A LUPIN ALKALOID, (-)-TENUAMINE (NORLUSITANINE), FROM MAACKIA TENUIFOLIA

Yong-Hong Wang^a, Kimio Higashiyama^a, Hajime Kubo^a, Jia-Shi Li^b, and Shigeru Ohmiya^{*a}

^aInstitute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, Japan
^bBeijing University of Traditional Chinese Medicine, 11, Beisan Huan Dong Ave, Beijing 100029, China
E-mail: ohmiya@hoshi.ac.jp

Abstract- A lupin alkaloid, (-)-tenuamine, was isolated from the stem parts of *Maackia tenuifolia* together with eight known alkaloids. The structure of (-)-tenuamine was determined to be (-)-acetylaminomethylideneindolizidine by comparison of its chemical and spectroscopic data with those of (-)-lusitanine, (+)-tashiromine and indolizidine.

In the course of our phytochemical study on *Maackia* (Leguminosae) plants, we have reported maackiamine,¹ tashiromine,² and camoensidine³ which all contain a pyrrolizidine or indolizidine ring. It is interesting from the perspectives of both chemotaxonomy and biosynthesis that *Maackia* species accumulate unusual lupin alkaloids containing a pyrrolizidine or indolizidine ring together with common lupin alkaloids with a piperidine or quinolizidine ring (Figure 1). In the present paper, we report the isolation and structure determination of (–)-tenuamine (1), a new lupin alkaloid with an indolizidine ring, from the stems of *Maackia tenuifolia*, together with (–)-lusitanine⁴ which contains a quinolizidine ring, and seven other known alkaloids.

From the air-dried stems of *Maackia tenuifolia*, a new alkaloid (1) was isolated as colorless needles, mp 136~138 °C , $[\alpha]_D^{23}$ -4.5° (*c* 0.12, EtOH) in a yield of 1.2% of the total base by repeated column chromatography. We also isolated eight known lupin alkaloids, (–)-anagyrine, (–)-*N*-methylcytisine, (–)-*N*-formylcytisine, (–)-cytisine (main base), (–)-epibatifoline, (–)-lusitanine, (+)-epilupinine and (–)-12,12'- methylenedicytisine. The known alkaloids were identified by direct comparison with authentic samples (mp, $[\alpha]_D$, TLC, IR, NMR and MS).⁵

The chromatographic behavior of alkaloid (1) on a silica gel column was very similar to that of lusitanine (2). The IR spectrum of 1 also showed a similar pattern to that of 2, with an amide carbonyl band at 1660 cm⁻¹ and a N-H band at 3330 cm⁻¹. The molecular formula of 1 was determined to be $C_{11}H_{18}N_2O$ by the ¹³C NMR spectrum (Table 1) and HREIMS spectrometry at m/z 194,1409 (M⁺, calcd for 194,1419). In the

EIMS spectrum of 1. M⁺ at *m/z* (rel. int.) 194 (55) and fragment ions at *m/z* 151 (M⁺ – COCH₃, 40), 136 (M⁺ – NHCOCH₃, 55), 122 (100) and 96 (38) were one methylene less than the corresponding ions of 2 at *m/z* 208 (M⁺, C₁₂H₂₀N₂O, 70), 166 (90), 165 (35), 150 (30), 136 (100) and 110 (82), respectively. These suggested that 1 was a congener of lusitanine. The assignments in the ¹H NMR and ¹³C NMR spectra were based on an analysis of ¹³C – ¹H and ¹H – ¹H COSY. The ¹H NMR spectrum of 1 also suggested the presence of an acetylaminomethylidene group based on signals of an olefinic methine proton at δ 6.62 (1H, d, *J*=10.4 Hz), which was coupled with 11-NH at δ 7.65 (1H, d, *J*=10.4 Hz), and also on the signal of the methyl of an acetylamine group at δ 2.04 (3H, s). In the ¹³C NMR spectrum, the signals of C-2 (δ 52.6, t), C-9 (δ 54.4, t) and C-6 (δ 65.8, d) adjacent to the nitrogen (N-1) coincided with those of indolizidine (5) and tashiromine (3), but were different from those of quinolizidine (6) and epilupinine (4). The substituent effects of the acetylaminomethylidene group in the ¹³C NMR signals at C-4 (+1.0), C-6 (+1.7) and C-7 (-4.0) of 1, compared to those of an indolizidine ring, were also similar to those of 2 (Table 1).

