CYTOTOXIC BRIARANE DITERPENES FROM A GORGONACEAN BRIAREUM SP.¹

Tetsuo Iwagawa,*^a Keita Takayama,^a Hiroaki Okamura,^a Munehiro Nakatani,*^a Matsumi Doe,* b Kaoru Takemura,*c and Motoo Shiro,*d

a Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan h Faculty of Science, Osaka City University, Osaka 558-0022, Japan

C Sankei Kagaku Co., Ltd. 2-9 Naneicho, Kagoshima 891-01 12, Japan

d Rigaku Corporation 3-9-12 Matsuharacho Akishima-shi Tokyo 196 Japan

Abstract- Four new briarane diterpenes violides J -M (1-4). possessing a 8.17 dihydroxyl group, have been isolated from a gorgonacean *Briareum* sp. Their structures were established by spectral methods and a single crystalline X-Ray analysis. Twelve violides so far isolated from the gorgonian were performed on biological activity tests.

The gorgonian octocorals belonging to the genus *Briareum* sp. are a rich source of briarane diterpenes with interesting bioactivities such as cytotoxic, anti-flammatory, and antiviral activity.2 The MeOH extract of *Briareum* sp., collected in the area of Bonotsu, Kagoshima prefecture, was partitioned between CH_2Cl_2 and H20. The organic extract, exhibiting cytotoxic activity, was subjected to vacuum silica gel chromatography. Fractions eluting with $5-10\%$ MeOH-CH₂Cl₂ were purified by further chromatography and finally by C_{18} reversed phase HPLC to give nine new briaranes, violides A-I (5-13), possessing a 2,3,4-, 2,3-, and 2,4-oxygen function and an epoxide between C-8 and C-17.^{1,3} Further examination of the same fractions yielded a series of four new hriaranes, violides J **-M** (1-4), with a 2,3,4- and 2,4 oxygen and C-8 and C-17-diol functions. In this paper, we describe the isolation and structure elucidation of violides J -M (1-4) and biological activity for vilolides (1-13).

Compound (1) was isolated as prisms, mp 281-283°C. The molecular formula was determined as $C_{28}H_{38}O_{14}$ on the basis of HRFAB MS and NMR spectral data. The ¹H NMR spectrum was similar to that of violide B (6) ,³ the major difference being the upfield shift of H-18 (δ 1.49, 3H, s) by 0.21 ppm and the downfield shift of H-20 (δ 1.42, 3H, s) by 0.26 ppm (Table 1). In the ¹³C NMR spectrum (Table 2), the signals of C-8 (δ 78.8, s), C-17 (δ 80.2, s), and C-18 (δ 16.9, q) were shifted downfield by 7.3, 14.7, 6.9 ppm, respectively, compared to those of 6. This suggested that 1 was a 8.17-dihydroxyl derivative of violide B (6) in which the epoxide between C-8 and C-17 in 6 was hydrolyzed. The relative stereochemistry was concluded to he similar to those of violides A-I on the basis of the proton-proton coupling constants and NOE experiments of 1 (Figure 1). Thus, the coupling constants $J_{2,3}=0$ between H-2 and H-3 and $J_{3,4}=10.3$ Hz between H-3 and H-4 in the ¹H NMR spectrum indicated that H-2 and H-3 are orthogonal to each other and H-3 and H-4 were antiparallel as for valiolides A-I. The diaxial relationship between H-6 and H-7 was confirmed with the large coupling constant $(J_6,7=10.1 \text{ Hz})$ between them. Z-Geometries of the olefinic bonds at C-5 and C-14 were evidenced from an NOE of H-6 (δ 5.81, br d, $J=10.1$ Hz) to H-16 (δ 2.14, 3H, br s) and the coupling constant $(J_{13,14}=10.3$ Hz) between H-13 and H-14 in the ¹H NMR spectrum. NOEs from H-2 (δ 4.69, 1H, br s) to H-4 (δ 5.12, 1H, d, J=10.3 Hz), H-10 (δ 2.89, 1H, d, J=4.0 Hz), and H-16 suggested that H-2 and H-4 were α -oriented, the ring junction was *trans*, and H-6 and H-16 were folded downward. β-Configurations of H-7 (δ 6.09, 1H, d, J=10.1 Hz) and H-15 (δ 1.11, 3H, s) and α -configuration of H-3 (δ 6.22, 1H, br d, J=10.3 Hz) were deduced from NOEs of H-3 to H-7 and H-15. NOEs from H-20 (δ 1.42, 3H, s) to H-12 (δ 3.75, 1H, d, J=6.2 Hz) and H-15 supported the β -orientations of H-12 and H-20. NOEs of H-9 (δ 6.15, 1H, d, J=4.0 Hz) to H-20 suggested that H-9 was α -oriented. As the orientation of the dihydroxyl groups at C-8 and C-17 could not be equivocally established by the NOE experiment, an X-Ray diffraction experiment was performed (Figure 2). Thus, it was concluded that the hydroxyl groups at C-8 and C-17 were *a-* and **P**oriented, respectively.

