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Abstract -6-Hydroxyaminopurine (21, 6-nitrosopurine (3), 6-nitro- 

purine (4), adenine 1-oxide (51, adenine 3-oxide (6), adenine 7-oxide 

(73, and 9-hydroxyadenine (8) may be accepted as members of the N X -  
oxygenated adenine family. The chemistry, physicochemical proper- 

ties, and biological activities of these Nx-oxygenated adenines are 

reviewed with 214 reference citations. 
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I. INTRODUCTION 

Adenine (1) is a biologically significant fundamental heterocycle, which has a bicyclic 

ring system consisting of a 4-aminopyrimidine and an imidazole ring in juxtaposition.1 

Because it carries one exocyclic and four endocyclic nitrogen atoms a t  the N6-, I-, 3-, 7- 

and 9-positions, seven basic kinds of N-oxygenated derivative are possible in principle, 

regardless of their tautomeric form problems. 

All these Nr-oxygenated adenines have been known by chemical synthesis in the  form of 

6-hydroxyaminopurine (2), 6-nitrosopurine (3), adenine 1-oxide (51, adenine 3-oxide (6), 

adenine 7-oxide (7) ,  and 9-hydroxyadenine (8); with the exception that 6-nitropurine (4) 

still remains unknown. 

Thus, the chemistry, physicochemical properties, and biological activities of Nr-oxygen- 

ated adenines have been treated in previous reviews in several f ~ r m s . l - ~  The aim of the 

present review is to supplement the previous ones by reorganizing (in part) and updat- 

ing the literature through the late part of 1998. Certainly, the chemistry and reactions 
of the seven Nx-oxygenated adenines (2-8) highlighted below will carve out a unique 
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and impressive niche in the purine chemistry. 

The N6-hydroxyadenine structure has recently been shown to occur in nature in the 

form of asmarines A-C (9-111, novel cytotoxic metabolites isolated from the Red Sea 

sponge Raspailia sp.8 The prototype of such N6-hydroxyadenine structures is 6-hy- 

droxyaminopurine (21, whose synthesis was first reported by Bendich et al. in 1957. 

They allowed 6-chloropurine (12) to react with hydroxylamine in boiling EtOH for 6 h, 

9 Asmarine A 1 0 Asmarine B 1 1 Asmarine C 

NH2OWEtOH 

reilux, 6 h or enzymatic N- 
H (100% yield) hydroxylation H 

2 

Scheme 1 
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obtaining 2 in 95%-quantitative yield (Scheme U.9 The reaction of adenine (1) with 

hydroxylamine to form 2 was known to proceed much more slowly than that of cytosine 
to give N4-hydroxycytosine.10 The same type of replacement of the amino group a t  the 
adenine nucleoside and nucleotide levels has been investigated.lO.11 Clement and 

Kunzel2 reported the hepatic microsomal N-hydroxylation of 1 to 2, which proceeded in 
vitro by aerobic incubations with 3-methylcholanthrene- or isosafrole-induced microso- 

ma1 fractions of rat  liver homogenates and NADPH. 
The following physicochemical properties of 6-hydroxyaminopurine (2) have been re- 

ported in the literature: the melting point, mp 260°C (decomp)gb or mp 254°C (de- 

comp);9a solubility in Hz0 a t  20 f 2°C;9 pKa 3.80, 9.83, and >12 (in H Z O ) ; ~  pKa 12.7 (in 

DMS0);13 TLC;l2 HPLC;12,14 UV in Hz0  a t  various pH's;9g15 distribution of the spin 

density on atoms of the exocyclic N-OH group in the lower triplet state;l6 electronic 

structure.17 

5% Pd-2, H20. 1 atm, rl NH yy activated Mn02/H20 

-or NazS2O4EI20 (pH >7), A kN N 30-35T. I h 
H or xanthine oxidase H (21% yield) 

1 / 2 \ 3 

20% ethanolic NH2NH2 or 
1 M ethanolic NHzOH 

reflux, 3 h 
H 

H 

Scheme 2 

Bendich et al. reported that  6-hydroxyaminopurine (2) was soluble in AcOH and insol- 

uble in the usual organic so1vents;Sb i t  was not recrystallized easily from H z 0  since it 

decomposed on boiling to give a deeply colored so1ution;gb this decomposition, probably 

due to oxidation, was more rapid in the presence of charcoal;9b 2 reduced alkaline phos- 
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phomolybdate reagent as  well as ammoniacal silver nitrate,g and produced a deep blue 

color when mixed with a dilute solution of ferric ch1oride;gb although 2 was quite stable 
in 1 N aqueous HClga and was not altered by the action of concd aqueous HC1 or HI? 

even after prolonged contact a t  1O0C, it was rather unstable a t  values of pH above 9.9 

Reduction of 2 to adenine (1) was achieved by catalytic hydrogenolysis in H 2 0  a t  room 

temperature using hydrogen and 5% Pd-C catalystg or by heating with a n  alkaline 

solution of sodium dithionite (Scheme 2Lgb This reduction to 1 was also feasible by xan- 

thine oxidase (EC 1.2.3.2) from both rat and rabbit liver cytosolic fractions or from cow 

milk.14 Oxidation of 2 in H20 containing AcONa with activated MnOz a t  30-35°C for 1 

h furnished 6-nitrosopurine (3) in 21% yield.18 
On treatment with 6 M aqueous HNO3, 2 strongly effervesced to give hypoxanthine ni- 

trate (13.HN03).9b Nitrosation of 2 in 2 N aqueous HC1 with aqueous NaNOz a t  5°C for 
3 h produced 6-(N-nitroso)hydroxyaminopurine (141, which showed an inhibitory activ- 

ity against several mouse tumors and leukemias, in quantitative yield,l8 and 14  was 

converted into hypoxanthine (13) when boiled in Hz0  or in aqueous acid solutions.l8 
Exposure of 2 to 2 N aqueous NaOH at  25°C for 24 h afforded the disodium salt of 6,6'- 

azoxypurine (151, and treatment of the salt with AcONa and 20% aqueous AcOH gave 

the free base (15) in 61% yield (from 2).l8 The dipotassium salt of 15  was also obtainable 

in 37% yield by similar treatment of 2 with 2 N aqueous KOH.l8 A suspension of 2 in 

concd aqueous NH3 yielded 15  (57% yield) after standing a t  25°C for 5 d.18 The azoxy 

compound (15) was reduced to N6,NG-bisadenine (17) by refluxing with 20% ethanolic 

hydrazine or 1 M ethanolic hydroxylamine for 3 h, and air oxidation of 17 in 0.5 N aque- 

ous NaOH for 5 h afforded 6,6'-azopurine disodium salt (16) in 70% yield.18 

N k y )  
AF'N/DMFiH20 

I;, N rt, 48 h reflux, 8 h 
H (40% yield) H (ca. 29% yield) 

2 18  1 9  

APN = 1-amidino-3,5-dimethylpyrazole nitrate 

Scheme 3 

As shown in Scheme 3, treatment of 2 with 1-amidino-3,5-dimethylpyrazole nitrate in 

aqueous DMF a t  room temperature for 48 h gave 6-(1-hydroxyguanidino)purine nitrate 

(18) in 40% yield.19 Catalytic hydrogenolysis of 18 (10% Pd-C/Hz, MeOH, 1 atm, room 

temperature, 16 h) provided adenine nitrate (l.HNO3) in 99% yield, and treatment of 18 

with boiling 85% aqueous EtOH for 8 h produced 6-(1-hydroxyureido)purine (19) in ca. 

