FOUR NEW STYRYLLACTONES FROM GONIOTHALAMUS LEIOCARPUS

Qing Mu, Weidong Tang,⁺ Chaoming Li,^{*} Yang Lu,⁺⁺ Handong Sun, Huilan Zheng, Xiaojiang Hao, Qitai Zheng,⁺⁺ Nan Wu,⁺⁺ Liguang Lou,⁺ and Bin Xu⁺

Phytochemistry Laboratory, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204, China ^{*}Shanghai Institute of Medical Material, the Chinese Academy of Sciences, Shanghai 200032, China ⁺⁺Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

Abstract – Four new styryllactones, leiocarpin A (1), 7-epi-goniodiol (2), leiocarpin B (3) and leiocarpin C (4), respectively, were isolated from the stem bark of *Goniothalamus leiocarpus*. Their structures were elucidated by means of spectral method. The relative configurations of 1, 2 and 3 were determined by X-Ray crystallographic analysis. Compounds 2 and 3 possess antitumor activities.

Goniothalamus leiocarpus (Annonaceae family) is a tropical plant distributed in south of Yunnan province in China. We have isolated four known annonaceous acetogenins¹ from the seeds of Goniothalamus leiocarpus. In this paper, we report four styryllactones, named leiocarpin A (1), 7-epi-goniodiol (2), leiocarpin B (3) and leiocarpin C (4), respectively, isolated from the ethanolic extract of stem barks of the plant by repeat chromatography over silica gel. Their structures were elucidated by means of spectral. The relative configurations of 1, 2 and 3 were determined by X-Ray crystallographic analysis. Compounds (2) and (3) showed activities in *vitro* anticancer test.

Leiocarpin A (1) was isolated as crystal, mp 132-134°C, $[\alpha]_D^{24}$ -98.4° (c 0.60 in CHCl₃). IR spectrum indicated the presence of a δ -lactone (1720 cm⁻¹) and a hydroxyl (3360 cm⁻¹) groups. ¹H and ¹³C NMR spectra ² showed that 1 had a phenyl (δ 7.25-7.43 ppm, 5H, m), four oxymethines (δ 65.62, 72.27, 73.92, and 76.38 ppm) and two methylenes (δ 29.58 and 36.35 ppm). These spectral data suggested that 1 was a styryllactone. The same molecular formula C₁₃H₁₄O₄ as 9-deoxygoniopypyrone (**5**)³ was given by

measurements of EIMS at m/z 234 and HREIMS at 234.0890 (calcd 234.0892). The structure of 1 was established as 8-hydroxy-7-phenyl-2,6-dioxabicyclo[3,3,1]nonan-3-one, which was the same as that of 5,

Figure 1 Structures of 1 - 6

by analysis the ¹H, ¹³C NMR, COLOC and MS spectra of **1**. Meanwhile, the spectra of ¹H-¹H COSY, ¹H-¹³C COSY supported the above structure. However, the obvious distinction in $[\alpha]_D$ values (-98° for **1** and +12° for **5**), and difference of $J_{8/7}$ value and $J_{8/1}$ value between **1** and **5** revealed that there was distinction in configuration between the two compounds. Finally, the relative configuration of **1** was determined as $1S^*$, $5S^*$, $7R^*$ and $8R^*$ (Figures 1 and 2) by analysis of both NOESY spectrum and the X-Ray crystallographic data,⁷ while, those of **5** were $1R^*$, $5R^*$, $7S^*$ and $8R^*$ (Figure 1).

