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Absnact - A novel methodology for introducing chlorine or bromine into the 

5-position of tryptamines was found through 1-hydroxytryptamines. The chemistry 

was applied to the syntheses of (?)-5-chloro-, -5-bromotryptophan derivatives, and 

(2)-bromochelonin B. 

Many biologically active tryptamines are reported such as 5-bromotryptophan2 (I), bromochelonin B3 (2), 
alternatamide c4 (3), cyclocinamide A~ and so on, containing halogen at the 5-position of indole nucleus 

(Figure I ) . ~  Their total syntheses would require suitably halogenated indolic building blocks. We have 

thusfar disclosed unprecedented acid promoted nucleophilic substitution reactions of 1-hydroxyindoles7 and 

succeeded in preparing 5-hydroxy- and 5-methoxytryptamines (I and n) as summarized in Table I . ~  Now, 

we wish to describe that the reaction of 1-hydroxytryptamines with hydrogen halides is a suitable synthetic 

methodology for 5-chloro- and 5-bromotryptamines (43b  and5a,b), and its applications to the syntheses of 

(?)-5-chloro- and 4-bromotryptophan derivatives (6qb  and 7), and (?)-2. 

Figure 1 

According to our m e t h ~ d , ~  1-hydroxy- (Sa,e and 9a), 1-methoxytryptamines (8b,f and 9b), 1-hydroxy- (9a 

and lea), and 1-methoxytryptophan derivatives (9b and lob) were prepared as substrates. 1-(2-Methoxy- 

carbony1)ethoxy- (8c) and 1-(2-methoxycarbonyl-1-methy1)ethoxytrype (Sd) were prepared in 69 and 

72% yields, respectively, using conjugate addition reaction of Nb-acety-1-hydroxytryptamine (Sa) to 

methyl acrylate and methyl 3-methylacrylate in the presence of 4-N,N-dimethylaminopyridine. 

The reactions of 8 ~ f  with HCI were examined and the results are summarizedd in Table 2. As can be seen 

from the Table, the 1-substituent is found to be an important factor in determining the yield of  5-chloro- 

tryptamines (43b). As the substituent changes from hydroxy to methoxy, 1-(2-methoxycarbonyl)ethoxy, 



2816 HETEROCYCLES, Vol 51. No. 12, 1999 

and I-(2-methoxycarbonyl-I-methy1)ethoxy group (Entries 1-4), the yield of 4a increased dramatically 

and yield 73% was attained under the reaction conditions described in the Entry 4. It is worthy to note that 

under similar reaction conditions Nb-substituent of the side chain at the 3-position functions as the other 

increasing factor in the yield of 4. Thus, comparing the results in the Entries 5 and 7, much more quantity 

of 4b having Nh-methoxycarbonyl group was produced than 4a having Nb-acetyl group. As a result, we 

can now achieve regioselective chlorination at the 5-position in 80% yield by reacting HCl with l-hydroxy- 

tryptamine (80 which has both 1-methoxy and Nb-methoxycarhonyl group (Entry 7). 

Table 1 

Acid 

OH H 
I I1 

CHO 

R' R2 R3 Acid 
Yield (%) of 

Entry 
I I1 

1 Ac H Me 20% BF3.MeOH 80 0 

2 COOMe 85 0 

3 Ac COOMe H2S04-MeOH 71 0 

4 H 85% HCOOH 67 12 

Table 2 

R'HN R'HN RIHN 

@JNH" It * 

OR' 
36% HCl: Solvent 

a +  + & +  8 

H H CI H 
8 (l:l ,  vlv) 4 11 12 

Reaction Conditions Yield (%) of 
Entry Substrate R' R' Solvent Time (h) 4 11 12 8 

1 a AC H MeOH 3.5 a ) ~ '  = A C  17 20 0 0 

2 b 11 Me 11 7.5 11 5 5 0 4 8  

3 C 11 CH2CH2COOMe 11 17 !I 5 9 0 0 6  

4 d 11 CH(Me)CH2COOMe 11 120 11 7 3 0 0 6  

5 b 11 Me f-BuOH 6 I1  54 0 5 10 

6 e COOMe H 11 116 b) R' = 4 8 8 7 0  

7 f 11 Me 11 116 11 80 0 0 0 
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Table 3 