The ¹H NMR spectrum of violide K (2), $C_{32}H_{48}O_{13}$, was similar to that of violide A (5), except for resonances due to H-18 and H-19, as in the case of 1 for *6.* The chemical shifts of H-18 (6 1.48, s) and H-20 (1.41, s) were shifted downfield by 0.22 ppm and upfield by 0.25 ppm, respectively, compared to those of 5, suggesting that 2 was a 8,17-dihydroxyl derivative of 5. Placement of the *n*-octanoate group at C-4 was determined from a HMBC correlation between H-4 $(\delta$ 4.83, 1H, d, J=9.9 Hz) and C-21 $(\delta$ 173.9, s). The relative stereochemisty was deduced from the similar coupling patterns in the ${}^{1}H$ NMR spectrum, chemical shifts in the ¹³C NMR spectrum, and NOE correlations to those of 1.

The ¹H NMR spectrum of violide L (3), $C_{30}H_{44}O_{13}$, was nearly identical to that of 2, except for resonances corresponding to aliphatic portion. The presence of a hexanoate group in 3 was confirmed by resonances due to the acyl group in the ¹³C NMR spectra of 3; δ 13.9 (q), 22.3 (t), 24.6 (t), 31.1 (t), 34.4 (t), 173.8 (s). The acyl group was concluded to be located at C-4 from the observation of a correlation of H-4 (δ 4.83, 1H, d, J=10.6 Hz) and C-21 (δ 173.8, s) in the HMBC spectrum. The stereochemistry was determined on the basis of similarity of the coupling patterns and chemical shifts in the NMR spectrum and NOE correlations between 3 and 1.

Comparison of the ¹H NMR spectrum of violide M (4) , $C_{26}H_{36}O_{12}$, with that of violide G (11) indicated that the chemical shifts of H-18 $(\delta$ 1.50, 3H, s) and H-20 $(\delta$ 1.38, 3H, s) were shifted upfield by 0.19 ppm and downfield by 0.25 ppm, respectively. The rest of the resonances was similar to those of 11. Thus, violide M was a 8,17-dihydroxyl derivative of 11. On the basis of the signal patterns, chemical shifts in the NMR spectra and NOE correlations, the stereochemistry of violide M was determined to have the structure (4).

