (*trans*-5b) was isolated selectively *via* the reaction of 1b with *trans*-1,2-diaminocyclohxane (4). We observed ¹H- and ¹³C-NMR (Table 3), and ¹H-detected multiple-bond heteronuclear multiple-quantum coherence (HMBC) spectra of 5b in chloroform-*d* to avoid overlapping of broad signal (3.2-3.4 ppm) caused by water. An HMBC experiment of *trans*-5b indicated long-range (²*J*) coupling interactions between 4a-H (3.22-3.25 ppm) and C8a (55.8 ppm), and between 8a-H (3.22-3.25 ppm) and C4a (54.9 ppm). Similarly, long-range (²*J*) coupling interactions between both 1-H (7.68 ppm) with C8a, and 4-H (9.90 ppm) with C4a were observed. Furthermore, long-range (³*J*) coupling interactions were also showed between 1-H and C3 (155.9 ppm), and between 4-H and C2 (158.4 ppm), respectively.

Scheme 3. ¹H NMR Data of *trans*- and *cis*-**5b** (CDCl₃)

On the other hand, the mixture of *trans*- and *cis*-**5b** (*trans/cis* = 7:3) was obtained from the reaction of 1b with the geometrical mixture of 4 (*trans/cis* = 7:3). In the comparison of ¹H NMR data in chloroform-*d* (Scheme 3), 4a-H and 8a-H on *cis*-**5b** revealed a merged signal (3.73 ppm, br s, 2H), shifted to lower field than the 4a-H (3.22-3.25 ppm, m, 1H) and 8a-H (3.26-3.29 ppm, m, 1H) on *trans*-**5b**. Similarly, both the lactam proton 1-H (7.75 ppm) and the hydrogen-bonded enamine proton 4-H (10.09 ppm) on *cis*-**5b** shifted to lower field than 1-H (7.68 ppm) and 4-H (9.90 ppm) protons on *trans*-**5b**.

Scheme 4

Furthermore, *cis*-form piperazinones, such as cis-(Z)-3-(α -cyano- α -ethoxycarbonylmethylene)decahydro-2*H*-cycloheptapyrazin-2-one (7) and cis-(Z)-3-(α -cyano- α -ethoxycarbonylmethylene)-5,6-dimethyl-2-piperazinone (9), were also prepared from the reaction of 1b with *cis*-1,2-diaminocycloheptane (6) and *meso*-2,3-diaminobutane (8),⁷⁻⁹ respectively.

Scheme 5 Difference NOE Data of cis- (Z)-9 (DMSO-d₆)

The molecular formula of obtained compounds (3, 5, 7, and 9) was confirmed by the elemental analysis and MS spectral data. The structure of 3, 5, 7, and 9 was also confirmed by DEPT (determination of CH₃, CH₂, CH, or quaternary carbon), and ¹H-detected heteronuclear multiple-quantum coherence (HMQC, I_{CH} correlation) data.

The principal advantages of the method described here are that the time of reaction is short, the work up is convenient, and the reaction is easily carried out and proceeds under mild conditions to give, in general, high yields of 2-piperazinones having a $3-(\alpha-cyano-\alpha-alkoxycarbonyl)$ methylene group.