2 47% HBr: Solvent H H H H 

8 OR (1~1, vlv) 5 13 14 11 15 
Reaction Conditions Yield (%) of 

Entry Substrate ~1 R2 Solvent Temp. Time Product 
("C) 01) 5 13 14 11 15 

Ac H MeCN 

11 CH2CH2COOMe MeOH 

II CH(Me)CH2COOMe II 

COOMe H t-BuOH 

11 II DMF 

11 11 MeCN 

11 11 HCONH2 

11 II HCONHMe 

II Me HCONH2 

11 H MeN02 * 

b) RI = 
COOMe 

* BBr3 (1.1 mol eq) was used as a brominating reagent. 

Table 4 
MeOOC NHAc 

-xQriJR: QJyR1* I *  9 
Acid : Solvent N X 

0R2 (I: 1, vlv) 
H X H H H 

9 6 16 17 18 
R' = (?)-CH(NHAc)COOMe 

Reaction Conditions Yield (%) of 
Entry Substrate R2 Acid Solvent Temp. Time Product 16 

("C) (min) 

1 a H 36% HCI MeCN* 80 5 a ) X = C 1  19 8 13 0 8 

2 b Me 11 t-BuOH rt 420 II 52 0 7 0 11 

3 a H 47%HBr MeCN 80 5 b ) X = B r  13 2 20 8 0 

4 b Me 11 MeCN 80 10 11 20 5 10 0 0 

* Acid and solvent were used in the ratio of 1:2 (vlv). 
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Table 5 

47% HBr : - Solvent .wR1 H , wR1 Br H + wR' H 
0R2 (1:2, viv) 10 7 19 20 

Reaction Conditions Yield (%) of 
Entry Substrate R' 

Solvent Time (min) 7 19 20 Other Product 

3 b Me MeCN 15 15 13 17 Unknown Product 

Table 3 shows typical results obtained from the reactions of 83c-f with HBr. Even in these reactions, both 

1-substituent and Nb-substituent play significant roles on the yield of 5-bromotryptamines (54b) (Entries 1 

-3, 6, 7, and 9). The solvent was found to be another important factor. As the solvent polarity (E) 

increases from ten-BuOH (11) to DMF (37), MeCN (38), HCONH, ( I l l ) ,  and HCONHMe (182) (Entries 

4-8), the yield of Sb has a tendency to increase, though it is not proportional. Considering the balance of 

thesc factors, Sa and Sb are now available in 45-51% yield by reacting 1-hydroxytryptamines (830  with 

HBr under the reaction wnditions in Entries 2 and 9. I t  is interesting to note that when BBr3 was employed 

as a brominating reagent (Entry lo), the production of 7-bromotryptamine (13b) was raised to 23% yield 

though the major product was 2-oxindole (14b). 

The similar substituent effects as described above were observed in the reactions of (?)-1-hydroxytrypto- 

phan derivatives ( 9 3 b  and 10qb)  (Tables 4 and 5). Consequently, (?)-Nb-acetyl-5-chlorotryptophan 

methyl ester (6a) and (2)-5-bromo-Nb-methoxycarbonyltryptophan methyl amide (7) were obtained in the 

respective yields of 52 and 50% by reacting 9b  or l o b  with HCI or HBr under reaction conditions described 

in Entries 2 in Tables 4 and 5, respectively. Establishment of the optimum reaction wnditions and further 

examinations of Nb-substituent effect are now in progress. 

