HETEROCYCLES, Vol. 53, No. 6, 2000, pp. 1251 - 1254, Received, 28th February, 2000 LEWIS ACID-MEDIATED RING EXPANSION REACTION OF BENZO[*b***]CYCLOPROPA[***e***]PYRAN-7-OL ACETATES: FACILE SYNTHESIS OF 2-ALKYL SUBSTITUTED 2,3-DIHYDRO-1- BENZOXEPINS**

Yoshiaki Sugita,* Hiroki Hosoya, and Ichiro Yokoe

Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan

Abstract - In the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf), benzo[*b*]cyclopropa[*e*]pyran-7-ol acetates easily reacted with silyl enol ethers to give 2 alkyl substituted 2,3-dihydro-1-benzoxepin derivatives in good yields.

Cyclopropanes having an electron-withdrawing or donating group are susceptible to ring opening reactions.¹ We have recently reported that benzocyclopropapyranone (1) was transformed into a ringopened 1,3-zwitterion (**2**) in the presence of a Lewis acid, and that **2** reacted with silyl enol ethers to give the ring expanding product (3) .² During the course of our study to find further applications of benzocyclopropapyrans, we examined the reaction of 7-acetoxybenzo[*b*]cyclopropa[*e*]pyran (**4**) with nucleophiles. We expected that **4** was transformed into a cyclic oxonium ion intermediate *via* removal of the acetoxy group by the action of a Lewis acid, and that the intermediate may react with nucleophiles to provide several 2-alkyl substituted 2,3-dihydro-1-benzoxepins (**6**) as the ring-expanded products (Scheme 1).³ Although there are many examples of the synthesis of 2,3-dihydro-1-benzoxepins,⁴ only a few examples are reported for the construction of those having an alkyl group at the 2-position on the ring, and no systematic study has been reported.⁵ We now report the synthesis of 2-alkyl substituted 2,3dihydro-1-benzoxepins by the Lewis acid-promoted reaction of 7-acetoxybenzo[*b*]cyclopropa[*e*]pyran derivatives (**4**) with silyl enol ethers *via* a cyclic oxonium ion.6 As the reactions of **4**, only a few solvolytic ring opening reactions have been reported.⁷ To our knowledge, there has been no publication concerning the carbon-carbon bond forming reactions of **4** under the Lewis acid-promoted conditions.

7-Acetoxybenzo[b]cyclopropa[e]pyran (4) was synthesized by the NaBH₄ reduction of the corresponding benzocyclopropapyranone derivatives,^{7,8} prepared from chromones and dimethyloxosulfonium methylide, followed by the treatment of the resulting alcoholes with Ac_2O/Et_3N in the presence of a catalytic amount of DMAP. First, the reactivity of 7-acetoxy-1,1a,7,7a-tetrahydro-7a-methylbenzo[*b*] cyclopropa[*e*]pyran (**4a**) by the action of a Lewis acid was examined. A solution of a catalytic amount of TMSOTf in MeCN was added to a solution of **4a** in MeCN at -40 °C to give the 2-acetoxy-2,3-dihydro-4-methyl-1-benzoxepin (**7a**) and the dimeric compound (**8a**) in 66% and 14% yields, respectively (Scheme 2). A similar tendency was observed with $TiCl₄$ as the Lewis acid. It was found that **4a** is very unstable under acidic conditions and was converted into **7a** even when **4a** was processed by silica gel column chromatography. From this result, we considered that **4a** is the equivalent of a cyclic oxonium ion (**5a**) under the Lewis acid-promoted conditions.

We next examined the carbon-carbon bond-forming reactions of the cyclopropane (**4**) with silyl enol ethers as the nucleophile. The reaction of **4a** with silyl enol ether (**9**) was chosen as the model. When the reaction was performed in the presence of TiCl₄ in CH₂Cl₂ at -40 °C, however, **7a** was obtained as the major product and the desired adduct was obtained in low yield (Table 1, Entry 1). In order to improve of the yield of **6b**, we examined the various reaction conditions such as the addition order of the reagents, solvent, and Lewis acid. As a Lewis acid, TMSOTf worked nicely as compared to a typical Lewis acid such as $TiCl₄$ or $SnCl₄$ (Entries 4 and 5). The use of MeCN as a polar solvent increased the

a Isolated yield. b To a solution of **4a** and **9** in MeCN was added a solution of TMSOTf in MeCN.