Figure 2 X-Ray Plot of 1 and 2

400 MHz and ¹³ C N	IMR 100 MH	Iz, δ, ppm; J, Hz, in C_5 I	⊃₅N,)	
2		4		
Н	С	Н	С	
	164.16		174.34	
5 ddd, 9.8,1.6, 0.8	121.13	3.48 dd, 15.4, 8.9;	41.20	
		3.13 dd, 15.4, 5.4		

2.43 ddd, 13.2, 6.8, 6.6;

2.17 dd, 13.2, 4.2

4.39 dt, 7.5, 3.6

4.68 dd, 5.8, 2.9

5.51 d, 5.8

7.79 d, 7.6

7.35 t, 7.6

7.25 t, 7.6

1.745

1.74

4.79 m⁺

Table 1. NMR Data (¹H NMR 400 MHz and

146.55

25.93

78.62

72.81

76.95

144.25

127.49

128.62

127.57

^{*} Only J=5.4 Hz could be measured in the ¹H NMR spectrum

6.82 ddd, 9.8, 5.8, 2.6

2.78 ddt, 18.7, 10.9, 2.6;

2.71 ddd, 18.7, 5.8, 4.8 4.90 ddd, 10.9, 5.8, 4.8

4.30 dd, 5.8, 3.7

5.39 d, 3.7

7.74 d, 7.3

7.39 t, 7.3

7.29 t, 7.3

Compound Position

2

3

4

5

6

7

8

9

10, 14

11, 13

12

Compound (2), $\lceil \alpha \rceil_{0}^{2n}$ +85.4°(c 0.3, in MeOH), had the molecular weight suggested by a prominent peak at m/z 235 $[MH]^{\dagger}$ in the FABMS spectrum. The presence of two hydroxyl groups was indicated by peaks at m/z 217 [MH-H₂O]⁺ and 199[MH-2H₂O]⁺ in the FABMS spectrum as well. The hydroxyl group at 3422 cm⁻¹ and α , β -unsaturated δ -lactone band at 1704 cm⁻¹ were present in the IR spectrum. The same molecular formula $C_{13}H_{14}O_4$ and planar structure as a known styryllactone compound, goniodiol (6),⁴ was given by the data of ¹H and ¹³C NMR spectra of **2**. Whereas the careful examination of the ¹H NMR gave distinguished differences of H-6, H-7 and H-8 either in chemical shifts or in coupling constants between 2 and goniodiol. The coupling constants of H-6/H-7 and H-7/H-8 in 2 were 5.8 and 3.7 Hz, while those in 6 were reported to be 2.2 and 7.0 Hz (6.7-threo and 7.8-ervthro), respectively. This means that there were distinction of configuration in H-6, H-7 and H-8 between 2 and goniodiol. Finally, the relative configuration of 2 was established as 6,7-erythro and 7,8-threo or 6R*, 7S* and 8R* by comparison of coupling constants and crystallographic analysis of X-ray,⁷ and 2 was therefore determined as 7-epigoniodiol (Figures 1 and 2).

Leiocarpin B (3) was colorless needle, mp 189-191°C, $[\alpha]_D^{24}$ +28.8° (c 0.5 in CHCl₃). The IR spectrum of 3 presented a hydroxyl band at 3500 cm⁻¹ and the carbonyl peak of a unsaturated δ -lactone at 1700 cm⁻¹. The ¹³C NMR showed the existence of 28 carbons (Table 2), which were respectively attributed to two structural units: 7-epi-goniodiol (2) and pinocembrin (5.7-dihydroxydihydroflavone); two monosubstituted phenyls and the other 12 protons were also respectively corresponding to the above two structures in the ¹H and ¹³C NMR. The molecular weight of **3** was indicated by a prominent peak at m/z

69.17

35.54

67.64

71.77

74.96

141.15

127.95

128.64

127.54

No.	Н	С	No.	Н	С
2		163.65	3'	3.12 dd, 17.1, 13.2;	43.42
				2.78 dd, 17.1, 3.0	
3	6.10 dd, 9.8, 1.8	121.17	4'		196.41
4	6.93 ddd, 9.8, 2.6, 1.8	146.17	51		164.47
5	2.17 dt, 13.2, 6.7;	26.21	6'	4.39 d, 2.3	97.62
	2.77 ddd, 18.9, 13.2, 2.6				
6	4.96 ddd, 6.8, 4.6, 4.4	77.94	7'		167.04
7	4.38 dd, 6.8, 3.2	75.76	8'	4.48 d, 2.3	95.91
8	6.01 d, 3.2	80.01	9		163.42
9		138.82	10'		103.85
10, 14	7.25-7.70 m	127.64	1″		139.30
11, 13	7.25-7.70 m	129.10	2", 6"	7.25-7.70 m	126.83
12	7.25-7.70 m	128.49	3", 5"	7.25-7.70 m	129.10
2'	5.34 dd, 13.2, 3.0	79.52	4"	7.25-7.70 m	129.04

