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Abstract- Oxidative severance of the cyclopropane ring of cyclopropanonethio-
acetal derivatives caused by treatment of 10 mol% of Iron(III) perchlorate in ace-
tonitrile under air, subsequent cyclization with the olefinic part and reduction by 
an  addtional 1,3-dithiane giving cis-fused oxabicyclo[3.3.0]octane-1,1- 
trimethylenethioacetals in good yield. 

 
 

The functionalized cyclopropane derivatives methylenecyclopropanes, 1cyclopropanoneacetals,2 and cy-
clopropylsulfides 3 have been used as convenient three-carbon unit building blocks in organic synthesis. 
Among the reactions using cyclopropanes, we were attracted by the cyclization of cyclopropanone acetal 
derivatives 2,3 via single electron transfer reaction. Several reports have been published inthifield, how- 
ever, they require excess amounts of oxidants to realize the cyclization, except for a single report in  
which Iwata and his colleagues demonstrated [3+2] cycloaddition of cyclopropyl sulfides using 0.5 eq. of 
aminium salt. 3a The stable nature of radical cation species of the MeS-SMe system due to its two-center 
three-electron bond is well recognized. 4 We thus hypothesized that a catalytic cyclization system may be 
produced by a proper choice of combination of an oxidant as single electron transfer initiator and a mild 
reductant using cyclopropanonetrimethylenethioacetals (1) 5,6 as a substrate, and the reaction would give 
oxabicyclo[3.3.0]octanethioacetals (2) (Eq. 1). In this communication, we describe how we have realized 
our initial idea in that intramolecular [3+2] cycloaddition of cyclopropanonethioacetals was accomplished 
by a catalytic reaction system; this is a record of this type of reaction using minimum amount of cationic 
oxidant as radical initiator. A very interesting finding is also described in that 1,3-dithiane works as a mild 
reducing agent and is essential to improve the efficiency of this reaction system. 
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Synthesis of oxabicyclo[3.3.0]octanedithioacetal (2a) has been attempted using several types of oxidants 
as a reaction initiator: Ceric (IV) ammonium nitrate (CAN), Manganese(III) acetate, Cerium(IV) ammo-
nium sulfate, and Iron(III) perchlorate (Fe(ClO4)3). Reactions using CAN and Fe(ClO4)3 as oxidants gave 
the desired cyclized products (2a) 7 and (3). 8 This reaction was very sensitive for the solvent system and 
use of dried CH3CN was essential to achieve the cyclization. 9 CAN/CH3CN was initially chosen as an 
oxidant-solvent combination 10 and the desired cis-fused bicyclooctane (2a) was obtained as a single 
stereoisomer; 11 however, the chemical yield of 2a was less than 40% even when the reaction was carried 
out in the presence of a larger amount of CAN, and use of an excess amount caused a significant drop of 
the chemical yield of 2a. Ion(III) cation reportedly works well to complete the oxidative radical cycliza-
tion. 2c We therefore focused on optimizing the reaction condition using Iron(III) salt instead of CAN as an 
oxidant, and succeeded in obtaining 55% of the desired product (2a) when dithioacetal (1a) was treated 
with 10 mol% of Fe(ClO4)3 in CH3CN under atmospheric conditions (Table 1, Entry 5). It was assumed 
that an oxygen molecule works nicely to regenerate Iron(III) cation from the Iron(II) cation produced and 
to realize the catalytic system of the oxidant. However, the yield of 2a was remained less than 50% when 
1.0 eq. of Fe(ClO4)3 was employed as oxidant (Table 1, Entry 3), so other factors were believed to have 
spoiled the catalytic cycle, and to have reduced the chemical yield of the final product. 
Since a fair amount of oxidized compound (3) was formed in this reaction, 8 it was assumed that the sta-
ble radical cation species of dithioacetal 4 may suffer from further undesired oxidation by oxygen  
molecule present in the solvent. Hence we sought to find a proper reducing agent (Entries 6-10), and  

Table1.  Oxidative radical cyclization via  cyclopropane ring opening pathway

Entry Reaction Conditions

1

2

3

4

5

6

7

8

9

10

CAN 20 mol%

CAN 10 mol%

Fe(ClO4)3 100 mol%

Fe(ClO4)3 50 mol%

Fe(ClO4)3 10 mol%

Fe(ClO4)3 10 mol%

Fe(ClO4)3 10 mol%

Fe(ClO4)3 10 mol%

Fe(ClO4)3 10 mol%

Fe(ClO4)3 10 mol%

34

36

50

47

55

43

53

46

32

68

Yield (%) of 2a  b)
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catalyst

 + Additive
(2)

Catalyst a)