Product	¹ H-NMR (DMSO- d_6): δ (ppm), J (Hz)
3a	3.31-3.37 (m, 2H, NCH ₂), 3.46-3.52 (m, 2H, NCH ₂), 3.70 (s, 3H, OCH ₃), 8.86 (br s, 1H, NH)
	10.14 (br s, 1H, NH)
3Ъ	1.23 (t, 3H, J=7.1, CH ₃), 3.31-3.37 (m, 2H, NCH ₂), 3.46-3.52 (m, 2H, NCH ₂), 4.17 (q, 2H,
	J=7.1, OCH ₂), 8.58 (br s, 1H, NH), 10.16 (br s, 1H, NH)
3c	0.91 (t, $3H$, $J = 7.4$, CH_3), 1.62 (sextet, $2H$, $J = 7.1$, CH_2CH_3), $3.31-3.36$ (m, $2H$, NCH_2), $3.45-$
	3.50 (m, 2H, NCH ₂), 4.08 (t, 2H, J=6.6, OCH ₂), 8.85 (br s, 1H, NH), 10.15 (br s, 1H, NH)
3d	1.23 (d, 6H, J=6.2, 2CH ₃), 3.31-3.37 (m, 2H, NCH ₂), 3.45-3.51 (m, 2H, NCH ₂), 4.98 (septet,
	1H, J=6.2, OCH), 8.84 (br s, 1H, NH), 10.18 (br s, 1H, NH)
3e	0.91 (t, 3H, $J = 7.4$, CH ₃), 1.36 (sextet, 2H, $J = 7.4$, CH ₂ CH ₃), 1.60 (quintet, 2H, $J = 6.5$,
	OCH ₂ CH ₂), 3.31-3.36 (m, 2H, NHCH ₂), 3.45-3.50 (m, 2H, NCH ₂), 4.13 (t, 2H, J=6.5, OCH ₂),
	8.85 (br s, 1H, NH), 10.15 (br s, 1H, NH)

Table 1¹H-NMR Data of Compounds (3, 5, 7, and 9)

 Table 1 (Continued)