Table 2. NMR Spectral Data of Leiocrpin B (**3**) (¹H NMR 400 MHz and ¹³C NMR 100 MHz, δ, ppm; J, Hz, in C₅D₅N)

472 in the EIMS spectrum, and the molecular formula $C_{28}H_{24}O_7$ was determined by the peak at m/z 472.1536 (calcd 472.1552) in the HREIMS. The structure of **3** was established as Figure 1 by the spectra of ¹H-¹H COSY, HECTOR and NOESY. 5'-Hydroxy-7'-*O*-dihydroflavone group positioned at C-8, that was suggested by the long-range coupling signal between H-8 and C-7' in the COLOC spectrum. The structure of **3** (Figure 3) was conformed by X-Ray crystallographic analysis.⁷

Compound (2) and (3) showed selective activities in test of trypan blue dye exclusion method. Under different concentration of 100, 10, 1, 0.1, 0.01 μ g/mL, the inhibition against HL-60 cells of compound (2) were 100, 100, 41, 21, 27%; and those of **3** were 100, 100, 55, 20, 4%. IC₅₀ against Bel7404 (Hepatocarcinoma), Bcap32 (Breast Cancer), Hela of **2** were 0.96, 12.8, 3 μ g/mL respectively; while those of **3** were 0.79, >100, 30 μ g/mL against HL-60, K-562, U937 (Leukemia).

Leiocarpin C (4) was isolated as needle, mp 131-132 °C, $[\alpha]_D^{24}$ -63.9° (c 0.46, CHCl₃). The molecular weight of 4 was indicated by a prominent peak at m/z 253[MH]⁺ in the FABMS and a peak at m/z 252 [M]⁻ in the EIMS. The HRFABMS gave m/z 253.0984 (calcd 253.1076) for MH⁺ of 4, corresponding to the molecular C₁₃H₁₆O₅. The presence of three hydroxyl groups was indicated by peaks at m/z 235 [MH-H₂O]⁺, 217 [MH-2H₂O]⁺, 199 [MH-3H₂O]⁺ in the EIMS and 234 [M-H₂O]⁺, 216 [M-2H₂O]⁺, 198 [M-3H₂O]⁻, and by two absorption bands at 3400 and 3260 cm⁻¹ in the IR spectrum. The existence of a saturated δ -lactone was supported by carbonyl group absorption bands at 1710 and 1690 cm⁻¹ in the IR spectrum. By analysis of the ¹H NMR spectral data (Table 1), the molecular structure of **4** was established as 6-(7,8-dihydro-7,8-dihydroxystyryl)-3,4,5,6-tetrahydro-4-hydroxy-2-pyrone (Figure 1).

The relative configuration C-6, C-7 and C-8 of 4 could be determined by careful examination of coupling constants between H-6 and H-7, H-7 and H-8.^{4.5} The coupling constants H-6/H-7 and H-7/H-8 in goniodiol (6) were reported to be 2.2 and 7.0 Hz (6,7-*threo*-7,8-*erythro*).^{4,6} In compound (4), the constants H-6/H-7 and H-7/H-8 were observed to be 2.9 and 5.8 Hz respectively. So, the relative configuration of H-6/H-7 and H-7/H-8 in 4 agreed with that of 6, and was determined as 6,7-*threo* and 7,8-*erythro* (Figure 1).