29% yield.19 Treatment of 2 or its triacetyl derivative with a variety of oxidizing agents 

(AcOzH, CF3C03H, and m-CPBA) resulted in no reaction, or the formation of hypoxan- 
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thine (13).20 
The %oxide (23) of 2 was prepared from 6-chloropurine 3-oxide (24) as delineated in 

Scheme 4. Treatment of 24 with ammonium dithiocarbamate in EtOH a t  65°C for 2 h, 

followed by treatment of the reaction product with aqueous NH3, gave 6-mercapto- 
purine 3-oxide (20) in 88% yield.21 Oxidation of 20 with aqueous KMn04 in 2 M aque- 

ous KOH a t  5°C for 1 h and then a t  25°C for 2 h afforded purine-6-sulfonic acid 3-oxide 

(21) in 94% yield.21 The sodium salt (22) was prepared from 24  in 78% yield by treat- 

ment with sodium sulfite in Hz0  a t  80°C for 2 h.20 Stirring a mixture of 2 1  and ethano- 

lie NH20H in H z 0  a t  25°C for 4-5 d21 or stirring a mixture of 2 2  and 0.6 M ethanolic 

NHzOH in HzO containing a little 30% aqueous NH20H.HC1 a t  25°C for 15  dzo fur- 
nished 2 3  in 72% or 59% yield, respectively. However, treatment of 24 with ethanolic 

NHzOH gave 6-hydroxyaminopurine (2).20 Reduction of 23  with Raney Ni in boiling 

H 2 0  for 30 min or with boiling 20% ethanolic hydrazine for 2 h gave adenine (l).zo The 
3-oxide (23) reacted in concd aqueous NH3 at  25°C for 1 or 5 h to form 6,6'-azoxypurine 

3,3'-dioxide diammonium salt (25) in 75%20 or 51%21 yield, respectively. The azoxy com- 

pound (25) was transformed to N6,NC-bisadenine (17) upon treatment with Raney Ni in 

boiling HzO for 30 min.20 Oxidation of 23 with activated MnOz in HzO a t  25°C for 18 h 

gave 6-nitrosopurine 3-oxide (26) (46% yield),Z2 which was also spontaneously formed 

from 23 by exposure to diffused light for 30 months.22 Nitrosation of 23 in 2 N aqueous 

HC1 with aqueous NaNO2 a t  5°C for 1 h furnished 6-(N-nitrosohydroxyamino)purine 3- 

oxide (27) in 53% yield.22 When treated with Raney Ni in boiling Hz0 for 1-2 h, 27 gave 

a solution containing exclusively adenine (1).22 

Apparent association constants of complexes of riboflavin with 6-substituted purines 

including 6-hydroxyaminopurine (2) have been measured.23 The interactions between 
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lima bean lectin and adenine (1) were examined using a series of synthetic purine 

analogues including 2.24 The use of 2 in a n  oligonucleotide primer for DNA sequencing 

or polymerase chain reactions has been applied for a ~atent .25 

As regards the biological activities of 6-hydroxyaminopurine (21, i t  was found to be toxic 

to cells of mouse sarcoma 180 in tissue culture as seen in mitotic inhibition and induc- 

tion of nuclear degeneration when compared with normal embryo skin fibroblasts over 

a concentration range of 0.001 to 0.1 mM;9,26 i t  prolonged the survival time of mice 

with transplanted sarcoma 180 ascites cells,Z7 or leukemia L1210 or P815;28 i t  blocked 

the conversion of inosinate into adenylate and guanylate in Ehrlich ascites cells.29 

Addition of 0.2% adenine (1) to a ~a r t i a l ly  purified diet prior to the injection of 2 into 

mice bearing implants of sarcoma 180 ascites cells resulted in a decrease in the 

inhibition ~roduced by this agent.30 Application of higher doses (>lo-103 IU/kg) of L- 

asparaginase to leukemic mice resulted in longer survival times and many 50-day 

survivors, and 2 potentiated the effect of this enzyme.31 The 3-oxide (23) was reported 

to be weakly toxic to mice, to cause very slight inhibition of leukemia L5178YlCa55, and 

to ~ro long slightly the survival time of mice with leukemia LE1210S.20 Duality of the 
anticancer and carcinogenic effects in mice with L1210 leukemia and in rats, respec- 

tively, of 2 and its %oxide (23) has been studied.32 
Investigated also were mutagenic activities of 2 (and 23) in the following microorgan- 

isms, mammalian cells in uitro, or mammalian bodies: phage Tq (grown in Escherichia 

coli bacteria B-Berkeley);33 E. coli;34-38 (of 23  in E. c 0 1 i ) ; ~ ~  Salmonella typhimurium;W 

353-42 Bacillus subtilis;43 Streptomyces antibioticus;43 Candida maltosa;44 C. tropi- 

calis;45 Chlamydomonas reinhardii;46 Neurospora c r a s ~ a ; ~ ~ - ~ ~  Aspergillus nidu- 

l a n ~ ; ~ 0 - 5 2  Saccharomyces cereuisiae;34,35,38,39,43,53-70 L5178Y mouse lymphoma 
cells;71,72 Chinese hamster cells;73 Syrian hamster embryo cells;74,75 N-methyl-N'- 

nitro-N-nitrosoguanidine-resistant HeLa ~ e l l s ; ~ 6  teratogenic effects on rats77,78 and on 

pregnant Wistar rats.79 A review on the mutagenic nucleic acid base analogues includ- 

ing 2 has appeared.80 

Miller et ~ 1 . 8 ~  reported that 2 was able to serve as a substrate for adenine nucleoside 

phosphorylase from extracts of epimastigotes of the Peru strain of Trypanosoma cruzi. 

The compound (2) was reported to inhibit the enzyme adenine phosphoribosyltransfer- 

ase from Ehrlich ascites tumor cellss2 and from monkey liver,83 and correlation be- 

tween structure and activity with purine derivatives as inhibitors of this enzyme was 

studied.84 Bach and Felli85 reported that 2 weakly stimulated the respiration of Chlo- 
rella uulgaris. 