$\overline{\mathbf{H}}$	1	$\overline{2}$	3	4 4.77 (br s)		
	2 4.69 (br s)	4.67 (br s)	4.68 (br s)			
	$3 6.22$ (br d, 10.3)	5.07 (br d, 9.9)	5.09 (br d, 10.6)	5.74 (dd, 5.7 , 12.5)		
	4 5.12 (d, 10.3)	4.83 (br d, 9.9)	4.83 (d, 10.6)	$ca. 1.9$ (overlapped)		
				3.00 (br dd, 5.7 , 12.5)		
	6 $(5.81$ (br d, 10.1)	5.69 (br d, 9.7)	5.70 (br d, 9.9)	5.64 (br d, 9.7)		
	7 6.09(d, 10.1)	5.95 (d, 9.7)	5.95 (d, 9.9)	5.91 (d, 9.7)		
9	(6.15 (d, 4.0))	6.08 (d, 4.2)	6.08 (d, 4.2)	6.12 (d, 3.7)		
	1 0 2.89 (d, 4.0)	2.85 (d, 4.2)	2.83 (d, 4.2)	2.80 (d, 3.7)		
	1 2 3.75 (d, 6.2)	3.74 (d, 6.1)	3.74 (d, 6.2)	3.74 (d, 5.9)		
	1 3 \vert 5.82 (br dd, 6.2, 10.3)	5.78 (dd, 6.1, 10.3)	5.79 (dd, 6.2, 10.3)	5.81 (dd, 5.9, 10.3)		
	14 5.50 (d, 10.3)	5.35 (d, 10.3)	5.37 (d, 10.3)	5.44 (d, 10.3)		
	15 1.11 (s)	1.25(s)	1.26(s)	1.12(s)		
	16 2.14 (br s)	2.07 (br s)	2.07 (br s)	1.95 (br s)		
	18 1.49(s)	1.48(s)	1.49(s)	1.50(s)		
	20 1.42(s)	1.41(s)	1.42 (s)	1.38(s)		
	MeCO 2.03, 2.06, 2.16, 2.20	2.14, 2.21	2.14, 2.21	2.01, 2.09, 2.18		
n -CnHn+1OCO		0.87 (t, 7.0, H-28)	0.89 (t, 6.8, H-26)			
		ca. 1.25 (overlappted H- $ca. 1.33$ (m, H-24,25)				
		24, 25, 26, 27)	ca. 1.63 (m, H-23)			
		1.63 (m, H-23)	2.40 (t, 7.5, H-22)			
		2.40 (br t, 7.5, H-22)				

Table 1. ¹H NMR Spectral Data of 1-4 in CDCl₃.

The ¹H NMR spectrum of violide L (3), $C_{30}H_{44}O_{13}$, was nearly identical to that of 2, except for resonances corresponding to aliphatic portion. The presence of a hexanoate group in 3 was confirmed by resonances due to the acyl group in the ¹³C NMR spectra of 3; δ 13.9 (q), 22.3 (t). 24.6 (t), 31.1 (t), 34.4 (t), 173.8 (s). The acyl group was concluded to be located at C-4 from the observation of a correlation of H-4 (δ 4.83, 1H, d, J=10.6 Hz) and C-21 (δ 173.8, s) in the HMBC spectrum. The stereochemistry was determined on the basis of similarity of the coupling patterns and chemical shifts in the NMR spectrum and NOE correlations between 3 and 1.

Comparison of the ¹H NMR spectrum of violide M (4), $C_{26}H_{36}O_{12}$, with that of violide G (11) indicated that the chemical shifts of H-18 (δ 1.50, 3H, s) and H-20 (δ 1.38, 3H, s) were shifted upfield by 0.19 ppm and downfield by 0.25 ppm, respectively. The rest of the resonances was similar to those of 11. Thus, violide M was a 8,17-dihydroxyl derivative of 11. On the basis of the signal patterns, chemical shifts in the NMR spectra and NOE correlations, the stereochemistry of violide M was determined to have the structure (4).

Compounds (1-4) were the first example of briaranes with a 8, 17-diol group which seemed to he formed from a 8,17-epoxide by hydrolysis.

$\overline{\mathbf{c}}$	1 _a	2 _a	$\overline{3a}$	$\overline{\mathbf{4b}}$
1	46.6	46.6	46.6	48.0
$\mathbf{2}$	77.1	77.2	77.2	79.0
3	71.2	70.9	71.0	72.8
4	76.3	75.8	75.9	78.3
5	138.4	139.3	139.3	139.0
6	127.1	125.9	125.9	129.2
7	77.8	78.3	78.1	79.4
8	78.8	79.4	79.3	80.0
9	66.4	66.3	66.3	67.7
10	39.8	39.8	40.1	39.5
11	77.7	75.8	75.9	76.6
12	70.8	70.8	70.8	72.0
13	124.0	123.7	123.5	126.3
14	139.2	138.6	138.7	140.2
15	15.5	15.3	15.3	16.4
16	25.9	26.0	25.9	26.3
17	80.2	80.3	80.3	80.8
18	16.9	16.6	16.8	16.2
19	175.9	176.2	175.8	178.8
20	23.0	23.1	23.3	22.8
$MeCO$	20.7, 20.9	20.9, 22.0	20.9, 22.0	20.5, 20.8
	21.0, 22.1			21.0, 22.6
MeCO	168.9, 170.1	170.0, 170.6	169.9, 170.4	170.6, 171.9
	170.3, 171.9			171.9, 173.8
n -CnH _{2n+1} OCO		14.1, 22.6	13.9, 22.3	
		24.9, 28.9	24.6, 31.1	
		29.0, 31.6	34.4, 173.8	
		34.4, 173.9		

Table 2. ¹³C NMR Spectral Data of 1-4.

a Measured in CDCl₃. \overline{b} Measured in CD₃OD.