In the NOE spectrum of 4, the presence of correlation of Ph-H/H₂-3, Ph-H/H₂-5, and the absence of correlation of Ph-H/H-6, Ph-H/H-4 suggested that H-6 and H-4 positioned on the same plane. Since H-6 was arranged in α -orientation in the determined configuration (6,7-*threo* -7,8-*erythro*), H-4 was therefore assigned on α -orientation. That was to say, the hydroxyl group at C-4 was identical as 4 β -OH. Thus, the relative configuration of leiocarpin C (4) was determined as 6,7-*threo* -7,8-*erythro* and 4 β -OH (Figure 1).

EXPERIMENTAL

General Experimental Procedures -- Melting points were taken on a Koffler melting point apparatus and uncorrected. The UV spectra were obtained using a UV-210A Spectrophotometer. The IR spectra were measured on a Perkin-Elmer-577 Spectrophotometer. MS were performed on a Autospec-3000 Spectrometer and EIMS under 70ev. ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively, with a Brucker AM-400 Spectrometer. Elemental analyses were carried out on an EA-MOD1106 instrument. Silica gel-H (made in Qingdao Marine Chemical and Industrial Factory, China) was used for column chromatography and pre-coated Silica-G plates were employed for analytical TLC.

Plant Material -- The stem bark of *Goniothalamus leiocarpus* used in this investigation was collected in south of Yunnan province, China. A voucher specimen of this plant was deposited in Kunming Institute of Botany, Kunming, China.

Extraction and Isolation -- The powdered the stem bark (5 kg) was extracted with EtOH (10 L×3) for 72 h at rt. The alcohol was concentrated and then dried *in vacuo* to give 830 g of the dark brown resin. 200 g of EtOH extract was separated into three fractions by silica gel column (500 g) chromatography with CHCl₃, EtOAc and MeOH, repeatedly. The Fr. 1 (88 g) was carried out silica gel chromatography with gradient mixture of CHCl₃ and MeOH, and gave the crude crystals of **2** (800 mg, CHCl₃-MeOH 99:1), **1** (3.2 g, CHCl₃-MeOH 98:2), **3** (1.2 g, CHCl₃-MeOH 95:5) and **4** (510 mg, CHCl₃-MeOH 90:10). These crude crystals were recrystallized in the different mixture of solvents to yield colorless needles of **1** (2 g, Me₂CO-Petrol), **2** (500 mg, EtOAc-Ben), **3** (800 mg, CHCl₃-MeOH) and **4** (470 mg, MeOH).

Bioassays -- Activity test were performed according to MTT method. Cancer cells with concentration of 1.210⁵ cells/mL were inoculated into every cell of 96-well microculture. The cells were acted with different concentration of the compounds, and OD (optical density) values were taken on with microdlisa reder.

Leiocarpin A(1) mp 132-134 °C (Me₂CO-Petrol Ether); $[\alpha]_{D}^{24}$ -98.42° (c 0.6, CHCl₃); UV(MeOH) λ_{max} : 207 (log ε 3.29) nm; IR (KBr) ν_{max} 3360 (hydroxyl), 1720 (δ -lactone), 1660, 1180 cm⁻¹; EIMS m/z(%): 234(60) [M]⁺, 216(7) [M-H₂O]⁻, 188 (10), 177(17), 144(15), 128(35), 107(100), 91(40), 77(43), 69(80); HREIMS m/z 234.0890 for C₁₃H₁₄O₄ (calcd 234.0892); ¹H and ¹³C NMR spectral data see References and Note. ² Anal. Calcd for C₁₃H₁₄O₄: C, 66.67; H, 5.98. Found: C, 67.00; H, 6.01.

7-*epi*-goniodiol (**2**) (CHCl₃-MeOH) $[\alpha]_D^{23}$ +85.42° (c 0.6, MeOH); UV(MeOH) λ_{max} : 206 (log ϵ 3.20); IR (KBr) ν_{max} : 3422, 2930, 1704, 1386, 1261, 1082, 1020 cm⁻¹; EIMS m/z(%): 216(33) [M-H₂O]⁻, 200(13), 170(7), 155(13), 128(78), 110(50), 105(67), 91(100), 77(84); FABMS m/z: 235 [MH]⁻, 217 [MH-H₂O]⁻; ¹H and ¹³C NMR (in C₅D₅N) see Table 1. Anal. Calcd for C₁₃H₁₄O₄: C, 66.67; H, 5.98. Found: C, 66.84; H, 6.09.

