HETEROCYCLES, Vol. 53, No. 7, 2000, pp.1475 - 1478, Received, 5th April, 2000 (-)-AMPELOPSIN D IS DIFFERENT FROM (-)-QUADRANGULARIN A

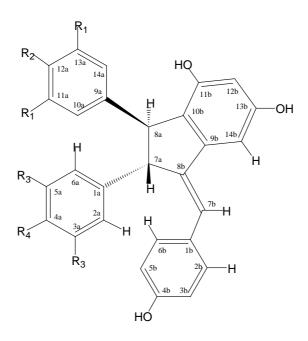
Masatake Niwa, * Junko Ito, Kenji Terashima, Tomoko Koizumi, Yoshiaki Takaya, and Ke-Xu Yan¹

Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468-8503, Japan

Abstract — The structure of (–)-ampelopsin D, hydroxystilbene dimer, was reinvestigated using spectroscopic methods. Furthermore, the relative and absolute stereostructures were discussed on the basis of chemical transformation of (+)- ϵ -viniferin to (–)-ampelopsin D.

In 1993, Y. Oshima *et al.* reported the isolation and structure of a hydroxystilbene dimer named (–)ampelopsin D (**1**) as a hepatoprotective substance from the roots of *Ampelopsis brevipedunculata* var. *hancei* (Vitaceae).^{2,3} In 1999, S. A. Adesanya *et al.* reported the isolation and structure of a hydroxystilbene dimer named (–)-quadrangularin A (**2**) from the stems of *Cissus quadrangularis* (Vitaceae).⁴ In their paper, it was described that the NMR data of ampelopsin D (**1**) are quite similar to those of quadrangularin A (**2**) and the reported structure of ampelopsin D is probably erroneous and should be **2**.⁴ Recently, we have isolated a hydroxystilbene dimer (**3**) from the corks of *Vitis vinifera* 'Kyohou' (Vitaceae). The ¹H and ¹³C NMR data of **3** are very similar to those of **1** (the spectra were taken in acetone-d₆) and **2** (the spectra were taken in methanol-d₄). We, therefore, studied the structure of (–)ampelopsin D is **1** and not **2**.

Structure Review of Ampelopsin D


Compound (**3**) isolated from *Vitis vinifera* 'Kyohou', $[\alpha]_D^{22} - 5^\circ(c \ 0.27)$, MeOH, cell length = 100 mm); HRFABMS m/z 455.1498 (calcd for $C_{28}H_{23}O_6$, 455.1495) showed very similar NMR data to those of (–)ampelopsin D (**1**) and (–)-quadrangularin A (**2**), respectively.^{1,3} The most important difference between (–)- ampelopsin D (**1**) and (–)-quadrangularin A (**2**) is whether H-2a (H-6a) shows an *ortho*-coupling or a *meta*-coupling. For the structure reviews of **1** and **2**, the structure of compound (**3**) was examined on the

		Α			В	
Carbon number	¹³ C		$^{1}\mathrm{H}$	${}^{13}C$		$^{1}\mathrm{H}$
1a	138.0	s^a		137.3	s ^a	
2a,6a	129.1	d	7.02 d $(8.8)^b$	128.8	d	$7.11 \text{ d} (8.8)^b$
3a,5a	116.5	d	6.67 d (8.8)	116.3	d	6.74 d (8.8)
4a	156.7	S		156.7	S	
7a	60.0	d	4.17 brs	59.5	d	4.27 brs
8a	59.2	d	4.05 brs	58.7	d	4.14 brs
9a	149.9	S		149.9	S	
10a,14a	106.7	d	6.06 d (2.2)	106.4	d	6.10 d (2.2)
11a,13a	159.2	S		159.3	S	
12a	101.3	d	6.04 t (2.2)	101.3	d	6.11 t (2.2)
1b	130.2	S		129.7	S	
2b,6b	131.2	d	7.08 d (8.8)	131.0	d	7.17 d (8.8)
3b,5b	116.0	d	6.56 d (8.8)	116.0	d	6.65 d (8.8)
4b	157.4	S		157.3	S	
7b	122.9	d	6.96 d (2.2)	122.6	d	7.03 d (2.2)
8b	143.7	S		143.1	S	
9b	147.9	S		147.5	S	
10b	124.7	S		123.8	S	
11b	156.3	S		156.1	S	
12b	103.8	d	6.18 d (2.2)	103.8	d	6.29 d (2.2)
13b	159.8	S	· /	159.7	S	× /
14b	98.3	d	6.69 d (2.2)	98.4	d	6.79 d (2.2)