6-Nitrosopurine (3) was first synthesized by Giner-Sorollala from 6-hydroxyaminopu- 
rine (2) by oxidation with activated Mn02 (see Section I1 and Scheme 2). I t  gave a posi- 
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tive Liebermann test (nitroso function) and negative ferric chloride and phospho- 
molybdate tests (absence of NHOH function).l8 Treatment of 3 with Raney Ni in boiling 
5% aqueous NH3 for 3 h produced adenine (1) and hypoxanthine (13).18 When 3 was 
heated with a 1 M solution of NHzOH in 95% aqueous EtOH a t  reflux for 1 h ,  the W 
spectra and paper chromatography showed that the reaction product contained a mix- 
ture of adenine (1) and hypoxanthine (13).18 Similar treatment of 3 with 20% ethanolic 
hydrazine gave 1 and unidentified products.18 On treatment with aniline at  110-120°C 
for 2 h, 3 afforded a crude product with UV spectral and chromatographic properties 
identical to those of 1.18 Heating 3 in 1 N aqueous HC1 at  80°C for 1 h gave 13, together 
with unidentified products.18 Some derivatives of 3,  such as  6,6'-azoxypurine (15), 6,6'- 
azoxypurine 3,3'-dioxide diammonium salt (25), and 6-nitrosopurine 3-oxide (26) have 
been synthesized as  described in Section I1 (Schemes 2 and 4). 
The following physicochemical properties of 6-nitrosopurine (3) have been reported in 
the literature: the melting point, mp 195°C (with explosion when inserted a t  185"C);18 
solubility in H20,  155 mg/L at  25 f l0C;18 W i n  Hz0 a t  pH 1, 6.8, and 13.l8 
The compound (3) did not exhibit inhibition of mouse leukemia L1210, sarcoma 180 (as- 
cites), Ridgway osteogenic sarcoma, and Murphy-Sturn lymphosarcoma.18 

To the best of our knowledge, 6-nitropurine (4) is an N6-oxygenated adenine hitherto 
unknown to exist. However, Boerth and Hardings6 have reported the results of semiem- 
pirical (INDO) and ab initio (STO-3G) molecular orbital caiculations performed on the 
neutral, NU)-protonated, and C(8)-deprotonated species of 4. 

V. ADENINE 1-OXIDE 

Adenine 1-oxide (5) was first synthesized by Brown and co-workers,87 who treated a 
solution of adenine (1) in AcOH with 30% aqueous Hz02 a t  room temperature for 2.5 d 
to obtain 5 in 84% yield (Scheme 5). Similar N-oxidation of 1 in AcOH a t  65°C for 48 h 
and that of 1 in H z 0  with 0.002% aqueous Hz02 a t  37°C were also reported.88 The 
structure of 5 was established by means of degradation'reactions (vide infra).89 
Hydrolysis of adenosine 1-oxide (28), obtained in 95% yield from adenosine (29) by oxida- 
tion with 30% aqueous Hz02 in AcOH a t  room temperature for 6 d, with boiling 1 N 
aqueous HC1 for 15 min produced 5,  as  identified by means of paper chromatographic 
and W spectral analysis.87 Treatment of 2',3'-0-isopropylideneadenosine with 30% 
aqueous Hz02  in AcOH a t  room temperature for 5 d gave 2',3'-0-isopropylidene- 
adenosine 1-oxide (43.5% yield), which was also shown to yield 5 on hydrolysis with 
boiling 1 N aqueous HC1 for 1-2  mi^^.^" Cresswell and Browngo secured 5 in 78% yield 
by cyclization of 5-aminoimidazole-4-carboxamidoxime dihydrochloride (30.2HCl) with 
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triethyl orthoformate in boiling DMF for 1 h. They also cyclized 30.2HC1 with CS2 in a 

mixture of pyridine and MeOH a t  room temperature for 5 d, obtaining 2-mercapto- 

adenine 1-oxide (31) in 69% yield.90 Desulfurization of 31 with Raney Ni in 1 N aqueous 
NaOH a t  90°C for 1 h then gave a mixture of 5, 1 ,  and the starting material (31).90 

Oxidation of the bis(trimethylsily1)adeine (32) with bis(N, N-dimethy1formamido)oxo- 

diperoxomolybdenum(V1) in CHzClz a t  room temperature was reported to give 5 (5% 

yield) and adenine 

NHz 

(95% yield) 
1 

2 8  2 9  
90°C. I h 

/& 
SJH2 e 

(for 30.2HCI) 
CS2/py%dine/MeOH molybdenum(V1) 

rt, 5 d (69% yield) CH2CI2, rt 
(5% yield) 

3 1 

Scheme 5 

Fujii's group92 was able to prepare adenine-2-d 1-oxide (35) in 61% yield by peracetic 

acid oxidation (30% aqueous H202/AcOH, room temperature, 7 d) of adenine-2-d (34), 

which was obtained from adenosine-2-d (33) in 77% yield by hydrolysis with boiling 0.5 

N aqueous HC1 for 2 h (Scheme 6). 

0.5 N aq. HCI 30% q. H202/AcOH 

reflux, 2 h rt, 7 d 
(77% yield) (61% yield) 

3 4  3 5  

O H  O H  

3 3  

Scheme 6 

Adenine 1-oxide (5) is known to occur as a partial structure in H2021AcOH-treated nu- 

cleotides, such as adenosine 2'-, 3'-, and 5'-monophosphates, and 5'-diphosphate;93 in 

HzOz-treated adenosine 5'-monophosphate and deoxyadenylic acid;93 in monoperoxy- 

phthalic acid-treated (at  pH 5) 2'-deoxyadenosine and its 5'-phosphate;94 in H202/Ac- 
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OH-treated DNA or RNA;9%96 in monoperoxyphthalic acid-treated (at pH 7) DNA;97 in 

rn-CPBA-treated (at pH 7) 2'-deoxyadenosine 5'-monophosphate or DNA.98,99 
N-Oxygenation of adenine (1) to form the N(1)-oxide (5) by the 9000 g supernatant or 
microsomal fraction of rat  liver homogenates was reported by Clement and Kunze.100 

However, studies on in uitro metabolism of 1 using hepatic microsomes from hamster, 
mouse, and rat101,102 and from guinea pig, rabbit, and doglo2 indicated that 1 was ap- 

parently not susceptible to microsomal ~ioxidat ion.  