Leiocarpin B (**3**) mp 189-191°C (EtOAc-Benzene); $[\alpha]_{D}^{24}$ +28.79°(c 0.5, CHCl₃); UV (MeOH) λ_{max} (log ϵ): 210(3.65), 289(3.33), 318(2.59) nm; IR(KBr) ν_{max} : 3500, 3040, 2910, 1700, 1620, 1560, 1240, 1160 cm⁻¹; EIMS m/z(%): 472(45) [M]⁺, 345(48), 303(19), 256(78), 241(27), 179(66), 152(54), 131(60), 97(100), 69(94); HREIMS m/z 472.1536 for C₂₈H₂₄O₇ (calcd 472.1552); ¹H and ¹³C NMR (in C₅D₅N) see Table 2. Anal. Calcd for C₂₈H₂₄O₇: C, 71.18; H, 5.08. Found: C, 71.07; H, 5.10.

Leiocarpin C (4) mp 131-132 °C (MeOH); $[\alpha]_D^{24}$ -63.5° (c 0.5, MeOH); UV(MeOH) λ_{max} : 207(log ε 2.90); IR (KBr) v_{max} : 3400, 3200, 2920, 1710, 1690, 1485, 1440, 1200, 1100 cm⁻¹; EIMS m/z(%): 252(1) [M]', 234(60) [M-H₂O]⁻, 216(10) [M-2H₂O]⁻, 198(3) [M-3H₂O]⁻, 188(5), 157(9), 128(47), 107(100), 91(80), 77(74), 60(90); HRFABMS m/z 253.0984 (calcd 253.1076) for MH⁺, ¹H and ¹³C NMR see Table 1. Anal. Calcd for C₁₃H₁₆O₅: C, 61.90; H, 6.35. Found: C, 61.66; H, 6.37. X-Ray Crystallographic Analysis of 1 Data collection -- A colorless rod of $C_{13}H_{14}O_4$, monoclinic. The intensity data collection were performed on a MAC DIP-2030K Probing Apparatus with MoK α radiation and monochromator; the distance between the crystal and IP plate was 120mm(d=120mm); ω scan with 0-180°; oscillation angles $\Delta\phi=3^\circ$. The crystal data and data collection parameters were given in Table 3.

Data and parameters	1	2	3
Formula	C ₁₃ H ₁₄ O ₄	C ₁₃ H ₁₄ O ₄	$C_{28}H_{24}O_7$
Molecular weight	234	234	472
Space group	P2 ₁	P1	P21
a, Å	7.137(1)	8.668(1)	9.782(1)
b, Å	35.495(3)	8.686(1)	11.457(4)
c, Å	9.312(1)	9.576(1)	11.610(1)
α,°		109.20(1)	
β,°	91.14(1)	116.89(1)	114.80(8)
γ,°		90.03(1)	
V , Å ³	2358.5(5)	597.6(1)	1183.11(49)
7	2	2	2
D_{c} , $g \cdot cm^{-3}$	1.314	1.302	1.329
Crystal dimensions, mm	0.4×0.5×0.6		0.4×0.7×0.3
2θ rang , °	0-180	0-50	0-50
Data collected	3618	2092	2171
Unique data	3273	1844	1692
Rf	0.133	0.043	0.041
Rw (w=1/1/ $\sigma^{2}[F]$)	0.128	0.050	0.046
(Δ/σ) max		0.035	0.265
$(\Delta \rho)$ max e/Å ³		0.260	0.250
$(\Delta \rho)$ min e/Å ³		-0.210	-0.200

Table 3. Crystal Data and Data Collection Parameters of Compounds (1, 2 and 3)

Structure solution and refinement -- The structure was solved using structure direct methods (SHELEXS-97). Initial carbon and oxygen atom coordinates were obtained from an E map. Using a series of difference Fourier syntheses and leas-squares, 18 non-hydrogen atoms were located and their position were corrected, and the kind of atoms were determined. Hydrogen atoms except for which belonging hydroxyl groups were obtained in geometrical add-hydrogen method. $R_f = 0.133$, $Rw = 0.128(w=1/\sigma^2|F|)$, GoF = 17.921. The crystal data and data collection parameters were given in Table 3.