yield of the desired adduct compared with the use of CH_2Cl_2 (Entries 4 and 5). It was also found that the order of the addition of the reagents dramatically influenced the yield. While the desired adduct (**6b**) was produced in quantitative yield by the slow addition of a dilute solution of **4a** in MeCN to a mixture of **9** and TMSOTf in MeCN, the decrease in the yield of **6b** from 99% to 66% was observed and **7a** was obtained in 31% yield when TMSOTf was added to a solution of **4a** and **9** in MeCN (Entry 5). 9 Several examples of the TMSOTf-catalyzed ring expansion reactions were examined and the results are summarized in Table 2. As expected, the reaction of **4a** with several silyl enol ethers smoothly proceeded to give the corresponding benzoxepins in high yields (Entries 1~6). As for the cyclopropanes, **4b** as well as **4a** effectively reacted with silyl enol ethers to give the benzoxepins in good yields (Entries 7~12). Under the same reaction conditions, the cyclopropane (**4c**) having a phenyl group at the 1aposition also gave the 2,2-disubstituted benzoxepins (**6m** and **6n**) in moderate yields (Entries 13 and 14). Furthermore, the dialkyl substituted cyclopropane (**4d**) reacted with silyl enol ethers to give the 2,2,4 trialkyl-2,3-dihydro-1-benzoxepins in good yields (Entries 15 and 16).

Entry	4	Silyl enol ether	Product	Yield $(\%)^b$	Entry	4	Silyl enol ether	Product	Yield (%) ^b
$\mathbf{1}$	4a	OSiMe ₃ Me	Me $\overline{0}$ Me	81 6a	9	4b	OSiMe ₃ Ph	.Ph Ω 6i Ph	97 ^c
$\boldsymbol{2}$	4a	OSiMe ₃ Ph	Ph σ Me	99 6b	10	4b	QSiMe ₃	O 6j Ph	82 ^c
$\ensuremath{\mathsf{3}}$	4a	OSiMe ₃ Ph	.Ph Ö Me	81 ^c 6c	11	4b	OSiMe ₃	ő Ph	83 ^c 6k
4	4a	OSiMe ₃	п \circ Me	91 ^c 6d	12	4b	QSiMe ₃	\circ 61 Ph	85 ^c
$\mathbf 5$	4a	OSiMe ₃	$\ddot{\circ}$ Me	89 ^c 6e	13	4c	OSiMe ₃ Me	Me ‼o	70 6m
$\,6$	4a	QSiMe ₃	σ Me	80 ^c 6f	14	4c	OSiMe ₃ Ph	, Ph র ১	36 6n
$\overline{7}$	4 _b	QSiMe ₃ Me	Me \circ `Ph	68 6g	15	4d	OSiMe ₃ Me	Me $\text{M}_{\odot}^{\text{Me}}$ Me	52 60
$\,8\,$	4 _b	OSiMe ₃ Ph	Ph σ Ph	85 6h	16	4d	OSiMe ₃ Ph	Me P _h ‼ ० Me	$70\,$ 6p

Table 2. Reaction of 7-Acetoxy-1,1a,7,7a-tetrahydrobenzo[b]cyclopropa[e]pyrans (4) with Silyl Enol Ethers^a

^a All reactions were carried out in dry MeCN at -40 °C in the presence of 10 mol% of TMSOTf. ^b Isolated yield. ^c Two diastereomers were formed in the ratio of 1 : 1.

In summary, we have demonstrated that the TMSOTf-catalyzed ring opening addition reactions of **4** with silyl enol ethers smoothly proceeded to afford the corresponding 2,3-dihydro-1-benzoxepins in good yields. We are now investigating the Lewis acid-mediated ring expansion reactions of **4** with various nucleophiles, and the results will be reported in due course.