Product	¹ H-NMR (DMSO- d_{e}): δ (ppm), f (Hz)
3f	0.92 (d, 6H, $J = 6.7$, 2CH ₃), 1.92 (nonet, 1H, $J = 6.7$, CH), 3.31-3.36 (m, 2H, NCH ₂), 3.46-3.51
	(m, 2H, NCH ₂), 3.91 (d, 2H, J=6.5, OCH ₂), 8.85 (br s, 1H, NH), 10.14 (br s, 1H, NH)
3g	0.87 (t, 3H, J=7.4, CH ₂ CH ₃), 1.21 (d, 3H, J=6.3, CHCH ₃), 1.57 (quintet, 2H, J=6.9, CH ₂ CH ₃),
	3.31-3.36 (m, 2H, NCH ₂), $3.45-3.50$ (m, 2H, CH ₂), 4.82 (sextet, 1H, $J = 6.2$, OCH), 8.83 (br s,
	1H, NH), 10.17 (br s, 1H, NH)
3h	3.31-3.35 (m, 2H, NCH ₂), 3.46-3.50 (m, 2H, NCH ₂), 5.22 (s, 2H, OCH ₂), 7.33-7.41 (m, 5H,
	C ₆ H ₅), 8.87 (br s, 1H, NH), 10.18 (br s, 1H, NH)
trans- 5a	1.20-1.36 (m, 4H), 1.65-1.75 (m, 2H), 1.86-1.92 (m, 1H), 2.05-2.09 (m, 1H), 3.24-3.29 (m, 2H),
	3.71 (s, 3H, OCH ₃), 9.00 (br s, 1H, NH), 9.83 (br s, 1H, NH)
trans-5b	1.23 (t, 3H, J=7.1, CH ₃), 1.23-1.31 (m, 4H), 1.67-1.72 (m, 2H), 1.87-1.90 (m, 1H), 2.05-2.08 (m
	1H), 3.24-3.26 (m, 2H), 4.18 (q, 2H, J=7.1, OCH ₂), 8.99 (br s, 1H, NH), 9.86 (br s, 1H, NH)
trans-5c	0.91 (t, $3H$, $J=7.4$, CH_3), $1.23-1.31$ (m, $4H$), 1.63 (q, $2H$, $J=6.9$, OCH_2CH_2), $1.66-1.72$ (m, $2H$),
	1.86-1.90 (m, 1H), $2.05-2.09$ (m, 1H), $3.24-3.26$ (m, 2H), 4.09 (t, 2H, $J=6.4$, OCH ₂), 9.00 (br s
	1H, NH), 9.87 (br s, 1H, NH)
trans-5d	1.21-1.31 (m, 4H), 1.23 (d, 3H, $J = 6.2$, CH ₃), 1.24 (d, 3H, $J = 6.2$, CH ₃), $1.66-1.70$ (m, 2H),
	1.86-1.90 (m, 1H), 2.05-2.09 (m, 1H), 3.23-3.25(m, 2H), 4.99 (septet, 1H, J=6.2, OCH), 9.00
	(br s, 1H, NH), 9.92 (br s, 1H, NH)
trans-5e	0.90 (t, 3H, $J=7.3$, CH ₃), 1.23-1.32 (m, 4H), 1.33 (sextet, 2H, $J=7.0$, CH ₂ CH ₃), 1.60 (quintet,
	$2H, J = 7.3, OCH_2CH_2$, 1.67-1.70 (m, 2H), 1.87-1.90 (m, 1H), 2.05-2.07 (m, 1H), 3.24-3.26 (m, 1H), 3.24-3.26 (m, 2H), 3.24-
	2H), 4.14 (t, 2H, J=6.2, OCH ₂), 8.98 (br s, 1H, NH), 9.84 (br s, 1H, NH)
trans-5f	0.91 (d, 6H, $J = 6.7$, $2CH_3$), $1.24-1.32$ (m, 4H), $1.67-1.70$ (m, 2H), $1.87-1.90$ (m, 1H), 1.92
	(nonet, 1H, $J = 6.65$, OCH ₂ CH), 2.06-2.08 (m, 1H), 3.24-3.26 (m, 2H), 3.93 (d, 2H, $J = 6.6$,
	OCH ₂), 8.99 (br s, 1H, NH), 9.83 (br s, 1H, NH)
trans-5g	0.87 (dt, 3H, $J = 7.4$, CH ₂ CH ₃), 1.21 (dd, 3H, $J = 6.2$, 2.4, OCHCH ₃), 1.24-1.31 (m, 4H), 1.57
	(quintet, 2H, $f = 6.9$, CH_2CH_3), 1.67-1.73 (m, 2H), 1.87-1.90 (m, 1H), 2.05-2.08 (m, 1H), 3.23-
	3.25 (m, 2H), 4.83 (d, sextet, J=6.2, 3.8, OCH), 8.97 (br s, 1H, NH), 9.87 (br s, 1H, NH)
trans- 5h	1.24-1.33 (m, 4H), 1.68-1.73 (m, 2H), 1.87-1.91 (m, 1H), 2.07-2.09 (m, 1H), 3.24-3.27 (m, 2H),
	5.23 (s, 2H, OCH ₂), 7.39 (s, 5H, C ₆ H ₅), 9.01 (br s, 1H, NH), 9.83 (br s, 1H, NH)
cis-7	1.23 (t, 3H, $J \approx 7.1$, CH ₃), 1.30-1.99 (m, 10H, 5CH ₂), 3.76-3.84 (m, 2H, 2CH), 4.17 (q, 2H, $J \approx 1.10$
	=7.1, OCH ₂), 8.81 (br s, 1H, NH), 10.17 (br s, 1H, NH)
cis-9	1.05 (d, 3H, $J \approx 6.5$, 6-CH ₂), 1.09 (d, 3H, $J = 6.5$, 5-CH ₃), 1.23 (t, 3H, $J = 7.1$, CH ₂ C <u>H₃</u>), 3.73-3.78
	(m, 2H, 2CH), 4.17 (q, 2H, J = 7.1, OCH ₂), 8.82 (br s, 1H, NH), 10.19
	(br s, 1H, NH)