The structures of 5- and 7-halogenated indoles were unequivocally confirmed as usual.7 Treatments of 5- 

halogenated tryptamines and tryptophans with NaH in DMF, followed by acetylation with AcCl provided 

the corresponding 1-acetyl derivatives (21, Scheme 1). Utilizing the same reaction sequence, 7-halogenated 

tryptamines and tryptophans afforded the correspondmg 1-acetyl derivatives (22). In the former com- 

pounds, comparisons of each set of NMR spectra of the starting material and its 1-acetyl derivative clearly 

show that the C-7 protons (d, J = 7-8 Hz) are deshielded by 1 ppm, proving that these wmpounds have a 

substituent at the 5-position of indole nucleus. In cases of the latter compounds, however, deshielded 

protons are not observed comparing each set of NMR spectra. These facts demonstrate that the latter 

compounds are 7-substituted tryptamines. Structures of 2-oxindoles8 (143b) and 2-halogenated indoles 

(lSb, l a b )  were determined by their spectral data. 
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Structure of 5b was further confumed by employing alternative synthesis as shown in Scheme 1. Treat- 

ment of 2,3-dihydro-Nb-methoxycarbonyltryptamine (23a), prepared from the corresponding tryptamine 

(llb),  with bromine-AcOH afforded 5-bromo- (23b) and 5,7-dibromo derivatives (23c) in 61 and 31% 

yields, respectively. Salcomine catalyzed oxidation of 23b with molecular oxygen provided 89% yield of 

5b. Thus, 5b is available by twodifferent routes in almost the same overall yield from l l b .  

With 5b in hand, we set out the synthesis of (2)-bromochelonine B (2). AUcaline hydrolysis of 5b with 5% 

N ~ O H - M ~ O H  at reflux afforded 5-brornotryptamine (24) in 88% yield. Subsequent reaction of 24 with 

3-hromo-4methoxystyrene oxide (25) in the presence of DBU in refluxing tea-BuOH provided (+)-2 and 

its (?)-isomer (26) in 28 and 14 % yields, respectively. Compound (25) was readily prepared from bromo- 

anisole (27) by the following three steps: 1) Friedel-Crafts chloroacetylation of 27 in 53% yield, 2) reduc- 

tion of the resultant 28 with NaBH4 to chlorohydrin (29) in 98% yield, 3) epoxide formation with 

tert-BuOK in 47% yield. 

Scheme 1 

MeOOCHN H2N , OMe 

Br& - Br& - 2 + Brm'pBr ' I N I HO 

H H 0 H 

5b 24 26 

1 
MeOOCHN MeOOCHN R3Q-3 - & - 

H 
OMe 

R4 H 

23 l l b  29 28 
a) R3 = F14 = H 

b)  F13 = Br; R4 = H 

C) F13 = R4 = Br .gR2 R' = Ac or COOMe gR2 I 
R~ = H, COOMe, a: 

"O*Me or CONHMe 'o*M~ 
21 X = CI or Br 22 27 

In conclusion, regioselective introduction of either chlorine, bromine, hydroxy,7 or methoxy7 group onto 

the 5-position of tryptamines is now possible by the following sequence of reactions: 1) conversion of 

tryptamine to 2,3-dihydroindole, 2) transformation to 1-hydroxyindole, and 3) subsequent reaction with 

acids. The most impressive fact through these studies is that the 1-hydroxyindoles having C Z - N b  side 

chain at the 3-position can only undergo the acid promoted nucleophiiic substitution reactions effectively, 
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otherwise other types of reactions such as pyrrolo[2,3-blindole formation,7a diierizati0n,7~ kabutane 

formation,7d and so on,7 take place depending on the structures of substrates and reaction conditions. The 

reason why is an interesting subject for further inve~tigation.~ Furthermore, our results thusfar obtained7 

and the present study suggest that use of acids for the isolation of indolic alkaloids and peptides should be 

done very carefully because if 1-hydroxy or 1-methoxy substituted tryptamines or tryptophans were 

involved as a component, they would be isolated as 5-substituted indole derivatives resulted by acid 

promoted nucleophilic substitution reactions. 
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tion reaction. In the cases of indoles lacking Nb nitrogen, preferential proton addition occurs at the 

3-position directing toward pyrrolo[2,3-blindole formation, dimerization, kabutane formation, etc. 7 
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