Table 1. NMR Data of Compound (3) in Methanol- d_4 (A) and in Acetone- d_6 (B)

^{*a*}multiplicity of ¹³C signals.

 ${}^{b}J$ (Hz) in parentheses.

(-)-Ampelopsin D (1) : R_1 =OH, R_2 =H, R_3 =H, R_4 =OH (-)-Quadrangularin A (2) : R_1 =H, R_2 =OH, R_3 =OH, R_4 =H

basis of the NMR spectra taken in methanol- d_4 .⁵ In DIF-NOE experiments of **3**, the NOEs between H-7b and H-14b (4.0%), H-7b and H-2b (H-6b) (2.6%), and H-6b (H-2b) and H-7a (7.0%) were respectively observed. These observations indicated H-7a to be an allylic hydrogen of an Ar – $C_{7b} = C_{8b} - C_{7a}$ -grouping. This was further supported by the following observations. The correlations between H-7a and C-7a in the HMQC spectrum, between H-7b and C-7a in the HMBC spectrum, and between H-7a and H-7b in the ¹H-¹H COSY spectrum, were respectively observed. The long-range coupling between H-7a and H-7b was also confirmed by decoupling experiments.⁶ The broad singlet signal of H-7a changed to a sharp signal by irradiation of H-7b, and the doublet signal of H-7b changed to a singlet signal by irradiation of H-7a. This evidence confirmed the assignments of H-7a and C-7a. Next, the correlations between H-7a and C-2a (C-6a), and between H-2a (H-6a) and C-7a were respectively observed in the HMBC spectrum. The ¹H-¹H coupling constant value of H-2a (H-6a) is 8.8 Hz, which corresponds to a value of *ortho*-coupling.⁷ This means that the structure of compound (**3**) is characterized as **1**.⁸

Absolute Configuration of (–)-**Ampelopsin D** (+)- ϵ -Viniferin (**4**) ($[\alpha]_D^{22}$ +49.1° (*c* 1.85, MeOH, cell length = 100 mm), whose absolute configuration is known,⁹ was treated with trifluoromethanesulfonic acid in methanol under reflux for 7 days to give (–)-ampelopsin D (**1**) and its regio-isomer (**5**)¹⁰ based on a double bond, in yields of 7 % and 10 %, respectively. According to the reaction mechanism in Figure 1, (+)- ϵ -viniferin (**4**) will give a product having the structure of **1** and not a product having the structure of **2**, under the above reaction conditions. From the above-mentioned results, (–)-ampelopsin D should be represented as **1**, including the absolute configuration.

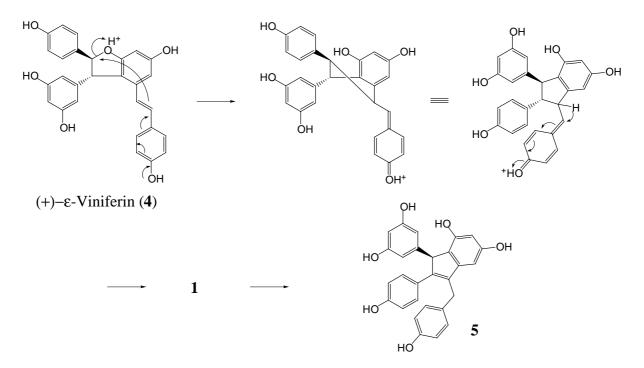


Figure 1. A reaction pathway of $(+)-\varepsilon$ -viniferin (4) to (-)-ampelopsin D (1) and its isomer (5)

Consequently, the ¹H and ¹³C NMR data of (–)-ampelopsin D (1) and (–)-quadrangularin A (2) both are very similar, but (–)-ampelopsin D (1) and (–)-quadrangularin A (2) are a different compound from each other.