2457

Product	¹³ C-NMR (DMSO- <i>d</i> ₆): δ (ppm)
3Ъ	14.2 (CH ₃), 38.1 (NCH ₂), 39.8 (NCH ₂), 60.1 (OCH ₂), 69.7 (C-CN), 116.9 (CN), 156.8 (C3),
	156.9 (COO), 167.9 (C2)
trans-5b	14.1 (CH3), 22.7, 23.2, 28.1, 28.5 (4CH2, cyclohexane ring), 53.4, 55.0 (2NCH), 60.4
	(OCH ₂), 70.2 (C-CN), 116.4 (CN), 156.8 (C3), 156.8 (COO), 168.3 (C2)
cis- 7	14.2 (CH3), 21.3, 22.3, 27.5, 28.5, 29.2 (5CH2, cycloheptane ring), 51.7, 53.3 (2NCH),
	60.3 (OCH2), 69.5 (C-CN), 116.7 (CN), 155.2 (C3), 156.3 (COO), 168.2 (C2)
cis-9	13.9 (CH ₃), 14.2 (CH ₃), 15.1 (CH ₃), 47.8, 49.0 (2NCH), 60.2 (OCH ₂), 69.8
	(C-CN), 116.7 (CN), 155.6 (C3), 156.6 (COO), 168.0 (C2)

 Table 2
 Typical ¹³C-NMR Data of Compounds (ethyl esters 3b, 5b, 7, and 9)

Table 3 NMR Data of two isomers (trans- and cis-5b), in CDCl₃

Compound	⁴ H NMR (CDCl ₃): δ (ppm), <i>J</i> (Hz)	¹³ C NMR (CDCl ₃): δ (ppm)
trans-5b	1.34 (t, $3H$, $J = 7.1$, CH_3), $1.39-1.45$ (m, $4H$,	14.3 (CH ₃), 23.3, 23.8, 29.1,
	cyclohexane ring), 1.84-1.88 (m, 2H, cyclo-	29.2 (4CH ₂ cyclohexane ring),
	hexane ring), 2.04-2.08 (m, 2H, cyclohexane	54.9 (C4a), 55.8 (C8a), 61.3
	ring), 3.22-325 (m, 1H), 3.26-3.29 (m, 1H),	(OCH ₂), 73.3 (C-CN), 116.6
	4.25 (q, 2H, $J=7.1$, OCH ₂), 7.65 (br s, 1H,	(CN), 155.9 (C3), 158.4 (COO),
	NH), 9.89 (br s, 1H, NH)	169.0 (C2)
cis-5b	1.34 (t, $3H$, $J = 7.1$, CH_3), $1.39-1.45$ (m, $4H$,	14.3 (CH ₃), 21.0, 21.2, 28.8,
	cyclohexane ring), 1.58-1.62 (m, 2H, cyclo-	28.8 (4CH ₂ cyclohexane ring),
	hexane ring), 1.77-1.81 (m, 2H, cyclohexane	49.7, (C4a), 50.2 (C8a), 61.3
	ring), 3.71-3.75 (m, 2H, two methine protons),	(OCH ₂), 73.0 (C-CN), 116.7
	4.25 (q, 2H, J =7.1, OCH ₂), 7.75 (br s, 1H,	(CN), 155.4 (C3), 158.2 (COO),
	NH), 10.09 (br s, 1H, NH)	169.2 (C2)

EXPERIMENTAL

Melting points were determined on a Yamato MP-21 apparatus and are uncorrected. The IR spectra were recorded on a Perkin-Elmer FT-IR 1000 PC spectrophotometer (in potassium bromide). The ¹H NMR spectra were recorded on either a JEOL EX-400 (400 MHz) or a Varian VXR-300 (300MHz) instrument. The ¹³C NMR spectra were taken on a JEOL EX-400 (100 MHz) instrument. The DEPT spectra were run in a standard manner, using θ =135° pulse to separate CH/CH₃ and CH₂ lines phased "up" and "down", respectively. Moreover, the signals caused by quaternary carbons were identified by the comparison