The following may serve to locate papers reporting the physicochemical properties of 

adenine 1-oxide (5): the melting point for an anhydrous sample (white filamentous crys- 
tals) of 5,  decomp point 297-307'C,87 mp 300°C (colorless leaflets),s8 or mp 300°C (slow 

decomp);gl for 5.H20 (colorless heavy prisms), mp >300°C;103 for the 2-deuterated spe- 

cies (35,H20), mp >30O0C;92 solubility in Hz0  a t  25"Cs7 and in AcOH and other sol- 
vents;88 lipophilicity;104 pKa 2.6, 9.0, and ca. 13 (in H20);87889,lo4 pK, 2.69, 8.845, and 

ca. 15.4 (in H20 a t  20°C);105 pKa 2.73 and 8.83 (in D20 at  27"C);106 partition coefficient 
in a saline solvent system;107 paper chromatography for 587-89,93,95,96,108,109 or for 
5.H20;103 TLC;12,110 HPLC;100-102 column chromatography;111 paper electrophore- 

sis;96 MS for 591,112 and for the 2-deuterated species (35.HzO);gZb W for 587389291,104 or 

5.H20103 in H20 a t  various pH's; 1H NMR for 5 in D20106 and in CD3C02D,101 for 

5.H20 in DMSO-d692 and for 2-deuterated species (36.HzO) in DMSO-ds;92 tautomeric 

s t ructure; l l3  crystal structure for 589 and for the complex 5-H2S04;114 polarogra- 
phy;115-117 MO calculation.ll8 

NH2 
xanthine oxi- 

n N % d a e  + catalm 

H 1 arm. 30°C, 6 h H 
1 (94% yield) , 5 \ 3 6 3 7 1 3 iV q. HCI\ , reflux, 30 min 

NaN@/50% aq. AcOH 

(100% yield). 7&80°C, 2 h (47% yield) 

30 3 9 

Scheme 7 

As regards the chemical behavior of adenine 1-oxide (5), Brown and co-workers87 re- 

ported that 5 was quite stable in neutral aqueous solutions over long period, that there 

was no tendency for the oxide to lose oxygen and revert to adenine ( I ) ,  and that, in 

aqueous solution, there was no tendency for a transfer of oxygen between 5 and 1 
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molecules. When heated in AcOH for 20 min on a steam bath, 5 was partly converted 

into an unidentified material resembling 1 in Rf and W spectrum.87 With Pauly rea- 
gent, 5 gave a transient pink color.89 Ikawa et ~ l . ~ 1 9  reported that adenine (1) itself 

gave very little color with Folin-Ciocalteau phenol reagent and the N(1)-oxide (5) did 

not affect the color greatly. 

Reduction of 5 with hydrogen and Raney Ni afforded 1 (Scheme 7).E7 This reduction 

was also feasible by commercial milk xanthine oxidase (EC 1.2.3.2) in the presence of 

sodium dithionite under anaerobic conditions;120 by an amine N-oxide reductase from 

Escherichia coli in the presence of sodium dithionite and benzyl viologen;121 and by mo- 

lybdenum(IV,VI) complexes.l22 
Treatment of 5 with boiling 3 N aqueous HCI for 30 min produced 30.2HC1 in quantita- 

tive yield and that with boiling 0.05 N aqueous HCl for 6 h furnished 5-aminoimidazole- 

4-carboxamide hydrochloride (38.HCl) in 65% ~ield.89 Sundaralingam and Hecht123 re- 

ported the results of an X-ray analysis of a Cu(I1) complex of 30. Sletten et a1.124 treated 

5 in 0.5 N aqueous H2S04 with aqueous CuS04 to obtain catena-p-(5-aminoimidazole-4- 

carboxamidoxime) diaquo copper(I1) sulfate trihydrate [[Cu(C4HiN5O)(Hz0)2SO4I.3H~- 
01 and reported the crystal structure of this complex. Nerdal and Sletten106 showed by 

means of l H  NMR spectroscopy that the hydrolysis of 5 to 38 proceeded in two steps at  

pH <0.2 and qualitatively determined Cu(I1) coordination on the basis of spin-lattice 

(TI) measurements a t  90 and 400 MHz. Treatment of 30.2HC1 in H20  with NaNO2 a t  

0°C produced 2-azaadenine 1-oxide (39) in 70% yield, concluding a two-step synthesis of 

39 from 5.125 

Diazotization of 5 in  50% aqueous AcOH with NaNOz gave 1-hydroxyhypoxanthine (40) 

in 47% yield.109 Incubation of 5 in 0.15 M phosphate buffer (pH 7.6) a t  37°C with com- 

mercial milk xanthine oxidase in the presence of catalase for 5-7 h was reported to form 
8-hydroxyadenine 1-oxide (36).1z6 In rats, [8-14Cladenine 1-oxide was, in part, reduced 

to adenine (1) and guanine nucleotides; and a large portions were oxidized to 14C- 

labeled 36, some of which was reduced to 8-oxoadenine (or 8-hydroxyadenine) (37), and 

both appeared in the urine.127 

Brown's group128 demonstrated that adenine (1) can be obtained from the reaction of 5 

with P2S5 or PC13 (Scheme 8). However, no reaction was observed when 5 was treated 

with POC13.129 Photolysis of 5 to form 1 and isoguanine (41) was studied,108,130 and 

kinetics of the changes induced in 5 under UV-irradiation and under y-irradiation from 

a 60Co source were reported.131 

Scheme 8 also includes the reactions of 5 with AcOH-AczO (2:1, vlv) a t  room temper- 

ature to give the 0-acetyl derivative (42) and the ring-opened derivative (43) and those 

of 5 leading to 45  through 44.132 Stohrer and Salernni~kl3~ developed a method for the 

preparation in situ of the 0-acetyl ester (type 42) by treatment of 5 with Ac2O in phos- 

phate buffer (pH 7.4) and found that the resulting 0-acetyl ester of 5 did not oxidize 
iodide ion to iodine. 
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HCI 

4 2  H 

Scheme 8 

Scheme 9 

Fujii's group103,134 found that the reaction of 5 with alkyl halides or alkyl p-toluene- 

sulfonates in AcNMe2 resulted in 0-alkylation, giving 1-alkoxyadenine salts (46,HX) in  
good yields (Scheme 9). These salts were readily converted into the corresponding free 

bases (46) by the use of Amberlite IRA-402 (HC03-) or basification to pH 7.5.103,134 
Treatment of 1-alkoxyadenines (46) with alkyl halides in AcNMez a t  room temperature 

produced 1-alkoxy-9-alkyladenine salts (49.HX).103,134-136 In  addition, alkylation of 5 
with alkyl iodide in AcNMe2 in the presence of Hz02 provided a convenient one-step 

procedure for preparation of 1-alkoxy-9-alkyladenine hydriodide [49,HI (R1= R2)].137 A 

clear O-+N(9) alkyl migration was demonstrated by the reaction of 4 6  with an alkyl 

halide (RZX) less reactive than that (RlX) whoseBlkyl group was the same a s  in 46,138 
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suggesting the use of 4 9 . m  as possible alkylating reagents.139 Thus, treatment of 

49.HX with hot pyridine furnished 9-alkyladenine 1-oxide (48) and 1-alkylpyridinium 
salt,l3%139,140 and this route to 48  from 46 (hence from 1 through 5) was successfully 

applied to the syntheses of adenine 1-oxides carrying an allylic side chain at  the 9-posi- 

tion.136 Kamiya's group141 reported the reaction of 5 at  N(9) with 2,3-0-isopropylidene- 

D-erythronolactone [in boiling DMF in the presence of K2C03 (for 8 h) or Na2C03 (12 h) 

or in AcNMez (12 h) or DMSO (6 h) in the presence of Na2C03 at  16OoC1, which resulted 

in the formation of 9-(3-carboxy-2,3-isopropylideneoxypropyladenine 1-oxide. Deoxy- 

genation of the N(1)-oxides (48) or dealkoxylation of the free bases (49) of l-alkoxy-9- 

alk~ladenines using hydrogen and Raney Ni catalyst afforded 9-alkyladenines (47) in 

good yields.103,134 Thus, the reaction sequence 1-15+46+49.HX+49(or 48)+47 con- 

stituted a new route for the synthesis of 9-alkyladenines (47) starting from adenine 
(1).103,134 