Table 3. Cytotoxic Activity (CC_{50} mg/mL) of 1-5 and 7-13.

			$1 \t2 \t3 \t4 \t5 \t7 \t8 \t9 \t10 \t11 \t12 \t13$				
Vero >100 >100 >100 >100 1.90 1.69 2.53 3.65 3.93 9.37 0.85 1.41							
MDCK >100 >100 >100 >100 1.90 1.67 3.57 4.69 4.03 11.7 0.85 1.30							

Biological activity tests for 1-5 and 7-13 were performed.⁶ Compounds (5) and (7-13) exhibited moderate cytotoxicity against the growth of Vero and MDCK cells with a CC₅₀ of 0.85 to 9.37 µg/mL and 0.85 to 11.7 μ g/mL, respectively (Table 3). In regard to the relationship between the cytotoxicity and the structure, compounds (12 and 13) without a substituent at C-3, showed the strongest cytotoxicity. Compounds (7, 8, and 9), possessing an aliphatic ester at C-4, were stronger than 11 without it. Compounds with a longer aliphatic chain were more active: 7>8>9. When an acetyl group at C-3 is replaced by an hydroxyl group, the activity decreased: **5<7.** Compounds (1-4), containing a 8,7 dihydroxyl group, were inactive.

EXPERIMENTAL

General Experimental Procedures. Melting points were uncorrected. Optical rotations were obtained at 22" Con a JASCO DIP-370s spectropolarimeter. UV and IR spectra were recorded on a UV-210 and a MASCO FTnR 5300. NMR spectra were recorded with a 400 MHz JEOL or VARIAN UNITY-500 NMR instrument using TMS as internal standard and CDCl₃ as solvents. MS were obtained with a JEOL XD-303 instrument. Rigaku RAXIS-IV diffractometer was used in the X-Ray work.

Extraction and Isolation. The organisms (wet weight: 7.6 kg)³ was chopped into small pieces and extracted with MeOH (30 L) immediately after collection. The MeOH extract (22 g) was suspended in H₂O (1 L) and extracted three times with CH₂Cl₂ (3 x 3 L) for 1 day at rt. The CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and evaporated to dryness $(9.6 g)$. Portion $(5 g)$ of the CH₂Cl₂ extract was absorbed on silica gel (55 g) and subjected to chromatography on silica gel packed in hexane, fractions (100 mL) being collected as follows: $1-2$ (CH₂Cl₂-hexane, 4:1), $3-34$ (CH₂Cl₂), $5-6$ (MeOH-CH₂Cl₂, 1:49), $7-8$ $(MeOH-CH_2Cl_2, 1:19)$, 9-10 $(MeOH-CH_2Cl_2, 1:9)$, 11-12 $(MeOH-CH_2Cl_2, 1:4)$, and 13-14 $(MeOH)$. Fractions 8-10 (2.1 g) were chromatographed on silica gel using MeOH and CH₂Cl₂, increasing the proportion of MeOH to elute the fractions from the column. The fractions eluted with MeOH-CH₂Cl₂ (1:49) gave a residue (620 mg), which was applied to HPLC (ODS) with MeOH-H20 (1:1), yielding 7 (8.6 mg), **8** (3.0 mg), 11 (15.9 mg), 12 (13.4 mg), and **13** (2.8 mg). Further elution with MeOH- CH_2Cl_2 (1:24) afforded a residue, from which 10 (8.5 mg) was obtained as crystals. The residue was subjected to HPLC with MeOH-H20 (2:3), giving 1 (2.3 mg), 2 (7.6 mg), **3** (3.2 mg), and 4 (1.0 mg).

