3-TRIPHENYLPHOSPHORANYLIDENEAMINO-Z-CYCLOALKENONES: REACTION WITH METHYL PROPIOLATE LEADING TO [N](2,6)PYRIDINOPHANES

Hiroyuki Yamamoto, Minako Yuasa, and Makoto Nitta Department of Chemistry, School of Science and Engineering, Materials Research Laboratory for Bioscience and Photonics, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract--The title compounds have been synthesized, and their reaction with methyl propiolate afforded 3-methoxycarbonyl[n](2,6)pyridinophanes (n=9 and 8), along with 5,6-ring annulated 2rnethoxypyridines *albeii* **in** low yields, respectively.

The remarkable chemical and physical properties of strained cyclophanes continue to fascinate many chemists.¹⁻⁴ In the field of heterocyclic [n]paracyclophanes,^{5,6} the smallest known member is [6](2,5)pyridinophane.⁵ In the [n]metacyclophanc series, the metapyridinophanes thus far obtained are 3halogeno-substituted [6](2,4)pyridinophanes, $\frac{7}{2}$ [n](2,4)pyridinophane (n=9 and 7), $\frac{8}{2}$ [n](2,6)pyridinophane (n=12 and 10-6), $\frac{9}{2}$ [n](3,5)pyridinophane (n=9 and 7), $\frac{10}{3}$ -chloro-substituted [n](2,4)quinolinophane (n=10, 8, and 6), and [n](2,4)quinolinophane (n=10 and 8). 11,12 Previously, we worked on a convenient preparation of $[n](2,4)$ pyridinophanes $(n=9-6)$ $(1)^{13,14}$ and azuleno-annulated $\ln(2,4)$ pyridinophane (3) $(n=9-6)$, 15 and studied their static and dynamic behavior (Scheme 1). The synthesis consists of an enamine-alkylation process of vinyliminophosphoranc or β ammo enones and 2-ammoazulene with 2-cycloalkenones, respectively, subsequent condensailon of thc

1 $(n=9-6)$ **2** $(n=9-6)$

15a, b (n=9 and 8)

nitrogen moiety with the carbonyl function, and dehydrogenation. The utility of vinyliminophosphoranes as useful building blocks for the synthesis of aza-heterocycles has been demonstrated.¹⁶ In the search for new methodology for synthesizing 3-methoxycarbonyl[n](2,6)pyridinophanes (15a,b), which might be promising precursors of chiral nicotinamides, $6b$ we studied the preparation of 3triphenylphosphoranylideneamino-2-cycloalkenones (6a,b). The iminophosphoranes (6a,b) reacted with methyl propiolate to give the expected **3-methoxycarbonyl[nj(2,6)pyridinophanes** (15a,b) (n=9 and 8). along wth 5,6-nng annulated 2-methoxypyridines (12a,b), respectively, *albeir* in low yield. We describe herein the results in detail.

The reaction of 3-chloro-2-cycloalkenone $(3a)^{17}$ with sodium azide in DMF at 0 \degree afforded a mixture of 3-azido-2-cyclododecenone (4a) and [9](3,5)isoxazolophane (5a). Since in the mixture of 4a and 5a, 4a undergoes decomposition, the mixture was subsequently reacted with triphenylphosphine (the Staudinger reaction)¹⁸ in benzene to give 3-triphenylphosphoranylideneamino-2-cyclododecenone (6a) and 5a. Similarly, the iminophosphorane $(6 b)$ was prepared by the reaction of triphenylphosphine with the mixture of 3-az~do-2-cycloalkenonc (4 **b)** and [8](3,5)isosarolophane (7 **b)** (Scheme 2). Since the conversmn of 4a, b to 5a, b was not observed, the precursors of 5a, b may be the possible intermediates, *trans-3-azido-*2-cycloalkenones (7a,b).¹⁹ In the reaction of 3a, the isoxazolophane (5a) was obtained preferentially. over iminophosphorane (6a) probably because the *trans*-isomer is more stable than the *cis*-isomer in 2cyclododecenone.^{20,21} The iminophosphorane (6b) was obtained preferentially over the $[8](3,5)$ isoxazolophane $(5b)$.²⁰ An alternative, efficient preparation of the iminophosphorane **(6a)** was