In the case of 9-substituted adenines (471, the N(1)-oxides (48) were also obtained by 
similar peroxycarboxylic acid oxidation.87,92,135,142-144 Treatment of 48  with alkyl 

halides in AcNMez a t  room temperature gave the corresponding 1-alkoxyadenine salts 
(49,HX) in good yields.92,'35,140,142,144-146 Similar treatment of the 2-deuterated spe- 

cies of 48 gave the corresponding 9-substituted 1-alkoxyadenine-2-d salts.92 

It is noteworthy that the 1-alkoxyadenine derivatives (types 4 6 . m  and 49,HX) were 

considerably reactive,147 as  in the case of 1-alkoxypyridinium salts.148 The major 
characteristic reactions observed were (i) reductive cleavage of the N-0 bond,103,134 (ii) 

O j N ( 9 )  alkyl migration in the reaction of 46 with an alkyl halide,l3* (iii) alkylation of 

various nucleophiles,l39 (iv) nonreductive cleavage of the N-0 hond,149 and (v) 

hydrolytic ring fission between N(1) and C(2). Probably the most salient feature of the 

chemical behavior is that under item-v, which occurs very easily and whereby sub- 

sequent recyclization of the product (50) to form the N6-alkoxyadenine derivatives (51) 
[Dimroth rearrangement (49-150+51)1501 becomes feasible (Scheme 10). 

Scheme 10 

Catalytic hydrogenolysis of 1-benzyloxyadenine (52), prepared from adenine 1-oxide (5) 

in 95% overall yield by benzylation with PhCHZBr (in AcNMez a t  room temperature for 

24 h) and basification (pH 7.5) of the product (52,HBr) in Hz0,103,134 using hydrogen 

and 10% Pd-C catalyst in 2-methoxyethanol at  1 atm and 25°C for a few minutes gave 5 
in 87% yield with a trace of adenine (1) (Scheme 11).103 When heated in 50% aqueous 
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AcNMez under reflux for 10 h, 52 produced the ring-opened derivative (53) (39% yield), 

adenine 1-oxide (5) (14%), NG-benzyloxyadenine (54) (ca. lo%), and 9-benzyl-N6-benzyl- 

oxyadenine (55) (2.4%).151 

" 
5 4: R = H (ca. 10%) 

(39% yield) 5 5: R = PhCHz (2.4%) 

10% Pd-C/H2, MeOCHzCHzOH 
1 atm, 25°C (87% yield) 

Scheme 11 

E' 

2) Sniaq. HCI, I2 h (80% yield) * 
9 5 T ,  2 h H 

(92% yield) 
5 6  5 

1 0.1 N aq. HCI 
n, 24 h (64% yield) 

OFN H OVN H O-Nyky HCVMeOH 3 4 5 j 3  5 7 

O H L N  N reflux, 1 h N 
H (55% yield) H 

Scheme 12 

Devlin152 was able to condense 5 with ethyl chloroformate in pyridine a t  room tem- 

perature for 24 h and then a t  95°C for 2 h to obtain the tricyclic compound (56) in  92% 

yield (Scheme 12). At room temperature in 0.1 N aqueous HCl for 24 h, 56 furnished the 

ring-opened derivative (58) (64% yield), which was deformylated to the aminoimidazole 

(59) (55% yield) on treatment with boiling methanolic HCl for 1 h.152 Davidson et ~1.153 

reported that  the reaction of 5 and hexafluorobut-2-yne in MeOH produced 60, arising 

from electrophilic attack at  C(6)-NH2 and a t  either N(7) or N(9), with a n  isomer arising 
from alkenylation a t  N(3) [or N(9) or N(7)l. Reaction of 5 with 9-[[5-[4-[N-ethyl-N-(2- 
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chloroethyl)amino]phenoxy]pentyl]amino]acridine in a mixture of HzO (pH 7) and 

DMSO a t  20°C for 6 h, followed by Sn/HCl reduction, was reported to form the N(3)- 
alkylated adenine (57) (80% yield), as  identified by HPLC a n a 1 ~ s i s . l ~ ~  It is interesting 

to note that  this regioselectivity in alkylation of 5 appears to be in disagreement with 

that of 5 or 1-alkoxyadenines (46) described above (see also Scheme 9). 

Incubation of a mixture of 5,  1-e-D-arabinofuranosyluracil, wet cell paste of Enterobac- 

ter aerogenes AJ 11125 in 30 mM potassium phosphate buffer (pH 7.0) at  60°C for 15 h 

was reported to produce 9-P-D-arabinofuranosyladenine 1-oxide in 45% ~ield.155 Fathi 

et aL.156 effected an enzymatic transglycosylation from 5'-deoxythymidine to 5 in 0.02 M 

phosphate buffer a t  37°C for 3-5 d, obtaining 2',5'-dideoxyadenosine 1-oxide in low yield 

(in the region of 10%). 

An example of the nonbiological, technical, or engineered material uses of 5 may be seen 

in a patent for an invention of thioether hydraulic fluids (or aircraft engine lubricants) 

containing 5.157 

Adenine I-oxide complexes with the following metal ions have been investigated: 

divalent metal ions in the form of MnC12, FeS04, ZnS04, Co(C104)2, Ni(C104)2, and 
C ~ ( C 1 0 ~ ) ~ ; 1 0 5  first row transition metal perchlorates;158 HgCl2 [crystal structure of 

(C5H5N5O)HgCl2];159 CuS04 [allowed to react with 5 in 1 N aqueous NaOH; crystal 

structure of the resulting complex Cy(CsH3N50)2Na2(Hz0)sl.160 
As regards the biological activity of acienine 1-oxide (51, Brown et aL.161 reported that 5 
had little effect on tissues in culture and i t  partially fulfilled the adenine requirement of 

certain bacteria. I t  did not substitute for adenine (1) in blocking the inhibition of 

sarcoma 180 in vitro by diazooxonorleucine.~~l However, the isolation of 2,8-dihydroxy- 

adenine from the kidneys of mice which received large amounts of 5 implies that the N- 
oxide function can be removed in vivo.l61 Henderson162 reported that  5 a t  10-3 M 
concentration did not inhibit purine biosynthesis de novo in Ehrlich ascites tumor cells 

in vitro. The N(1)-oxide (5), guanine 3-oxide, and 3-hydroxyxanthine had no inhibitory 

effect on 24 solid mouse and rat tumors, but 5 had a marked inhibitory effect on Ehrlich 

ascites carcinoma Line I and Taper ascites liver tumor.l63 Henderson's group164 tested 

161 purine analogues and derivatives including 5 for their ability to inhibit 10 param- 

eters of purine metabolism in Ehrlich ascites tumor cells incubated in vitro with 