С	1	3	5	1–5	С	2	4	6	2–6
2	52.6	52.7	52.7	-0.1	2	57.0	57.0	56.4	+0.6
3	25.5	25.2	25.1	+0.4	3	24.2	24.9	25.6	-1.4
4	25.2	29.2	24.2	+1.0	4	27.8	29.5	24.4	+3.4
5	120.2	44.7	30.7	+89.5	5	121.6	43.8	33.2	+88.4
6	65.8	66.4	64.1	+1.7	6	64.2	64.4	62.9	+1.3
7	26.1	27.6	30.1	-4.0	7	26.4	28.3	33.2	-6.8
8	20.3	20.3	20.3	0.0	8	25.1	24.6	24.4	+0.7
					9	25.4	25.5	25.6	0.2
9	54.4	54.2	53.9	+0.5	10	56.4	56.6	56.4	0.0
10	114.7	65.9			11	116.2	64.1		
12	167.7				13	167.9			
13	23.2				14	23.3			

Table 1. 13 C NMR data of 1, 2, 3, 4, indolizidine (5) and quinolizidine (6) in CDCl₃

The above data suggested the presence of an indolizidine ring in the structure of 1, instead of a quinolizidine ring in 2, and an acetylaminomethylidene group at the 5-position. Accordingly, the structure of 1 was presumed to be 5-acetylaminomethylideneindolizidine. As far as we know, this is the first isolation of the compound which has an indolizidine ring in its structure, corresponding to lusitanine (2) with a quinolizidine ring. Thus, we propose 1 to be named tenuamine.

It is interesting that *M. tenuifolia* accumulates the two alkaloids, tenuamine and lusitanine, which contain an indolizidine ring and a quinolizidine ring, respectively. The unusual lupin alkaloids that contain a pyrrolizidine or indolizidine ring have so far been isolated from *Maackia* plants are shown in Figure 1, together with common lupin alkaloids with a piperidine or quinolizidine ring. It can be speculated that

Maackia species can utilize ornithine instead of lysine as a precursor amino acid for alkaloids or can transform the piperidine moiety to the corresponding pyrrolidine group.

Figure 1. Two typical lupin alkaloids that coexist in the Maackia plants

EXPERIMENTAL

General Experimental Procedures. Melting points were determined on Yanagimoto micro melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO DIP-1000 polarimeter. IR spectra were measured with a JASCO FT/IR-200 Fourier Transform Infrared Spectrophotometer. The high and low resolution MS were measured at 70 eV using direct inlet system with a JEOL JMS-600W instruments. NMR spectra were recorded with a 500 MHz JEOL NMR instruments using TMS as an internal standard and CDCl₃ as solvent. TLC was conducted on precoated silica gel plates (Merck 60 F_{254}).

Extraction and Isolation. The stems of *M. tenuifolia* were collected in Zhejiang Province, China, September, 1998, and identified by Director of Jiangxi Jioujiang Forest and Plant Research, Ce-ming Tan. A voucher specimen (No. 981013) is deposited in the Herbarium of the same Forest and Plant Research. The air-dried stem parts (1.6 kg) were extracted with 75% MeOH (x 3) at room temperature for 24 h. The combined extracts were concentrated and acidified with 10% HCl to pH 2. The acid phase was washed with