accomplished by the reaction of $3a$ with aq. NH₃ to give 3-amino-2-cyclododecenone ($8a$) and subsequent treatment of 8a with phosphonium salt (the Kirsanov reaction) as shown also in Scheme 2.¹⁸

The compound (5a) is known and the ¹H NMR spectrum is in accordance with the reported data.²² There was good correlation between 5a and 5b in the ${}^{1}H$ NMR spectra, and the structure of 5b was suggested to be $[8](3,5)$ isoxazolophane. The structures of new compounds $(6a,b$ and $8a)$ were assigned on the basis of the 1 H NMR and 13 C NMR spectral data, IR, and MS spectral data, as well as elemental analyses. Regarding 8a, the IR spectrum and the signal appearing at δ 9.55 (-NH) in the ¹H NMR spectrum suggest hydrogen bond between the -NH proton and carbonyl-oxygen and the trans-configuration of *2* cyclododecenone moiety for 8a. In addition, the triplets appearing at δ 2.16 and δ 2.30 are ascribed to methylene protons at C-4 and C-12 positions and equivalency of these is explained by assuming free inversion of polymethylene chain. Furthermore, the ylides $(6a,b)$ consist of only one component, respectively: thus, we prefer cis-cycloalkenone skeleton for $6a,b$ because of the bulky **triphenylphosphoranylideneam~no** group.

Reaction of iminophosphorane $(6a)$ with methyl propiolate (9) in refluxing xylene afforded ring-annulated pyridine (12a) (11%) and $[9](2,6)$ pyridinophane (15a) (9%) (Scheme 3). Similarly, the reaction of 6b with 9 afforded pyridine $(12b)$ (8%) and [8](2,6)pyridinophane (15b) (4%). The postulated reaction pathways for the formation of $12a$,b and $15a$,b are also shown in Scheme 3. The enamine-type alkylation of the iminophosphoranes (6a, b) to the β -carbon atom of 9 gives 10a, b. The following hydrogen transfer and cyclobutene-formation in 10a,b gives 11a,b and 13a,b, respectively. $16c,23$ The

Scheme **3.**

intermediates $(11a,b)$ undergo aza-Wittig reaction to produce pyridines $(12a,b)$. On the other hand, the intermediates of iminophosphoranes $(13a,b)$ undergo cyclobutene-ring-opening to give $14a,b$, which undergo aza-Wittig reaction to give 3-methoxycarbonyl[n](2,6)pyridinophanes $(15a,b)$. The ¹H NMR and ¹³C NMR spectra of 12a,b as well as $15a$,b correlate well, respectively, and are in good accordance with the proposed structures. A characteristic feature of the pyridinophanes $(15a,b)$ is the equivalence of geminal hydrogen at the henzylic positions, H-1' and H-n' (see the convenient numbering in structural formulae (15a,b) in Figure 1). These protons **A** α **1 A** α **C A** α **A** α **A** α **A** α **A** α **A** α **A** α **C A** α **A** α with the proposed structures. A characteristic feature of the pyridinophanes (15a,b) is the geminal hydrogen at the benzylic positions, H-1' and H-n' (see the convenient numbers)
formulae (15a,b) in Figure 1). These proto

appear as two triplets at 6 2.90 and *6* 3.27 for splitting pattern is indicative of a rapid flipping of the methylene chain of $15a,b$ at room $\qquad \qquad$ **15a. b** temperature.¹³⁻¹⁵