['4C]hypoxanthine. They found that 5 inhibited adenine phosphoribosyltransferase 

from Ehrlich ascites tumor cells by 67% a t  1.0 mM concentration and by 46.6% a t  0.1 

mM;82 its inhibition constant was compared with those obtained for analogues of 1.165 

In addition, 5 a t  1 mM concentration did not inhibit inosinate dehydrogenase activity in 

intact Ehrlich ascites tumor cells in vitro, but inhibited nucleotide formation from 

[14Clhypoxanthine by 18.9%.166 

Although the oncogenicity assay response to 5 was variable, a sufficient incidence of 

tumors in both Sprague-Dawley and Wistar rats (at a dose level of 10 mglweek for 26 

weeks) was observed, indicating that 5 is a t  least a moderately oncogenic purine N-  
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oxide.167 The mutagenic activity of 5 in Salmonella typhimurium,42 Bacillus subtilis,43 
Streptomyces antibioticus,43 and Saccharomyces c e r e ~ i s i a e ~ ~  has also been investi- 

gated. 
Adenine- or adenosine-uptake into human blood platelets is a carrier-mediated process, 
and 5 has been found to act as a weak competitive i n h i b i t o r . 1 6 8 ~ ~ ~ ~  
When measured 24 h after oral administration of 5 (175 mgkg), the plasma urea nitro- 
gen and creatinine levels in mice were not increased, indicating lack of 5-induced neph- 
rotoxicity.l7O Uehara et al.171 reported that adenine (1) as well as  5 accelerated the ri- 
boflavin-sensitized photoinactivation of Escherichia coli tRNA. No biological activity 

with respect to oocyte maturation in the starfish Asterias rubens has been reported for 

5.104 

VI. ADENINE 3-OXIDE 

Adenine 3-oxide (6) was first synthesized by Brown's group172 from the potassium salt 
(61) of purine-6-sulfonic acid 3-oxide (21) in  62% yield by treatment with concd aqueous 
NH3 a t  10O0C for 18 h (Scheme 13). In  an alternative synthesis of 6,  Kawashima and 
Kumashirol73a allowed 6-chloropurine 3-oxide (24) to react with 10 N aqueous NH3 a t  
100°C for 15.5 h to secure 6 in 45% yield, and Giner-Sorollal74 effected this reaction in 
concd aqueous NH3 containing NH4C1 at  100°C for 24 h to obtain 6 in 66% yield.173b 
The latter author also reported a four-step conversion of 24 into the disodium salt (62) of 
6-nitrosopurine 3-oxide (26) through 64,63,  and 23 (Scheme 13).174 Another procedure 
for 23+26 and chemical behavior and biological activity of NG-oxygenated adenine 3- 
oxides are described earlier in Section I1 (see also Scheme 4). 

NHz CI 
10Naq.NH3, I W T .  

concd aq. NH. - .$% 15.5 h (45% yield) MeSW1 N aq. KOH 

10O0C. 18 h d+ fl or concd aq. NH3 O0C, 1 h; then 2SPC, 
I H  (62% yield) I NH4CI, lW°C, 3 h (51% yield) 
0- 0- 24 h (66% yield) 0- 

1 ) 2 3 i n I N a q . H C I  NHOH 
2) pH 7 (NaHCO3) 0.6 M ethanolic 
3) activated Mn02 NH20H 

25°C. I h 2SPC, 72 h 

I (73% yield) 
0- 

C12/30% aq. 
N T y  - MeOH N?! 

I\+ N 5 - w C ,  20min; 4+ 
I H then 25'C. 2Omin I 

(92% yield) 0- 
fl 

0- 

2 3 63 

Scheme 13 

The following physicochemical properties have been reported for adenine 3-oxide (6): the 
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melting point for 6,  mp >280"C;173 for 6.0.5H20, decomp point >350°C;172 pKa 2.85 k 

0.06 and 6.91 k 0.07 (in HzO at  20-220C);172 paper chromatography;172.173 TLC;12 
HpLC;100 W in H 2 0  at  various pH's;172,173 tautomeric structure.l72 

As regards the chemical behavior of 6, Brown's group172 reported the formation of a 1:l 

complex with (NH&S04. Treatment of 6 with Raney Ni in boiling 5% aqueous NH3 for 

1.5 h gave adenine (1) in excellent yield (Scheme 141.172 This reduction of the N-oxide 

function was also feasible under anaerobic conditions by commercial milk xanthine 

oxidase (EC 1.2.3.2) in the presence of sodium dithionite.120 Reaction of 6 with boiling 

AczO for 0.5 h produced isoguanine (41) in 40% yield.175 

Scheme 14 

VII. ADENINE 7-OXIDE 

As already described above in Section V, adenine (1)  undergoes N-oxidation prefer- 

entially a t  1-position to produce adenine 1-oxide (5) in good yield (Scheme 5) on treat- 

ment with 30% aqueous Hz02 in AcOH at  room temperature. This regio~elect ivi t~ 

appears to reflect the generalization176 that on N-oxidation pyrimidine compounds form 

only mono-N-oxides, whereas imidazoles are resistant to N-oxidation. 
In 1968, however, Rhaesel77 claimed that treatment of adenine (1) with 0.1 M H20z in 

0.01 M phosphate buffer (pH 7.0) at  37% for 5 d afforded adenine 7-oxide (7) (isolated as 
a monohydrate sensitive to W light) in 5% yield without any detectable formation of 

the N(1)-oxide (5). He further claimed that the N(7)-oxide was among the products of X- 
ray irradiation of 1 in 0.05 M phosphate buffer (pH 7.0).177 Later on, these results were 

allegedly reproduced by Yamamoto,l78 who further asserted that  7 bound noncova- 

lently to urease, an SH protein, in an experiment using a sample of 7 prepared by the 

method of Rhaese. This unusual regioselectivity of N-oxidation of 1 was so striking as to 

appear questionable. Moreover, the chemical and spectroscopic evidence177-179 ad- 

duced by both authors appeared insufficient to allow definitive assignment of the N(7)- 

oxide structure to their samples, which they thought to be the new N-oxide (7). 

Thus, Fujii and co-workers180 reexamined the H ~ O ~ h u f f e r  oxidation procedure177 of 

Rhaese for 1, but completely failed to reproduce his results; they were unable to obtain 

any N-oxide from 1. This led them to design a three-step route for the synthesis of 

adenine 7-oxide (7)l81 from adenine (1) (Scheme 15):ls0 Treatment of 3-benzyladenine 

(65), readily obtainable from adenine (1) in 66% yield according to the literature 
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procedure,182 with magnesium monoperoxyphthalate hexahydrate (MMPP.6H20) in 

MeOH a t  30°C for 20 h or with m-CPBA in MeOH-1 M acetate buffer (pH 5.0) (]:I, vlv) 
a t  30°C for 15 h gave 3-benzyladenine 7-oxide (66) in 40% or 24% yield, respectively. 