between ¹³C NMR and DEPT spectra. The difference-NOE, HMQC (using C-H spin-spin coupling constant ${}^{1}J_{CH}$ =140Hz), and HMBC (using C-H long range coupling constant ${}^{n}J_{CH}$ =8Hz) experiments were also carried out with a JEOL EX-400 instrument. MS spectra were obtained with a JEOL AX-500 spectrometer (EI: 70 eV). trans-1,2-diaminocyclohexane (4) was purchased from Tokyo Kasei Co. cis-1,2-Diaminocycloheptane (6) and meso-2,3-diaminobutane (8) were obtained according to literature.⁷⁻⁹

General Procedure for the Preparation of (Z)-3-(α -Cyano- α -alkoxycarbonylmethylene)-2piperazinones (3).

To a magnetically stirred solution of 4.5 mmol of dialkyl (E)-2,3-dicyanobutenedioate (1) in acetonitrile (10 mL) was added a solution of 0.35 g (5.9 mmol) of ethylenediamine (2) in acetonitrile (5 mL) at rt. The solution was further stirred at rt for 30 min. Evaporation of the solvent *in vacuo* gave the colorless or yellowish solid, which was washed with cold ether / ethanol (1:1), and was filtered. The collected crystalline solid was recrystallized from suitable solvent to give **3**.

(Z)-3-(α -Cyano- α -methoxycarbonylmethylene)-2-piperazinone (3a).

This compound was obtained as colorless needles (pyridine / ethanol), 86% yield, mp 253.5-254°C (decomp); IR: v 3248, 3162 (NH), 2202 (CN), 1690 (COO), 1656 (N-C=O); MS: *m/z*: 195 (M⁺), 163, 135, 107, 70; *Anal*. Calcd for C₈H₉N₃O₃: C, 49.23; H, 4.65; N, 21.53. Found: C, 49.15; H, 4.37; N, 21.24.

(Z)-3-(α -Cyano- α -ethoxycarbonylmethylene)-2-piperazinone (3b).

This compound was obtained as colorless needles (ethanol), 57% yield, mp 187-188.5°C; IR: v 3264, 3120 (NH), 2200 (CN), 1690 (COO), 1655 (N-C=O); MS: *m/z*: 209 (M⁺), 163, 137, 110, 70; *Anal*. Calcd for C₉H₁₁N₃O₃: C, 51.67; H, 5.30; N, 20.09. Found: C, 51.54; H, 5.21; N, 20.24. (*Z*)-3-(α-Cyano-α-propoxycarbonylmethylene)-2-piperazinone (3c).

This compound was obtained as colorless needles (ethanol), 50% yield, mp 165-166.5°C; IR: ν 3280, 3122 (NH), 2202 (CN), 1690 (COO), 1654 (N-C=O); MS: m/z: 223 (M⁺), 181, 164, 137, 70; *Anal.* Calcd for C₁₀H₁₃N₃O₃: C, 53.81; H, 5.87; N, 18.82. Found: C, 53.55; H, 5.85; N, 18.69.

(Z)-3- $(\alpha$ -Cyano- α -isopropyloxycarbonylmethylene)-2-piperazinone (3d).

This compound was obtained as colorless needles (ethanol), 41% yield, mp 212-213°C decomp; IR: v 3198, 3082 (NH), 2202 (CN), 1701 (COO), 1663 (N-C=O); MS: m/z: 223 (M⁺), 181, 164, 137, 70; *Anal*. Calcd for C₁₀H₁₃N₃O₃: C, 53.81; H, 5.87; N, 18.82. Found: C, 53.87; H, 5.70; N, 18.88.

(Z)-3-(α -Cyano- α -butoxycarbonylmethylene)-2-piperazinone (3e).