80°C, 52 h

NaClO4 (1.0 eq.), 80°C, 72 h

rt, 24 h

rt, 72 h

rt,  air, 5 h

Additive 1 (2 eq.),  rt,  air, 5 h

Additive 2 (10 eq.),  rt,  air, 2 h

Additive 3 (10 eq.),  rt,  air, 2 h

Additive 4 (10 eq.),  rt,  air, 120 h

Additive 5 (1 eq.),  rt,  air, 1 h

CH3CN

a) Used as acetonitrile solution. b) Isolated yield. Additive 1: Benzyl alcoholl  Additive 2:  
2-Propanol  Additive 3: Allyl alcohol. Additive 4: Dimethyl sulfide  Additive 5: 1,3-Dithiane



  

 
found that 1,3-dithian worked as an efficient mild reductant to improve the chemical yield (Entry 10). We 
initially hypothesized a mechanism in which the starting cyclopropanonethioacetal (1) could form the 
self-reducing system, but in fact, the reaction required 1,3-dithiane to complete the catalytic cycle effi-
ciently.  
We assume there is a plausible mechanism for the present cation-radical mediated cyclization of cyclo-
propanonethioacetal (1), though the mechanistic details are not yet clear (Figure 1). The single-electron 
oxidation of the sulfur atom on compound (1) by Fe3+ ion generated the cation radical intermediate (A). 
Fe 2+ ion formed at this reaction stage was oxidized by air and regenerated Fe3+ ion to make the catalytic 
cycle of the oxidant. The next intermediate (B) was suspected to be the real transition state because the 
highest heat of formation energy was estimated by semi-empirical MO (PM3) calculations of the four 
plausible intermediates (A to D). 12 Once this radical species (B) was generated, the next step proceeded 
rapidly and formed the final intermediate (D) through the intermediate (C). 1,3-Dithian may contribute to 
the rapid reduction of D to produce the final product. As mentioned before, the stable nature of the radical 
cation form of the final intermediate (D) makes 1,3-dithian necessary as a mild reductant to complete the 
cyclization system.  
To determine the scope and limitation of this radical-cation mediated cyclization, five types of allyl ethers 
were subjected to the reaction and the results are summarized in Table 2. Except for one case, the cycli-
zation proceeded nicely and gave the corresponding bicyclo[3.3.0]octane derivatives in good yield (En-
tries 1-4). Unfortunately no cyclized product was obtained when isopropenyl ether (1f) was subjected to
the reaction even though the reaction was carried out for 24 h (Entry 5). The stereochemistry of the cy-
clized products was determined by 1H NMR, and it was found that only cis-fused compounds (2) were
produced in all reactions. The stereochemistry was partially controlled at the α-position of dithioacetals
and thermodinamically stable cis-trans compound (2) were obtained as major isomer for the reactions of
1b, 1d, and 1e (Entries 1, 3, and 4).13  
In conclusion, we have demonstrated an efficient synthesis of oxabicyclo[3.3.0]octane dithioacetal (2) via 
single electron transfer-mediated cyclization using a catalytic amount of Fe(ClO4)3 in the presence of 1 eq. 
of 1,3-dithiane as a mild reducing agent. This is the first example of a well-controlled and truly catalytic 
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reaction system of cation radical-mediated intramolecular cyclization of cyclopropyl compounds, because 
dithioacetal moiety of 2 corresponds to the masked carbonyl group and serves as a  
versatile lead for further synthetic transformation. Hence the present reaction can undoubtedly allow us to 
evolve a smarter and more convenient synthesis of oxabicyclo ring systems. Further investigation into 
other ring systems and applications is ongoing.  
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Table 2. Results of a single electron transfer-mediated cyclization of methylenecyclopro-
panonethiaoacetal 1a)

1

Entry Yield of 2 b)R1 R2

CH3CN, rt, Air

10 mol% Fe(ClO4)3

(1.0 eq.)+

Reaction 
TimeR3

(3)

1

2

3

4

5

H

H

H

H

CH3

CH3

CH3

C6H5

p-BrC6H5

H

H

CH3

H

H

H

1.5 h

1.5 h

2.0 h

2.0 h

24 h

50%

40%

57%

62%

0%

Substrate

1b

1c

1d

1e

1f

Ratio of 
cis-trans-2/cis-cis-2 c)

94:6

----

72:28

88:12

-----

a) All new compounds show analytical and spectral (1H NMR, 13C NMR, and IR) data consistent 
with the depicted structures. Stereochemistry established by NOE experiment. b) Isolated yield. 
c) The ratio was determined by chiral HPLC (OD); 0.46cm I.D.x25 cm, hexane /i-PrOH= 19:1, 
1.0 mL/min, 30°C.
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