ACKNOWLEDGEMENT

We thank Professor Yoshiteru Oshima, Graduate School of Pharmaceutical Sciences, Tohoku University, for providing NMR spectra of (–)-ampelopsin D. This research was financially supported by a Grant-in-Aid for Scientific Research and for High-Tech Research Center Project from the Ministry of Education, Science, Sports and Culture of Japan, which are gratefully acknowledged.

REFERENCES AND NOTES

- 1. On leave from Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- 2. Y. Oshima and Y. Ueno, *Phytochemistry*, 1993, **33**, 179.
- 3. Ampelopsin D from *Ampelopsis brevipedunculata* var. *hancei* was reported to show a negative optical rotation in a private communication from Prof. Y. Oshima.²
- 4. S. A. Adesanya, R. Nia, M.-T. Martin, N. Boukamcha, A. Montagnac, and M. Pais, *J. Nat. Prod.*, 1999, **62**, 1694.
- 5. The analyses of the spectra (¹H, ¹³C, DIF-NOE, ¹H-¹H COSY, NOESY, HMQC and HMBC) of compound (**3**) taken in acetone-d₆, gave the same conclusion as that in methanol-d₄.
- 6. The same long-range coupling was reported by Prof. Y. Oshima *et al.*²
- 7. The value of H-2a (H-6a) of (-)-quadrangularin A (2) was reported as 2 Hz.⁴
- 8. The ¹H NMR spectrum in acetone- d_6 of **3** was identical with that in acetone- d_6 of **1** sent by Prof. Y. Oshima.
- 9. H. Kurihara, J. Kawabata, S. Ichikawa, and J. Mizutani, Agric. Biol. Chem., 1990, 54, 1097.
- 10. 5: [α]_D²² -227.0° (*c* 0.39, MeOH, cell length = 100 mm); HRFABMS *m/z* 455.1499 (calcd for C₂₈H₂₃O₆, 455.1495); ¹H NMR (600 MHz, MeOH-d₄) δ 3.81 (1H, d, *J* = 16.1 Hz, H-7b), 3.86 (1H, d, *J* = 16.1 Hz, H-7b²), 4.79 (1H, s, H-8a), 5.98 (1H, t, *J* = 2.2 Hz, H-12a), 6.06 (3H, d, *J* = 2.2 Hz, H-10a, 14a, H-12b), 6.17 (1H, d, *J* = 2.2 Hz, H-14b), 6.65 (2H, d, *J* = 8.5 Hz, H-3a, 5a), 6.72 (2H, d, *J* = 8.5 Hz, H-3b, 5b), 7.06 (2H, d, *J* = 8.5 Hz, H-2a, 6a), 7.10 (2H, d, *J* = 8.5 Hz, H-2b, 6b); ¹³C NMR (150 MHz, MeOH-d₄) δ 32.2 (t, C-7b), 56.8 (d, C-8a), 100.8 (d, C-14b), 101.1 (d, C-12b), 101.5 (d, C-12a), 108.2 (d, C-10a, 14a), 115.8 (s, C-3a, 5a), 116.3 (d, C-3b, 5b), 125.4 (s, C-10b), 128.9 (s, C-1a), 130.2 (d, 2b, 6b), 131.1 (d, 2a, 6a), 132.1 (s, C-1b), 136.6 (s, C-8b), 144.0 (s, C-9a), 149.9 (s, C-9b), 150.4 (s, C-7a), 154.0 (s, C-11b), 156.5 (s, C-4b), 157.5 (d, C-4a), 158.8 (s, C-11a, 13a), 158.9 (s, C-13b).