It was clarified that β -amino ester reacts with methyl propioiate **(9)** to give condensed cyclobutenc (cf. **13a,b)**, which undergoes ring enlargement reaction ²⁴ An attempted reaction of β -amino enone **(8a)** with **9** in benzene for 11 h, however, afforded **16a** (88%) and **17a** (6%). Furthermore, prolonged heating of **8a** with excess amount of 9 under similar conditions resulted in the formation of only 17a in 68% vield. Thus compound $(17a)$ seems to arise from the primary adduct $(16a)$. The structures of $16a$ and $17a$ were confirmed on the basis of the spectral characteristics. Regarding $16a$, the IR spectrum and the signal appearing at δ 10.18 (NH) in the ¹H NMR spectrum suggest hydrogen bond between the NH proton and carbonyl-oxygen, and thus, the *trans*-configuration of 2-cyclododecenone molety was confirmed for **16a**. Unlike in the case of $\mathbf{8a}$, the four methylene protons at C-4 and C-12 of $\mathbf{16a}$ appear at different chemical shifts: thus, inversion of the methylene chain is fixed at room temperature. This feature is ascribed to the bulky substituent of methyl acrylatc moiety

Scheme 4.

In summary, this work shows for the first time that easily accessible 3-triphenylphosphoranylideneamino-

2-cycloalkenones react with methyl propiolate to give novel 3-methoxycarbonyl $[n](2,6)$ pyridinophanes (n=9 and 8). which might be promisrng precursors of chiral nicotinamide, albeit **in** low yields.

EXPERIMENTAL

IR spectra were recorded on a Perkin-Elmer FT-IR1640 or a Horiba FT-710 spectrophotometer. UV-vis spectra were recorded on a Shimadzu UV-3101PC spectrophotometer. ${}^{1}H$ and ${}^{13}C$ NMR spectra were recorded on a JEOL JNM-GSX400 and a JEOL JNM-LA500 spectrometers using $CDCl₃$ as a solvent, and the chemical shifts are given relative to internal $Sime₄$ standard: J-values are given in Hz. MS spectra and HRMS spectra were run on a JEOL Automass 150 and a JEOL JMS-SX102A spectrometers, respectively. Mps were measured on a Yamato MP-21 apparatus and are uncorrected. All the reactions werc carried out under dry nitrogen atmosphere. 3-Chloro-2-cyclododecenone $(3a)$ and 3-chloro-2-cycloundecenone $(3b)$ were prepared according to the literature procedure. 17

Preparation of **3-triphenylphosphoranylideneamino-2-cycloalkenones** (6a,b) along with $[n](3,5)$ isoxazolophanes (5a,b). A solution of $3a,b$ (5 mmol), sodium azide (650 mg, 10 mmol), and lithium chlonde (106 mg, 2.5 mmol) in DMF (35 mL) was stirred at 0 \degree for 47 h. The reaction mixture was poured into ice-water, extracted with hexane-AcOEt (511), and the extract was dncd ovcr $Na₂SO₄$. After evaporation of the solvent, the residue was dissolved in benzene (10 mL) and a solution of triphenylphosphine (1.3 g, 5 mmol) in benzene (5 mL) was added and the mixture was stirred for 3 h at rt. To the reaction mixture, hexane (30 mL) was added and the precipitate was collected by filtration to give (6a) (571 mg, 25%) and (6b) (1.128 g, 51%). Then the filtrate was separated by column chromatography on silica gel (hexane-AcOEt : 9/1) to give $(5a)$ (550 mg, 57%) and $(5b)$ (80 mg, 9%).

