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SYNTHESIS OF AN ENANTIOMERIC 2,5-DI-(E)-PROPENYL-
TETRAHYDROFURAN-3,4-DIOL DERIVATIVE

Eiju Suzuki, Ken-ichi Takao, and Kin-ichi Tadano*

Department of Applied Chemistry, Keio University, Hiyoshi,
Yokohama 223-8522, Japan

Abstract     For total synthesis of a novel bioactive δ-lactone antibiotic FD-211, a
key intermediate, a 2,5-di-(E)-propenyltetrahydrofuran-3,4-diol derivative, was
synthesized from diacetone D-glucose.    

During a screening program for low molecular compounds effective against multidrug-resistant tumor cells,
a novel antibiotic FD-211 (1) was isolated from the fermentation broth of Myceliophthora lutea TF-0409 by
the research group of Taisho Pharmaceutical Co., Ltd.1   Compound (1) showed a broad spectrum activity
against cultured tumor cell lines including adriamycin-resistant HL-60 cells.1 The 1H and 13C NMR data
verify that 1 consists of a β,γ-unsaturated δ-lactone ring sharing a 2,5-disubstituted tetrahydrofuran ring at
the γ- and δ-positions1 (Scheme 1).      The coupling constants of both propenyl olefin protons indicate
that their geometrical structures are both E, and the NOE measurements also reveal that the substituents at
C5, C6 and C7 dispose in all cis relationships.      The stereochemistry of C2 bearing a hydroxyl group
remains unclear.      The absolute stereochemistry of 1 is not yet determined.    We have concerned to
confirm the structure of 1 by an enantiomeric total synthesis.      For this object, we chose diacetone D-
glucose (2) as a chiral pool.      For access to all of the possible stereoisomers (1a-1d), we regard a
suitably protected 2,5-di-(E)-propenyltetrahydrofuran-3,4-diol derivative (3) as a common intermediate.      
In this communication, we describe a stereoselective access to this key intermediate (3).
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We first examined a direct introduction of a propenyl group (the left-arm) into 1,5-dialdose (5), prepared
from 2 via a known 3-O-pivaloyl (Piv) ester (4)2 (Scheme 2).    Olefination of 5 by the Takai procedure3

(CrCl2, MeCHI2, DMF/THF) resulted in the formation of the 5-eno-heptose derivative (6) as an
inseparable E, Z mixture without remarkable stereoselectivity (E/Z = ca. 2.6:1).     Fortunately, the desired
E-propenyl side chain was introduced stereoselectively as follows.    Hydrolysis of the side chain ketal in
2, cleavage of the resulting diol by a periodate oxidation followed by the Horner-Emmons olefination with
triethyl phosphonoacetate, and protection of C3 hydroxyl group as the tert-butyldimethylsilyl (TBS) ether
gave the (E)-α,β-unsaturated ester (7) in a high overall yield.     Reduction of 7 with diisobutylaluminium
hydride (DIBAL-H) afforded allyl alcohol (8).4,5     Mesylation of 8 and successive LiAlH4 reduction
provided the desired (E)-olefin (9)6 in a high yield.     Exchange of the C3 TBS group in 9 to a Piv group,
hydrolysis of the ketal followed by chemoselective oxidation of the resulting hemiacetal with N-
iodosuccinimide7 gave γ-lactone (10)8 efficiently.
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Scheme 2
We next explored the introduction of another propenyl group (the right-arm).    We envisaged the tandem
Wittig reaction and 1,4-conjugate addition at the anomeric position for the aimed C-glycosidation.    This
approach worked as expected (Scheme 3).      The hydroxyl group in γ-lactone (10) was protected as the
methoxymethyl (MOM) ether, then reduction with DIBAL-H of the resulting 11 provided lactol (12) as a
result of concomitant removal of the pivaloyl group.      The Wittig olefination of 12 with (methoxy-
carbonyl)methylenetriphenylphosphorane provided 2,5-cis- (13c)9 and 2,5-trans-substituted tetrahydro-
furan-3,4-diol (13t)10 in 65% and 20% yields, respectively.11-13      This reaction proceeded through the
1,4-conjugate addition of the ε-hydroxyl group in a ring-opened Wittig adduct(s) to the β-carbon of the
unsaturated ester.  Conversion of the (methoxycarbonyl)methyl moiety in 13c to an (E)-propenyl group
(the right-arm) was achieved as follows (Scheme 4).      The enolate derived from ester (13c) was
exposed to the Davis' oxaziridine [racemic trans-2-phenylsulfonyl-3-phenyloxaziridine]14 affording α−
hydroxylated esters (14) as an inseparable diastereomeric mixture.     The ratio of the mixture was
approximately 1 to 3 (1H NMR analysis).       We did not undertake their stereochemical assignment.      
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Scheme 3

This mixture (14) was converted to vicinal diol (15).      Periodate glycol cleavage of 15 followed by
Horner-Emmons olefination of the resulting aldehyde gave α,β-unsaturated ester (16)15 as a sole (E)-
isomer.    Protection of the hydroxyl group in 16 as the TBS ether followed by DIBAL-H reduction
afforded allylic alcohol (17).16  Mesylation of 17 and subsequent replacement of the mesyloxy group by
a hydride proceeded under specified conditions17 providing the desired 2,5-di-(E)-propenyltetrahydrofuran-
3,4-diol derivative (18),18 in which two hydroxyl groups were protected by differentially removable
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Scheme 4

We have established a stereocontrolled synthetic route to the key intermediate (18), i.e., compound (3)
with P1=MOM and P2=TBS, for the enantiomeric total syntheses of FD-211 and its stereoisomers.   
Further synthetic endeavor to FD-211 and establishment of its undetermined absolute stereochemistry are in
progress in our laboratory.
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