This compound was obtained as colorless needles (ethanol), 38% yield, mp 173.5-174°C; IR: v

3204, 3098 (NH), 2204 (CN), 1693 (COO), 1657 (N-C=O); MS: *m/z*: 237 (M⁺), 181, 164, 137, 70; *Anal.* Calcd for C₁₁H₁₅N₃O₃: C, 55.69; H, 6.37; N, 17.71. Found: C, 55.74; H, 6.46; N, 17.67.

(Z)-3- $(\alpha$ -Cy an 0- α -isobutyloxycarbonylmethylene)-2-piperazinone (3f).

This compound was obtained as colorless needles (ethanol), 58% yield, mp 192-193°C; IR: ν 3224, 3124 (NH), 2204 (CN), 1688 (COO), 1658 (N-C=O); MS: m/z: 237 (M⁺), 181, 164, 137, 70; *Anal.* Calcd for C₁₁H₁₅N₃O₃: C, 55.69; H, 6.37; N, 17.71. Found: C, 55.79; H, 6.40; N, 17.82.

$(Z) - 3 - (\alpha - Cyano - \alpha - sec - butyloxy carbonyl methylene) - 2 - piperazinone (3g).$

This compound was obtained as colorless needles (ethanol), 29% yield, mp 224-225°C (decomp); IR: v 3245, 3115 (NH), 2208 (CN), 1689 (COO), 1657 (N-C=O); MS: m/z: 237 (M⁺), 181, 164, 137, 114, 70; *Anal.* Calcd for C₁₁H₁₅N₃O₃: C, 55.69; H, 6.37; N, 17.71. Found: C, 55.63; H, 6.31; N, 17.77.

(Z)-3- $(\alpha$ -Cyano- α -benzyloxycarbonylmethylene)-2-piperazinone (3h).

This compound was obtained as colorless needles (ethanol), 68% yield, mp 224.5-225.5°C; IR: v 3292, 3208 (NH), 2198 (CN), 1700 (COO), 1659 (N-C=O); MS: m/z: 271 (M⁺), 227, 137, 91, 70; *Anal.* Calcd for C₁₄H₁₃N₃O₃: C, 61.99; H, 4.83; N, 15.49. Found: C, 61.83; H, 4.86; N, 15.64.

General Procedure for the Preparation of trans-(Z)-3- $(\alpha$ -Cyano- α -alkoxycarbonylmethylene)-3,4,4a,5,6,7,8,8a-octahydro-2(1*H*)-quinoxalinones (5).

To a magnetically stirred solution of 4.5 mmoles of dialkyl (E)-2,3-dicyanobutenedioate (1) in acetonitrile (10 mL) was added a solution of 0.67 g (5.9 mmoles) of (E)-1,2-diaminocyclohexane (4) in acetonitrile (5 mL) at rt. The solution was further stirred at rt. After 2-5 min, a colorless or yellowish precipitate was observed. After 30 min, the crystalline solid was filtered, washed with cold ether / ethanol (1:1), and recrystallized from suitable solvent to give 5.

$trans-(Z)-3-(\alpha-Cyano-\alpha-methoxycarbonylmethylene)$ octahydro-2(1H)-quinoxalinone (5a).

This compound was obtained as colorless needles (dioxane / ethanol), 74% yield, mp 285.5-286°C (decomp); IR: v 3202, 3102 (NH), 2200 (CN), 1702 (COO), 1664 (N-C=O); MS: m/z: 249 (M⁺), 217, 189, 125, 81; *Anal*. Calcd for C₁₂H₁₅N₃O₃: C, 57.82; H, 6.07; N, 16.86. Found: C, 57.62; H, 5.95; N, 16.68.

trans-(Z)-3-(\alpha-Cyano-\alpha-ethoxycarbonylmethylene)octahydro--2(1<i>H)-quinoxalinone (5b). This compound was obtained as colorless needles (ethanol / water), 61% yield, mp 242-242.5°C; IR: v 3200, 3092 (NH), 2198 (CN), 1701 (COO), 1659 (N-C=O); MS: *m/z*: 263 (M⁺), 217, 191, 148, 81; *Anal.* Calcd for C₁₃H₁₇N₃O₃: C, 59.30; H, 6.51; N, 15.96. Found: C, 59.23; H.