For 3-triphenylphosphoranylideneamino-2-cyclododecenone (6a): colorless prisms; mp 191-192 °C (from benzene-hexane); ¹H NMR (400 MHz) δ 1.00-1.17 (6H, m), 1.17-1.40 (6H, m), 1.82 (2H, br s), 1.90 (2H, t, J=6.1), 3.03 (2H, br s), 5.07 (1H, d, J_{PH}=1.1), 7.48 (6H, ddd, J=7.7, 7.2, J_{PH}=2.8), 7.56 (3H, td, J=7.7, $J_{\text{PH}}=1.3$), 7.78 (6H, dd, J=7.2, $J_{\text{PH}}=11.9$); ¹³C NMR (100.5 MHz) δ 23.5, 23.7, 23.8, 25.1, 25.2, 26.0, 26.4, 32.2 (J_{pC}=21.3), 43.2, 110.7 (J_{pC}=13.2), 128.7 (J_{pC}=11.7), 129.0 $(J_{\text{PC}}=99.0)$, 132.1 $(J_{\text{PC}}=2.9)$, 132.8 $(J_{\text{PC}}=9.5)$, 170.4 $(J_{\text{PC}}=6.6)$, 200.5; IR (CHCl₃) 1625, 1490, 1440, 1360, 1330, 1110 cm⁻¹; MS (*m/z*) 455 (M⁺, 30%), 183 (100). Anal. Calcd for C₃₀H₃₄NOP: C, 79.09;H,7.52;N,3.07. **Found:C,78.96;H,7.41;N,3.03.**

For [9](3,5)isoxazolophane (5a): colorless oil; ¹H NMR spectrum is identical with the reported data.²² For 3-triphenylphosphoranylideneamino-2-cycloundecenone (6b). colorless prisms; mp 202-203 °C (from benzene-hexane); ¹H NMR (500 MHz) δ 0.99-1.13 (8H, m), 1.34-1.42 (2H, m), 1.75 (2H, br s), 1.83 (2H, t, J=6.1), 3.04 (2H, br s), 5.09 (1H, d, J_{PH}=1.6), 7.49 (6H, ddd, J=7.3, 7.0, J_{PH}=3.0), 7.56 (3H, tq, J=7.3, 1.4, J_{PH} =1.4), 7.79 (6H, ddd, J=7.0, 1.4, J_{PH} =12.1); ¹³C NMR (125.8 MHz) δ 23.1, 23.4, 24.8, 25.9, 26.3, 28.5, 32.6 (J_{pC}=20.7), 44.6, 112.3 (J_{pC}=13.4), 128.7 (J_{pC}=12.4), 129.0 $(J_{\text{PC}}=99.3)$, 132.2 $(J_{\text{PC}}=3.1)$, 132.8 $(J_{\text{PC}}=10.3)$, 169.8 $(J_{\text{PC}}=7.2)$, 202.1; IR (KBr) 1627, 1507, 1439, 1363, 1330, 1119 cm⁻¹; MS (m/z) 441 (M⁺, 94%), 261 (100). Anal. Calcd for C₂₉H₃₂NOP: C, 78.89; H, 7.30; N, 3.17. Found: C, 78.86; H, 7.31; N, 3.12. For $[8](3,5)$ isoxazolophane $(5b)$: colorless oil; ¹H NMR (500 MHz) δ 0.01 (1H, br s), 0.46 (1H, br s),

 $0.87-0.96$ (1H, m), $0.97-1.10$ (2H, m), $1.21-1.40$ (4H, m), $1.43-1.52$ (1H, m), $1.82-1.91$ (2H, m), 2.50 (IH, ddd, J=13.4, 4.6, 5l), 2.57 (lH, ddd, J=13.8, 11.7,4.9), 2.86(lH, dr, J=13.4,5.3), 2.89(lH, dt, J=13.8, 4.3), 6.06 (1H, s); ¹³C NMR (125.8 MHz) δ 24.3, 25.2, 26.1, 27.0, 27.1, 27.4, 28.2, 29.4, 106.6, 164.5, 172.6; IR (film) 2934, 2862, 1604, 1459, 1428 cm⁻¹; MS (m/z) 179 (M^+ , 4%), 111 (100). HRMS Calcd for $C_{11}H_{17}$ NO: 179.1310. Found: 179.1307.