The use of 30% aqueous H202 in AcOH a t  room temperature or m-CPBA in AcOH a t  

30°C as the oxidizing agent was found to be ineffective. Debenzylation of 66  with concd 

sulfuric acid a t  35°C in the presence of toluene for 3 h afforded the desired compound, 

adenine 7-oxide (71, in 55% yield. Characterization of 7 as  the N(7boxide was easily 

achieved by measurement of its UV spectrum, which was different from those of the 

three known isomeric N-oxides (5, 6,  and 8),  and by its chemical reactions including 

deamination and methylation (see Scheme 16). In addition, the location of the oxygen 

function in 66  and 7 was confirmed by X-ray crystallographic analysis.180b 

MMPP.6H20 

or m-CPBA 
MeOH, 30°C 

I) PhCH2Br/AcNMe2 
! .)pH>, i 

N (66% yield) MeCNIKHCOl 
H 25°C 22 h I 

CHzPh 1 CH2Ph CH2Ph 

MeONaKD30D 
reflux, 5 h 

(co. 95% yield) " \  

Scheme 15  

Fujii's group180b further found that treatment of 65  with a large excess of 30% aqueous 

H202 in MeOH in the presence of MeCN and KHCO3 a t  25°C for 22 h produced the N(7)- 

oxide (66) (12% yield) and 7-acetamido-3-benzyladenine (67) (I%), together with 28% 

recovery of 65. The crystal structure of 67 was also presented.laOb The C(2)-deuterated 

species [69 (of 79% isotopic purity) and 68 (of 78% isotopic purity)l were also prepared by 

following a parallel synthetic route starting 'from 3-benzyladenine-2-d (70) (of 85% 
isotopic purity), which was obtained from 65 according to the method of Maki et al.183 

As in the case of 3-benzyladenine (65) described above, 3-methyladenine (75) and 3- 

ethyladenine (77) underwent peroxy~arbox~lic acid oxidation a t  N(7), giving 74 and 7 8  

in 13-25% yields (Scheme 171.184 Separate treatments of 66, 74, and 78 with alkyl 

halide (R2X) in AeNMez a t  30% furnished the corresponding 7-alkoxy derivatives (79) 
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(81-97% yields), which afforded 3-alkyl-8-hydroxyadenine (80) in 32-74% yields on 

treatment with boiling 0.1 N aqueous NaOH for 1.5 h.184 Treatment of 79  (X = C104) 

with 0.1 N R30Na in R30H (R3 = Me, Et, or PhCH2) a t  room temperature4O0C gave 8- 

alkoxy-3-alkyladenines (81) in 28-98% yields, and hydrolysis of 81 (R3 = Me) with 

boiling 1 N aqueous HC1 or hydrogenolysis (10% Pd-C/H2, MeOH, 1 atm, 4O0C, 2 h) of 81 

(R3 = PhCH2) provided 80  in 73-90% yields.184 Debenzylation of 3-benzyl-7-methoxy- 
adenine perchlorate (79: R1 = PhCH2; R2 = Me; X = C104) with concd sulfuric acid in the 

presence of toluene a t  35°C for 4 h gave 7-methoxyadenine (73) (72% yield), which 

provided 8-oxoadenine (37) in 81% yield on treatment with boiling 0.1 N aqueous NaOH 

for 30 min.ls4 

1  71  

A AcOH, reflux, 5 h 
(69% yield) 

Raney Ni/H2, H20 
l atm, 40°C, 4 h 

MeOH, rt, I h 90°C 30 min 
H 

72  
(25%) (17%) 

MeUAcNMez, 25-C. 18 h (89% yield) 

Scheme 16 

In an  alternative synthesis of 7 (Scheme 181, Fujii's groupls5 oxidized 1-benzyladenine 
(82) with m-CPBA in MeOH at  30°C for 14 h or in MeOH-0.5 M phosphate buffer (pH 

6.6) a t  30°C for 20 h and obtained 1-benzyladenine 7-oxide (83) in 13% or 19% yield. The 

structure of 83 was unequivocally established by an X-ray crystallographic analysis. 
Debenzylation of 83 with concd sulfuric acid in the presence of toluene at  35°C for 3 h 

gave 7 in 63% yield. When heated in boiling 0.1 N aqueous NaOH for 3 h, 83 underwent 
Dimroth rearrangement150 to provide N6-bemyladenine 7-oxide (86) in 77% yield.186 

Oxidation of N6-bemyladenine (85) with 15% aqueous Hz02 in TFA a t  65-70°C for 1 
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h187 was found to produce the N(7)-oxide (86) (4% yield) and the N(3)-oxide (87) (4%), the 
latter of which was identical with a sample prepared according to the literature pro- 
cedure173a from 6-chloropurine 3-oxide (24) and benzylamine.186 On the other hand, m- 
CPBA oxidation of 86 in MeOH a t  30°C for 20 h was shown to give the N(1)-oxide (84) in 
35% yield, together with 25% recovery of 86.188 

NHZ OR2 N HZ 

R2w~cm9* Pjy! q. NaOE l+.iFo 
OIN 

30°C iN -N reflux, 1.5 h 

I I I I 
R' R' R' R' 

6 5: R1 = PhCH2 
7  5: R' = Me 
7 7 :  R' = Et 

[for 81 (R' = Me; 
R3 = PhCH2)1 

or [for 81 ( R ~  = Me)] 
(81% yield) 1 N aq. HCI, reflux 

Scheme 17 

PhCH2, 

m-CPBA 

8 2  7 

15% aq. Hz02 

8 4 8 5  8 6 

Scheme 18 

PhCH2NH2M20 
I W0C, 2 h 

(76% yield) I 

Apart from the H202 oxidation of adenine (1) described above, it has been reported that  
the primary product from the reaction of 1 with Hz02 under UV irradiation,lsg from 
that with hydroxyl radical generated by water radiolysisl90 or by photolysis of 4-mer- 
captopyridine 1-oxide,lgO or from electrochemical oxidation of 1 in Hz0 in the pH range 
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3.0-11.2191 was 8-oxoadenine (or 8-hydroxyadenine) (37). 
The following physicochemical properties of adenine 7-oxide (7) have been recorded in 

the literature: the melting point for 7, mp >300"C;180 for the 2-deuterated species (68), 
mp >300°C;180b for 7.HC1, mp >300°C (decomp);'80b pK, 3.4 and 5.75 (in H z 0  a t  30°C 

and ionic strength 1,0);180b MS for 7;l8Ob UV (in Hz0 at  various pH's and in 95% aque- 
ous EtOH) for 7 and for 7.HC1;180b 1H NMR for 7 in DMSO-ds and in DzO, for the 2- 

deuterated species (68) in DMSO-ds and in DzO, and for 7.HC1 in D20;lsob tautomeric 

structure in H20;180b crystal structure for 7.H20.180b 
In a test for antileukemic activity against murine L5178Y cells, each of adenine 7-oxide 

(7) and 3-benzyladenine 7-oxide (66) was found to be only very weakly cytotoxic a t  a 

concentration of 50 pglmL.18%192 In the tobacco callus bioassay for cytokinin activity, 

each of N6-benzyladenine 1-oxide (841, the N(3)-oxide (871, and the N(7)-oxide (86) was 

active at  4 pM concentration, being less active than the parent base (851, an typical 

synthetic cytokinin, by a factor of 40.1s6 

VIII. 9-HYDROXYADENINE 

In 1977, Watson193 reported a five-step synthesis of 9-hydroxyadenine (8) from amino- 

malononitrile p-toluenesulfonate (88) as depicted in Scheme 19. The synthesis by him 

started with heating a mixture of 88  and triethyl orthoformate on a steam bath to give 

the imino ether tosylate (89) and proceeded through 5-amino-l-benzyloxyimidazole-4- 

carbonitrile (901, the ethoxymethyleneaminoimidazole derivative (921, and 9-benzyloxy- 

adenine (91). 