6.46; N, 15.98.

$\textit{trans-(Z)-3-(\alpha-Cyano-\alpha-propoxycarbonylmethylene)} octahydro-2(1H)-quinoxalinone (5c).$

This compound was obtained as colorless needles (ethanol / water), 81% yield, mp 219-222°C; IR: v 3204, 3102 (NH), 2200 (CN), 1702 (COO), 1663 (N-C=O); MS: *m/z*: 277 (M⁺), 235, 218, 191, 148, 81; *Anal*. Calcd for C₁₄H₁₉N₃O₃: C, 60.63; H, 6.91; N, 15.15. Found: C, 60.38; H, 7.19; N, 15.05.

trans-(Z)-3-(\alpha-Cyano-\alpha-isopropyloxycarbonylmethylene)octahydro-2(1<i>H)-quinoxalinone (5d). This compound was obtained as colorless needles (ethanol / water), 61% yield, mp 267-268°C (decomp); IR: v 3200, 3102 (NH), 2202 (CN), 1705 (COO), 1661 (N-C=O); MS: *m/z*: 277 (M⁺), 235, 218, 191, 148, 81; *Anal.* Calcd for C₁₄H₁₉N₃O₃: C, 60.63; H, 6.91; N, 15.15. Found: C, 60.42; H, 6.93; N, 14.98.

$trans-(Z)-3-(\alpha-Cyano-\alpha-butoxycarbonylmethylene)octahydro-2(1H)-quinoxalinone (5e).$

This compound was obtained as colorless needles (acetonitrile), 34% yield, mp 220.5-221°C; IR: v 3206, 3098 (NH), 2200 (CN), 1702 (COO), 1663 (N-C=O); MS: *m/z*: 291 (M⁺), 235, 218, 191, 148, 81; *Anal*. Calcd for C₁₅H₂₁N₃O₃: C, 61.84; H, 7.27; N, 14.42. Found: C, 61.73; H, 7.46; N, 14.70.

trans-(Z)-3-(α -Cyano- α -*i*-butyloxycarbonylmethylene)octahydro-2(1*H*)-quinoxalinone (5f). This compound was obtained as colorless needles (ethanol / water), 70% yield, mp 239-242°C (decomp); IR: v 3202, 3096 (NH), 2202 (CN), 1705 (COO), 1664 (N-C=O); MS: *m*/*z*: 291 (M⁺), 235, 218, 191, 148, 81; *Anal*. Calcd for C₁₅H₂₁N₃O₃: C, 61.84; H, 7.27; N, 14.42. Found: C, 61.78; H, 7.39; N, 14.37.

trans-(Z)-3-(α-Cyano-α-s-butyloxycarbonylmethylene)octahydro-2(1H)-quinoxalinone (5g). This compound was obtained as colorless needles (ethanol / water), 48% yield, mp 269.5-270°C (decomp); IR: v 3198, 3100 (NH), 2200 (CN), 1704 (COO), 1662 (N-C=O); MS: *m/z*: 291 (M⁺), 235, 218, 191, 148, 81; *Anal.* Calcd for C₁₅H₂₁N₃O₃: C, 61.84; H, 7.27; N, 14.42. Found: C, 61.66; H, 6.99; N, 14.60.