Preparation of 3-amino-2-cyclododecenone (8a) and iminophosphorane (6a). A solution of 3a (1.29g, 6.0 mmol) and 28% aqueous NH_3 (7.20 g, 119 mmol) in dioxane (36 mL) was heated in an autoclave at 100 $\mathbb C$ for 12 h. The reaction mixture was then poured into water and extracted with ether and the ether extract was dried over $MgSO₄$. After evaporation of the solvent, the residue was crystallized from CCI₄ to give 8a (1.11 g, 95%): colorless prisms; mp 131-132 °C (from AcOEt); ¹H NMR (500 MHz) 6 1.20- 1.27 (2H, m), 1.27-1.34 (GH, m), 1.34-1.41 (2H, m), 1.60-1.66 (2H, m), 1.69 (2H, quint, J=6.5), 2.16 (2H, t, J=6.5), 2.30 (2H, t, J=6.5), 5.01 (1H, br s), 5.28 (1H, s), 9.55 (1H, br s); ¹³C NMR(125.8 MHz) δ 24.4, 24.5, 25.3, 25.4, 25.9, 26.0, 26.4, 36.3, 42.1, 96.6, 163.8, 200.4; IR (KBr) 3292, 3136, 1599, 1529 cm⁻¹; MS (m/z) 195 (M⁺, 96%), 110 (100). Anal. Calcd for C₁₂H₂₁NO: C, 73.80;H, 10.84;N,7.17. Found:C,73.69;H,10.76;N,7.15.

A solution of 8a (977 mg, 5 mmol), triphenylphosphine (1.31 g, 5 mmol), hexachloroethane (1.18 g, 5 mmol), and triethylamine $(2.02 \text{ g}, 20 \text{ mmol})$ in benzene (25 mL) was heated under reflux for 30 min. After the reaction mixture was filtered, the filtrate was concentrated and the residue was crystallized from benzene-hexane (1/2) to give $6a$ (2.00 g, 88%). The spectral data are identical with those of the authentic specimen.

Preparation of $[n](2,6)$ pyridinophanes (15a,b) and pyridines (12a,b). A solution of 6a,b (1 mmol) and **9** (252 mg, 3 mmol) in xylene (3 mL) was heated under reflux for 48 h. After the reaction mixture was concentrated *in vacuo,* the residue was separated by TLC on alumina (hexane-AcOEt : 1011) to give pyndines (12a) (28 mg, 11%) and (12b) (19 mg, 8%), along with $\ln(2,6)$ pyridinophanes (15a) (23 mg, 9%) and $(15b)$ (10 mg, 4%), respectively.

For $7,8,9,10,11,12,13,14$ -octahydro-2-methoxycyclododeca[b]pyridin-5(6H)-one $(12a)$: colorless oil; ¹H NMR (400 MHz) δ 0.92-1.02 (2H, m), 1.12-1.34 (6H, m), 1.43 (2H, quint, J=7.0), 1.70-1.85 (4H, m), 2.89 (2H, t, J=6.2), 2.98 (2H, t, J=6.2), 3.95 (3H, s), 6.55 (1H, d, J=8.6), 7.65 (1H, d, J=8.6); ^{13}C NMR (100.5 MHz) δ 22.9, 23.1, 23.3, 23.6 (two carbons overlapping), 25.7, 27.7, 30.7, 39.9, 53.5, 107.0, 130.3, 137.4, 160.0, 164.0, 205.0; IR (CHCl₃) 3017, 2934, 2865, 1711, 1588, 1364, 1303 cm⁻¹; MS (m/z) 261 (M⁺, 17%), 55 (100). HRMS Calcd for C₁₆H₂₃NO₂: 261.1729. Found: 261.1730.