X-Ray Crystallographic Analysis of 2. Data Collection -- A colorless piece of $C_{13}H_{14}O_4$, triclinic. The intensity collection were performed using MoK α radiation and graphite monochromater on an NoniousCAD-4 four-circle diffractometer, with the ω scans, 0°<2 θ <50°. 2092 reflection spots were collected and 1844 unique reflections were considered.

Structure Solution and Refinement -- The crystal structure was solved using direct method (SHELEXS-86). 34 non-hydrogen atoms were obtained from E map. Hydrogen atoms were obtained in succeeding difference Fourier syntheses and the structural parameters were refined in full-matrix least-squares, $R_f =$ 0.043, $R_w = 0.050 \text{ (w}=1/\sigma^2|F|)$, $(\Delta/\sigma)_{max} = 0.035$, $(\Delta\rho)_{max}=0.260 \text{ e/ Å}^3$, $(\Delta\rho)_{min}=-0.210 \text{ e/ Å}^3$, s=1.052. The crystal data and data collection parameters were given in Table 3.

X-Ray Crystallographic Analysis of **3**. Procedures were essentially the same as those followed for the X-Ray crystallographic analysis of **2**, except the hydrogen positions and isotropic thermal parameters of **3** were refined, and the crystal data and collection were given in Table 3.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation of China (Grant No. 39770089) and the Applied and Basic Research Foundation of Yunnan province (Grant No. 97B038q).

REFERENCES AND NOTES

- 1. Q. Mu, C. M. Li, H. L. Zheng, and H. D. Sun, Acta Botanica Yunnanica, 1998, 20, 123.
- NMR Data of Leiocarpin A (1). ¹H NMR (400 MHz in C₅D₅N) δ: 4.80 (br s, 1H, H-1), 2.81 (dd, J = 5.0, 19.5 Hz, 1H, H-4a), 2.90 (d, J = 19.5 Hz, 1H, H-4b), 4.35 (br s, H-5), 4.41 (d, J = 8.8 Hz, 1H, H-7), 3.45 (d, J = 8.8 Hz, 1H, H-8), 2.11 (br s, 2H, H₂-9), 7.25 7.43 (m, 5H, Ph); ¹³C NMR data of 1 δ (ppm, in CDCl₃, 100 MHz): 76.88 (C-1), 169.21 (C-3), 36.35 (C-4), 65.62 (C-5), 73.92 (C-7), 72.27 (C-8), 29.58 (C-9), 138.21 (C-10), 127.41 (C-11, 15), 128.27 (C-12,14), 128.27 (C-13).
- 3. X. P. Fang, J. E. Anderson, C. J. Chang, and J. L. McLaughlin, J. Nat. Prod., 1991, 54, 1034.
- 4. S. K. Talapatra, D. Basu, T. Deb, S. Goswami, and B. Talapatra, Indian J. Chem., 1985, 24B, 29.
- 5. A. Bermejo, M. A. Blazquez, K. S. Rao, and D. Cortes, Phytochem., 1998, 47, 1375.
- Y. C. Wu, C. Y. Dun, F. R. Chang, G. Y. Chang, S. K. Wang, J. J. Chang, D. R. McPhail, and A. T. McPhail, J. Nat. Prod., 1991, 54, 1077.
- Y. Lu and Q. T. Zheng, Chinese Crystal Structure Atlas Database for Chemical Constituents of Chinese Traditional and Folk Medicine. *Acta Parmaceutica Sinica*, 1993, 28, 442.

Received, 24th June, 1999