Et₂O (x 3), basified with 25% NH₂OH to pH 11 and extracted with CH₂Cl₂. The aqueous phase was saturated with K₃CO₃ and extracted with CH₃Cl₃ repeatedly until it became negative to Dragendorff's reagent. The all CH₂Cl₂ extracts were combined, dried over Na₂SO₂ and evaporated to dryness in vacuo. The crude alkaloid was obtained as a pale brown oil in a 0.28% yield (4.5 g) of the dry stem parts and subjected to silica gel column chromatography (230-400 mesh, 400 g) with Et,O-CH₂Cl₂-MeOH-25%NH.OH (2.5:2.5:1:0.1), monitoring with TLC to give 11 fractions. Separation of frs 2, 3 (0.5 g) by silica gel column with Et₂O-CH₂Cl₂-MeOH-25%NH₄OH (10:10:1:0.1) yield (-)anagyrine { $\left[\alpha\right]_{0}^{23}$ -163° (c 0.28, EtOH), 0.4 g} and (-)-N-methylcytisine (80 mg). Fr 4 (0.4 g) yielded (-)-N-methylcytisine {mp $135 \sim 136^{\circ}$ C, $[\alpha]_{p}^{23} = 216^{\circ}$ (c 0.3, EtOH), 0.15 g} and (-)-N-formylcytisine {mp 169~170^{\circ}C}, $[\alpha]_{p}^{23} = 226^{\circ}$ (c 0.16, EtOH), 0.2 g}. Frs 5~7 (1.5 g) were subjected to silica gel column chromatography with CH,Cl₂-MeOH (4:1) to give (-)-epibatifoline {mp 207~208 °C, $[\alpha]_D^{23}$ -132° (c 0.35, EtOH), 0.4 g}, (-)-cytisine {mp 153~155 °C, $[\alpha]_{0}^{23}$ -110° (c 0.52, EtOH), about 1 g} and 2 (30 mg). In those frs. the dimer of cytisine, 12,12'-methylenedicytisine, was confirmed by ¹H NMR spectrum, but decomposed into cytisine on the isolation process. Fr 8 (0.6 g) contains (-)-cytisine and 2. From frs 9,10 (0.5 g), 2 {mp 186~187 °C, $[\alpha]_{D}^{23}$ -6.0° (c 0.3, EtOH), 0.35 g} and (+)-epilupinine {mp 75~76 °C, $[\alpha]_{D}^{23}$ +16.8° (c 0.13, EtOH), 55 mg} were separated. Fr 11 (0.2 g) was purified by silica gel column chromatography (20 g) using Et₂O-CH₂Cl₂-MeOH-25%NH₂OH (3:1:1:0.1) to yield 1 (57 mg) and 2 (40 mg).

Tenuamine (1). Colorless needles, mp 136~138 °C (CHCl₃), $[\alpha]_D^{23}$ -4.5° (*c* 0.12, EtOH), IR (KBr): 3330, 1660 cm⁻¹(-CONH-). HRMS *m/z* 194.1409 [M]⁺ (calcd for C₁₁H₁₈N₂O, 194.1419). MS *m/z* (% rel. int.): 194 [M⁺] (55), 179 (10), 159 (60), 151 (40), 136 (55), 122 (100), 96 (38). ¹H NMR (CDCl₃, 500 MHz): δ 7.65 (1H, d, *J*=10.4 Hz, 11-NH), 6.62 (1H, d, *J*=10.4 Hz, 10-H), 3.14 (2H, m, 2, 9-Heq), 2.56 (1H, dd, *J*=14.9, 4.2 Hz, 4-H), 2.43 (1H, m, 6-H), 2.22 (1H, dd, *J*=11.6, 8.5 Hz, 9-Hax), 2.16 (1H, dt, *J*=11.7, 2.8 Hz, 2-Hax), 2.04 (3H, s, 13-CH₃). ¹³C NMR data: see Table 1.

REFERENCES

- K. Saito, T. Yoshino, T. Sekine, S. Ohmiya, H. Otomasu, and I. Murakoshi, *Phytochemistry*, 1989, 28, 2533.
- 2. S. Ohmiya, H. Kubo, H. Otomasu, K. Saito, and I. Murakoshi, Heterocycles, 1990, 30, 537.
- 3. S. Ohmiya, H. Kubo, Y. Nakaaze, K. Saito, H. Otomasu, and I. Murakoshi, *Chem. Pharm. Bull.*, 1991, **39**, 1123.
- K. Saito, T. Yoshino, S. Tsai, S. Ohmiya, H. Kubo, H. Otomasu, and I. Murakoshi, *Chem. Pharm.* Bull., 1987. 35, 1308.
- S. Ohmiya, K. Saito, and I. Murakoshi, 'The Alkaloids 'Vol. 47, ed. by Academic Press, inc., New York, 1995, pp. 4–43.