For 3-methoxycarbonyl[9](2,6)pyridinophane $(15a)$: colorless oil; ¹H NMR (400 MHz) δ 1.00-1.12 (4H, m), 1.17-1.33 (6H, m), 1.87 (2H, quint, J=6.1), 1.90 (2H, quint, J=6.1), 2.90 (2H, t, J=6.1), 3.27 (2H, t, J=6.1), 3.90 (3H, s), 7.02 (1H, d, J=8.0), 8.07 (1H, d, J=8.0); ¹³C NMR (100.5 MHz) δ 25.0, 25.1, 25.3, 25.4, 25.5, 25.9, 26.2, 35.7, 37.1, 52.0, 120.3, 122.7, 138.7, 162.5, 164.7, 167.3; IR(CHCl₃) 3017, 2934, 2858, 1710, 1588, 1434, 1363, 1278 cm⁻¹; UV(MeCN) (log ϵ) 232 (3.96), 270 (3.65) nm; MS (m/z) 261 (M⁺, 58%), 176 (100). HRMS Calcd for C₁₆H₂₃NO₂: 261.1729. Found: 261.1710. For 5H-6,7,8,9,10,11,12,13-octahydro-2-methoxycycloundeca[b]pyridin-5-one $(12b)$: colorless oil; ¹H NMR (SO0 MHz) *6* 1.05-1.12 (2H. m), 1.12-1.21 (4H. m), 1.38-1.40 (2H, m), 1.79 (2H, qulnt, J=6.3), 1.79 (2H, quint, J=6.1), 2.74-2.79 (2H, m), 3.08 (2H, t, J=6.3), 3.96 (3H, s), 6.56 (1H, d, J=8.5), 7.65 (lH, d, 1~8.5); 13c NMR (125.8 MHz) *b* 23.2, 24.1. 25.0, 25.3, 26.9, 27.6, 31.2, 41.5, 53.5, 107.0, 130.2, 138.0, 160.9, 164.3, 206.8; IR (CCI_A) 2934, 2865, 1683, 1586, 1564, 1559, 1474, 1304, 1239 cm⁻¹; MS (*m/z*) 247 (M⁺, 89%), 162 (100). HRMS Calcd for C₁₅H₂₁NO₂: 247.1572. Found: 247.1584.

For 3-(methoxycarbonyl)[8](2,6)pyridinophane $(15b)$: colorless oil; ¹H NMR (500 MHz) δ 0.94 (2H, quint, J=6.4), 1.02 (2H, quint, J=6.4), 1.45-1.55 (4H, m), 1.87 (2H, quint, J=6.4), 1.89 (2H, quint, 1-6.4). 2.89 (2H, **1,** J=6.4),3.28 (2H, 1,1=6.4),3.89 (3H, s), 6.98 (IH, d, J=7.9), 8.08(lH,d, J=7.9);

 13 C NMR (125.8 MHz) δ 23.0, 23.6, 24.3, 24.7 (two carbons overlapping), 25.0, 34.4, 35.4, 51.9, 120.1, 122.3, 138.9, 161.8, 163.8, 167.2; IR (CC14) 2950, 2856, 1729, 1588, 1562, 1458, 1434, 1272 em-'; UV (MeCN) (log **E)** 231 (3.99), 271 (3.65) nm; MS (mlz) 247 (M', 98%). 204 (100). HRMS Calcd for $C_15H_21NO_2$: 247.1572. Found: 247.1560.

Reaction of B-amino enone (8a) with methyl propiolate (9). A solution of 8a (98 mg, 0.5 mol) and 9 (63 mg, 0.75 mmol) in benzene (1.5 mL) was heated at 140 °C in an autoclave for 11 h. After cvaporation of the solvent, the residue was punfied by TLC on silica gel (hexane-AcOEt : 2/1) to give 16a (123 mg, 88%) and 17a (10 mg, 6%).