 $trans-(Z)-3-(\alpha-Cyano-\alpha-benzyloxycarbonylmethylene)octahydro-2(1H)-quinoxalinone (5h).$

This compound was obtained as colorless needles (dioxane / ethanol), 83% yield, mp 229.5-230.5°C (decomp); IR: v 3200, 3096 (NH), 2200 (CN), 1700(COO), 1659 (N-C=O); MS: *m/z*: 325 (M⁺), 281, 219, 191, 156, 91; *Anal*. Calcd for C₁₈H₁₉N₃O₃: C, 66.44; H, 5.88; N, 12.91. Found: C, 66.29; H, 6.07; N, 12.90.

cis-(Z)-3-(α -Cyano- α -ethoxycarbonylmethylene)-1,3,4,4a,5,6,7,8,9,9a-decahydro-2*H*-cycloheptapyrazin-2-one (7).

To a magnetically stirred solution of 200 mg (0.89 mmol) of diethyl (E)-2,3dicyanobutenedioate (1b) in acetonitrile (1 mL) was added a solution of 150 mg (1.15 mmol) of cis-1,2-diaminocycloheptane (6) in acetonitrile (1 mL) at rt. The solution was further stirred at rt. After 1 h, the reaction mixture was concentrated to dryness under reduced pressure, and then ether (2 mL) was added to the residue and the suspension thus obtained was set aside in a refrigerator. The deposited solid was filtered, washed with cold ether, and recrystallized from ethanol to give 7 (76 mg, 32 %) as colorless needles, mp 289-289.5°C (decomp); IR: v 3300, 3200 (NH), 2200 (CN), 1695 (COO), 1655 (N-C=O); MS: m/z: 277 (M⁺), 231, 205; *Anal*. Calcd for C₁₄H₁₉N₃O₃: C, 60.63; H, 6.90; N, 15.15. Found: C, 60.67; H, 6.85; N, 15.35.

$cis-(Z)-3-(\alpha-Cyano-\alpha-ethoxycarbonylmethylene)-5,6-dimethyl-2-piperazinone (9).$

To a magnetically stirred solution of 200 mg (0.89 mmol) of diethyl (*E*)-2,3dicyanobutenedioate (1) in acetonitrile (1 mL) was added a solution of 102 mg (1.15 mmol) of *meso*-2,3-diaminobutane (8) in acetonitrile (1 mL) at rt. The solution was further stirred at rt. After 30 min, the mixture was concentrated to dryness under reduced pressure, and then ether (2 mL) was added to the resulting viscous oil and the suspension thus obtained was set aside in a refrigerator. The deposited solid was isolated by filtration, and recrystallized from ethanol to give 9 (130 mg, 58%) as yellowish needles, mp 179-181°C (decomp); IR: v 3300, 3195 (NH), 2200 (CN), 1695 (COO), 1655 (N-C=O); MS: m/z: 237 (M⁺), 191, 165; *Anal*. Calcd for C₁₁H₁₅N₃O₃: C, 55.69; H, 6.37; N, 17.71. Found: C, 55.45; H, 6.58; N, 17.49.

REFERENCES

- 1. G. L. Regnier, R. J. Canevari, M. J. Laubie, and J. C. Le Douarec, J. Med. Chem., 1968, 11, 1151.
- 2. K. Natsuka, H. Nakamura, H. Uno, and S. Umemoto, J. Med. Chem., 1975, 18, 1240.
- 3. A. K. Chaturvedi, B. V. R. Sastry, A. Chaudhari, and S. S. Parmar, *J. Pharm. Sci.*, 1976, **65**, 409.
- 4. Y. Yamada, H. Yasuda, and A. Takayama, Heterocycles, 1998, 48, 1185.
- 5. Y. Yamada, H. Yasuda, and K. Yoshizawa, Heterocycles, 1998, 48, 2095.
- 6. Y. Yamada and H. Yasuda, J. Heterocycl. Chem., 1998, 35, 1389.
- 7. K. Osowska-Pacewicka and A. Zwierzak, Synthesis, 1990, 505.
- 8. K. Osowska-Pacewicka and A. Zwierzak, Tetrahedron, 1985, 41, 4717.
- 9. S. Zawadzki and A. Zwierzak, Tetrahedron, 1973, 29, 315.