PhCH*ONH* 
HNH2 TsOH HN=CHOEt 

A EtOH, reflux, 
C N ca. 1.5 h (19% I 

8 9  
yield from 88) 0CH2Ph 

88  
9 0  

1) 32% aq. HBdAcOH CH(OEt), A 
A,  3.5 h 

NH../EtOH 
120°C, 3 h 

4 
(78% yield) 

from 90) 
(75% yield 

I 

Scheme 19 

Yang and Changl94 reported selective alkylation of calf thymus DNA a t  N(3) of the ade- 

nine moiety with carcinogenic 9-anthryloxirane (93) and that the mass spectrum of the 
N(3)-adduct (941, obtained by acid hydrolysis of the modified DNA, exhibited abundant 
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ions corresponding to the molecular formulas of C16H1zf (95) and C5H5N50+ (96). 

The following physicochemical properties of 9-hydroxyadenine (8) have been reported in 
the literature:193 pKa 3.59 f 0.05 and 5.7 f 0.1; UV in H z 0  at pH 1, 4.6, and 10; tau- 
tomeric structure. 

HCHO 1) PhCH20NH2/(i-Pr)zEth' I) NH3/MeOH, 1N"C 
(MeOCH2CHz)zO. 1 0 0 T  (87% yield) 

2) CH(OEt)3/12 M aq. H C l t  2) a-CsH&OCl)z 
DMAP/Et3N/THF DMF (48% yield from 97) I I 

0CH2Ph 0°C (49% yield) OCH2Ph 
9 7 

9 8  9 9  

I Phth = phthaloyl 1 10% Pd-C/H2 
EtOH 1 

(83% yield) 

PhthN r-Bu(Me)2SiO(CH2)30H 
PPhJEtOzCN=NCO$t 

MeNHNH2/CH2C12 THF, O°C (70% yield) 

(85% yield) 
2) r-Bu(Me)2SiO(CH2)3Br I I I 

0 R t-Bu(Me)2SiO(CH2)30 60°C (85% yield) 0 H 

1 0  0: R = t-Bu(Me)2SiO(CH2)3 102  
1 0 1: R = HO(CH2)s 

Scheme 20 
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In a synthesis of the  adenine acyclonucleoside (101), Harnden and Wyatt195 converted 

the 4,6-dichloropyrimidine (97) into 100 through 98, 99, 103, and 102, as  illustrated in  

Sche~ne 20. Deprotection of the acyclic substituent in  100  to give 101  was effected by 

treatment with boiling 5 N aqueous HC1 in EtOH or with bromotrimethylsilane in  ei- 

ther CHzClz or DMF.195 
The syntheses of the  diphosphonate derivatives (104 and 105) from 103,196 that of the 

phosphonate derivative (107) from 9-hydroxyadenine (8),1g7 and tha t  of 108 from 9- 

benzyloxyadenine (91) through N6-(4,4'-dimethoxytrity1)-9-hydroxyadenine (106)197,198 

have also been reported. 

M APPENDIX 

For ready comparison, available data concerning acid dissociation constants and W 
and 1H NMR spectra of the six mono-N-oxygenated adenines ( 2 , 3 ,  and 5-8) are  tab- 

ulated below in  Tables 1-111. 

TABLE I. pK, Values of ?t-Oxygenated Adenines 

PKa 
Compound (No.) Solvent ~ e t h o d ~ )  Literature 

basic acidic (ref. No.) 

6-Hydroxyaminopurine (2) H20 (U, T) 3.80 9.83, >I2 (9b) 
DMSO (T) 12.7 (13) 

Adenine 1 -oxide (5) H20 (U) 2.6 9.0, ca. 13 (87, 89) 
~ ~ 0 6 )  ('0 2.69 8.845, ca. 15.4 (105) 
9@) (N) 2.73 8.83 (106) 

Adenine 3-oxide (6) (U, T) 2.85 f 0.06 6.91 f 0.07 (172) 

Adenine 7-oxide (7) ~ 2 0 ~ )  (U) 3.4 5.75 ( 180b) 

9-Hydroxy adenine (8) H20 (u) 3.59 f 0.05 5.7 lk 0.1 (193) 

a) The letter(s) in parentheses refer(s) to the determination method with N, 'H NMR spectroscopy; 
T, titrimetq; U, UV spectrophotometry. 

b) At 20°C. 
C) At 27'C. 
d) At 20-22°C. 
e )  At 30°C and ionic strength 1.0. 



HETEROCYCLES, Vd.  51, No. 8,1999 

TABLE 11. UV Spectral Data of fl-Oxygenated ~ d e n i n e s ~ )  

Compound (No.) Solvent pH Lax (nm) E X  lo-3 

6-Nitrosopurine (3) 

Adenine 1-oxide (5) 

5.H20 

Adenine 3-oxide (6) 

Adenine 7-oxide (7) 

27 1 
27 1 
268 
268 
unstable 

a )  Taken from the literature recording Lax values together with molar absorptivities for p-oxygenated 
adenines. b) Shoulder. c) 95% aqueous EtOH. 
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TABLE 111. 'H NMR Spectral Data of M-Oxygenated Adenines 

Chemical shift in DMSO-d6 
Compound (No.) Literature 

C(2)-H C(8)-H NHz NH (ref. No.) 

6-Hydroxydminopurine (2) 8 . 3 ~ ~ )  ~ . 3 4 ~ )  (101) 

Adenine I-oxide (s)~)  8.59 8.29 d) 4 (92) 
~ . 7 6 ~ )  8.37@ (101) 

Adenine-2-d 1-oxide (35)e) - 8.28 d) 4 (92) 

Adenine 7-oxide (7) 8.17 8.35 7.01 12.0-1 3.0 (180b) 

Adenine-2-d 7-oxide (68) - 8.34 6.95 12.0-13.0 (180b) 
- 

a) In ppm downfield from internal Me4Si. b) Measured in CD3C02D. c )  In the form of a monohydrate 
(5.H20). 4 No clear signal was observed. e) In the form of a monohydrate (35H20). 
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