A solution of 8a (78 mg, 0.4 mol) and 9 (102 mg, 1.2 mmol) in dioxane (1.2 mL) was heated at 140 °C in an autoclave for 44 h. Workup similar to the described above afforded $17a$ (94 mg, 68%).

For 3-amino-2-(2-methoxycarbonylyinyl)-2-cyclododecenone (16a): colorless prisms; mp 153-154 °C (irom benzene); 'H NMR (500 MHz) *b* 1.02-1.46 (IOH, m), 1.53-163 (lH, m),1.63-1.76 (ZH, m), 1.87-1.97 (2H, m), 2.20 (1H, ddd, J=13.7, 9.2, 5.0), 3.14-3.22 (1H, m), 3.26 (1H, ddd, J=13.7, 7.3, 4.5). 3.75 (3t1, s), 5.50 (lH, br s), 5.66 (lH, d, J=15.7), 7.88 (IH, d, J=15.7), 10.18 (IH, **br** s); 13C NMR (125.8 NHz) *h* 24.1, 24.3, 24.6, 25.1. 25.5, 25.9, 26.2, 35.3, 41.5, 51.3, 106.7, 111.1, 142.2, 166.7, 168.8, 203.5; IR (KBr) 3337, 31x8, 2941, 2856, 1684, 1616, 1582, 1463, 1434, 1337, 1266, 1209, 1195 cm⁻¹; MS (*m/z*) 279 (M⁺, 68%), 220 (100). Anal. Calcd for C₁₆H₂₅NO₃: C, 68.79; H, 9.02; N, 5.01. Found: C, 68.60; H, 9.07; N, 4.86.

For 7,8,9,10,11,12,13,14-octahydro-1,3-bis(methoxycarbonyl)benzocyclododecen-5(6H)-onc (17a): colorless prisms; mp 94-95 °C (from McOH); ¹H NMR (500 MHz) δ 1.25-1.45 (8H, m), 1.51-1.63 (4H, m), 1.77-1.87 (2H, m), 3.04 (2H, t, J=6.5), 3.15 (2H, t, J=7.4), 3.93 (3H, s), 3.94 (3H, s), 8.08 (1H, d, J=1.8), 8.46 (1H, d, J=1.8); ¹³C NMR (125.8 MHz) δ 22.1, 23.1, 23.5, 25.0, 26.0, 26.5, 27.0, 30.3, 41.2, 52.4, 52.5, 127.5, 129.6, 132.6, 132.7, 144.0, 147.2, 165.6, 167.4, 206.2; IR (KBr) 2925, 2857, 1725, 1701, 1468, 1432, 1321, 1223, 1206, 1192 cm⁻¹; MS (m/z) 346 (M⁺, 83%), 261 (100). Anal. Calcd for $C_{20}H_{26}O_5$: C, 69.34; H, 7.57. Found: C, 69.08; H, 7.39.

ACKNOWLEDGMENT

Financial support from a Waseda University Grant for a Special Research Project is gratefully acknowledged. The authors also thank Materials Characterization Central Laboratory, Waseda University, for technical assistance with spectral data and elemental analyses.