REFERENCES AND NOTES

- 1. Review: H. N. C. Wong, M.-Y. Hon, C.-W. Tse, and Y.- C. Yip, *Chem. Rev.*, 1989, **89**, 165.
- 2. Y. Sugita, K. Kawai, H. Hosoya, and I. Yokoe, *Heterocycles*, 1999, **51**, 2029.
- 3. Similar type of ring expansion reaction using cyclopropanated carbohydrates has been reported. J. O. Hoberg, *J. Org. Chem.*, 1997, **62**, 6615.
- 4. C. W. Jefford, J.-C. Rossier, S. Kohmoto, and J. Boukouvalas, *Helv. Chim. Acta*, 1985, **68**, 1804; S. Bhattacharya, S. R. Raychaudhuri, and A. Chatterjee, *J. Chem. Res. Synop*., 1985, 120; H. A. Carless and S. M.-Kibende, *J. Chem. Soc., Chem. Commun.,* 1987, 1673; A. N. Mandal and A. Chatterjee, *Indian J. Chem.*, 1992, **31B**, 156; H. Fukushima, H. Mabuchi, K. Itoh, Z. Terashita, K. Nishikawa, and H. Sugihara, *Chem. Pharm. Bull*., 1994, **42**, 541; Y. Satoh, A. H. Libby, C. Powers, T. J. Kowalski, D. H. White, and E. F. Kimble, *Bioorg. Med. Chem. Lett.*, 1994, **4**, 549; T. Fujiwara and T. Takeda, *Synlett*, 1999, 354.
- 5. H. Yamaoka, K. Kashiwagi, and T. Hanafusa, *Chem. Lett.*, 1981, 229; D. R. Buckle, D. S. Eggleston, C. S. V. H.-Frydrych, I. L. Pinto, S. A. Readshaw, D. G. Smith, and R. A. B. Webster, *J. Chem. Soc*., *Perkin Trans. 1*, 1991, 2763.
- 6. M. D. Lewis, J. K. Cha, and Y. Kishi, *J. Am. Chem. Soc*., 1982, **104**, 4976; Y. Masuyama, Y. Kobayashi, and Y. Kurusu, *J. Chem. Soc., Chem. Commun.*, 1994, 1123; K. Toshima, T. Ishizuka, G. Matsuo, and M. Nakata, *Tetrahedron Lett*., 1994, **35**, 5673; S. D. Rychnovsky and V. H. Dahanukar, *J. Org. Chem.*, 1996, **61**, 7648; S. D. Rychnovsky and N. A. Powell, *ibid*., 1997, **62**, 6460; O. Gaertzen, A. M. Misske, P. Wolbers, and H. M. R. Hoffmann, *Tetrahedron Lett.*, 1999, **40**, 6359.
- 7. H. Yamaoka, I. Mishima, M. Miyamoto, and T. Hanafusa, *Bull. Chem. Soc. Jpn*., 1980, **53**, 469; H. Yamaoka, K. Ohkata, and T. Hanafusa, *ibid*.*,* 1976, **49**, 245.
- 8. F. M. Dean and R. S. Johnson, *J. Chem. Soc., Perkin Trans. 1,* 1980, 2049; G. A. Caplin, W. D. Ollis, and I. O. Sutherland, *J. Chem. Soc. (C)*, 1968, 2302; T. Tatsuoka, K. Imano, K. Suzuki, M. Shibata, and F. Satoh, *Heterocycles,* 1990, **30**, 749; C. K. Ghosh, S. Sahana, and C. Ghosh, *Indian J. Chem.*, 1996, **35B**, 669.
- 9. General procedure for the reaction of **4** with silyl enol ethers: This is exemplified by the reaction of **4a** with silyl enol ether (**9**) using TMSOTf as a Lewis acid. To a stirred solution of silyl enol ether (**9**) (192 mg, 1 mmol) and TMSOTf (11 mg, 0.05 mmol) in MeCN (4 mL) was dropwise added a solution of **4a** (109 mg, 0.5 mmol) in MeCN (1 mL) over a 30 min period at -40 °C under an argon atmosphere. After being stirred for 30 min, the reaction was quenched at the same temperature by adding saturated aqueous NaHCO₃ (2 mL). The mixture was vigorously stirred for 10 min and allowed to warm to rt. The mixture was extracted with CH_2Cl_2 (20 mL x 3), the combined organic layers were dried over $Na₂SO₄$, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: hexane-AcOEt = 10 : 1) to give the benzoxepin (**6b**) (138 mg, 99%).