Violide J (1): Colorless prisms from MeOH-H₂O, mp 281-283°C, $[\alpha]_D$ +59.8° *(c 0.12, MeOH)*; UV (MeOH) λ max (log ε) 206 (3.74) nm; IR (film) vmax 3422, 1746, 1229 cm⁻¹; ¹H NMR (see Table 1); ¹³C NMR (see Table 2); (-)-FABMS m/z 597.2123 [M - H]⁻ (Calcd for C₂₈H₃₇O₁₄ 597.2161).

Violide K (2): Amorphous, $\alpha|_{D} + 29.6^{\circ}$ *(c 0.38, MeOH)*; UV (MeOH) λ max (log ε) 206 (3.91) nm; IR (film) vmax 3443, 1748, 1227 cm-1; 'H NMR (see Table 1); 13C NMR (see Tahle 2); (-)-FABMS *m/z* 639.3007 [M - H]⁻ (Calcd for C₃₂H₄₇O₁₃ 639.3016).

Violide L (3): Amorphous, $\lceil \alpha \rceil_D + 21.0^\circ$ *(c 0.15, MeOH)*; UV (MeOH) λ max (log ε) 206 (3.85) nm; IR (film) vmax 3382, 1742, 1227 cm⁻¹; ¹H NMR (see Table 1); ¹³C NMR (see Table 2); (-)-FABMS m/z 611.2703 [M - H]⁻ (Calcd for C₃₀H₄₃O₁₃ 611.2704).

Violide M (4): Amorphous, α _D +4.83° *(c 0.29, MeOH)*; UV (MeOH) λ max (log ε) 206 (3.86) nm; IR (film) vmax 3335, 1741, 1235 cm⁻¹; ¹H NMR (see Table 1); ¹³C NMR (see Table 2); (-)-FABMS m/z 539.2130 [M - H]⁻ (Calcd for C₂₆H₃₅O₁₂ 539.2128).

X-Ray analysis of 1. Crystal data:C₂₈H₄₄O₁₆, colorless prisms, monoclinic space group P2₁(#4), a=9.199(1)Å, b=20.293(3)Å, c=9.512(1)Å, β =119.43(1)°, V=1546.5(4)Å³, Z=2, Dx 1.367 g/cm³, $F(000)=680.00$, $\mu(MoK\alpha)=1.12$ cm⁻¹, Intensity data were collected on a Rigaku RAXIS-IV diffractometer using graphite monochromated MoK α (λ =0.71070 Å) up to 2 θ =50.0°. Of the total 2512 unique reflections, 1990 were observed $[I>2.00\sigma(I)]$. The structure was solved by direct methods (SIR92)⁴ and expanded using Fourier techniques.⁵ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms, excluding those of water, were included but not refined. It was refined by full-matrix least-squares and converged with $R=0.057$ and $Rw=0.077$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at Rigaku Corporation.

ACKNOWLEDGEMENTS

We are grateful to Drs. Y. Furuta and N. Terajima of Toyama Kogyo Co., Ltd. for biologically active assays.

REFERENCES AND NOTES

- 1. New briarane diterpenes from *Briareum* sp., collected at Bonotsu, Kagoshima prefecture. 3. For pan 2. see: T. Iwagawa, K. Takayama H. Okamura, M. Nakatani, and M. Doye *Heierocyles,* **1999,51,** 1653.
- 2. J:H. Sheu, P.-I. Sung, L:H. Huang, S.-F. Lee, T. Wu, B.-Y. Duh, **C.-Y.** Chang, L.3. Fang, K. Soong, and T:J. Lee, J. *Nat. Prod.,* 1996, **59,** 935. and the references cited therein.
- **3.** T. Iwagawa, N. Takenoshita, H. Okamura, M. Nakatani, M. Doye, K. Shibata, M. Shiro, *Heterocyles,* **1998.48,** 123.
- 4. A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi, and G. Polidori, *J. Appl. Cryst.,* 1994, *27,* 435.
- 5. P. T. Beurskens, G. Admiraal, *G.* Beurskens, W. P. Bosman, R. de Gelder, R. Israel, and J. M. M. Smits, The DIRDIF-94 program system, Tchnical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- 6. Cytotoxicity of compounds was evaluated by the growth of Vero and MDCK cells, with XTT (2,3 **bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide;** Sigma) method: see, D. A. Scudiero, *Cancer Research,* **1998.48, 4827.**

Received, 2nd **June,** 1999