REFERENCES

- 1. The older literature has been reviewed: P. M. Keehn and S. M. Rosenfeld, *Cycloplranes,* Academic Press, New York, 1983.
- 2. Review on small cyclophanes: V V Kane, W. H. De Wolf, and F. Bickelhaupt, *Terrohedron,* 1994, 5 **0,** 4575.
- 3. Y Tobe, *Topics in Currenl Chemistry,* 1994, **172,** 1
- 4. G. J. Bodwell, *Angew. Chem., Int. Ed. Engl.*, 1996, 35, 2085.
- 5. T. Kobayashi and M. Nitta, *Bull. Chem. Soc. Jpn.*, 1985, 58, 3099.
- 6. (a) H. Gerlach and E. Huber, *Helv. Chirn. Acla,* 1968, 5 *1, 3099;* (b) N. Kanomata and T. Nakata, *Arrgew Cl~ern., Inr. Ed.* U~gl., 1997, **3** *6,* 1207.
- 7. D. Dhanakand C. B. Reese, *J. Chem. Soc., Perkirr Trans. I,* 1987,2829.
- 8. A. Marchesini, S. Bradamante, R. Fusco, and G. Pagani, *Tetrahedron Lett.*, 1971, 671; T. Oikawa, N. Kanomata, and M. Tada, *J. Org. Cllern.,* 1993, *5 8,* 2046.
- 9. K. Biemann, G. Buchi, and B. H. Walker, *J. Am. Chem. Soc.,* 1957, **79,** 5558; S. Fujita and H. Nozakl, *Brrll. Chem. Soc. Jprr.,* 1971, *44,* 2827; K. Tamao, *S.* Kodama, T Nakatsuka, Y. Kiso, and M. Kumada, *J. Am Chon. Soc.,* 1975,9 **7,** 4405.
- 10. A. T. Balaban, *Tetrahedron Lelf.,* 1968,4643; *idern, ibid.,* 1978, 5055.
- l **I.** W. E. Parham, R. W Davenport, and J. B. Blasottl, *Terrohedron Letl.,* 1969, 557; W E. Parham, K B. Sloan, and 1. B. Biasotti, *Tetrahedron,* 1971, **27,** 5767; W. **E.** Parham, D. C. Egberg, and S. *S* Salgar, *J. Org. Chern.,* 1972, **37,** 3248.
- 12 W. E. Parham; R. W. Davenport, and J. B. Blasotti, *J. Org. Chern.,* 1970,35, 3775.
- 13. N. Kanomata and M. Nitta, *Tetrahedron Lett.*, 1988, **29**, 5957; N. Kanomata and M. Nitta, *J. Chem.* Soc., *Perkirr Tram.* 1, 1990, *11* 19.
- 14. H. Miyabara, T. Tdkayasu, and M. Nitta, *Heferocycles,* 1999, 5 *1,* 983.
- 15. M. Nitta,T Akic,and Y hno, J. *Org. Chern.,* 1994.59, 1309.
- 16. For recent reuews: (a) Y G. Gololobov and L. F. Kasukhin, *Terrahedron,* 191, 48, 1353; (b) **S** Eguchi, Y. Matsushita, and K. Yamashita, *Org. Prep. Proced. Int.*, 1992, 24, 209; (c) M. Nitta, *Reviews on Heteroatom Chem., 1993, 9, 87; (d) P. Molina and M. J. Vilaplana, Synthesis, 1994,*

1197; (e) H. Wamhofl, G. Richardt, and S. Stolben, *Adv Heteroc),cl. Chern.,* 1995,64, 159.

- 17. K. Schank and B. Eistert, *Chem. Ber.*, 1966, 99, 1414.
- 18. Y G. Gololobo\,, I. N. Zhmurova, and L. F. Kasukhin, *Tetrahedron,* 1981, 37, 437; and references cited therein.
- 19. U. Turck and H. Behringer, *Chern. Brr,* 1965, *98,* 3020; G. Litkei, T Mester, T. Patonay, and R. Bogndr, *Liebigs Anrr. Chrm.,* 1979, 174.
- 20. S. Fujita, T Kawagutl, and H. Nozakl, *Bi~ll. Chern. Soc. Jprr.,* 1970, 43, 2596.
- 21. M. Regitz and I. Ruter, *Chern. Ber.,* 1969, **102,** 3877.
- 22. S. Bradamante, R. Fusco, A. Marchesini, and G. Pagani, *Tetrahedron Lett.*, 1970, 11.
- 23. H. Yamamoto, T Kobayashi, and M. Nitta, *Hererocycles,* 1998,48, 1903.
- 24. H. Wamhoff, Adv. Heterocycl. Chem., 1985, 38, 299; and references therein.

Received, 12th July, 1999