HETEROCYCLES, Vol. 53, No. 7, 2000, pp. 1583 - 1587, Received, 6th April, 2000 SELECTIVE ELECTROCATALYTIC OXIDATION OF AMINES MEDIATED BY DECAH YDROQUINOLINYL-*N*-OXYL RADICAL

Yoshitomo Kashiwagi,* Futoshi Kurashima, Chikara Kikuchi, Jun-ichi Anzai, and Tetsuo Osa

Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aobaku, Sendai 980-8578, Japan

Abstract — Electrocatalytic oxidation of amines was studied using (\pm) trans,cis-4-benzoyloxy-2,2,8a-trimethyldecahydroquinolinyl-*N*-oxyl. The reaction with amines led to direct formation of carbonyl compounds in aqueous media in adequate conversion (> 78 %), high current efficiency (> 90 %) and high selectivity (100 %). Under anhydrous conditions, primary amines were also oxidized to the corresponding nitriles in satisfactory conversion (> 76 %), high current efficiency (> 89 %) and high selectivity (> 95 %).

Oxoammonium ions such as **2** can be easily prepared electrochemically by one-electron oxidation of nitroxyl radicals such as **1** (Scheme 1),¹ and they are powerful and selective oxidants for the oxidation of several functional groups.² Semmelhack and Schmid have reported the electrooxidation of amines to nitriles and carbonyl compounds with 2,2,6,6-tetramethylpiperidinyl-*N*-oxyl (TEMPO) as a stable organic nitroxyl radical catalyst.³ MacCorquodale *et al.* have demonstrated that, based on ESR and cyclic voltammetry, poly(TEMPO-4-acrylic ester) acts as an efficient catalyst for electrochemical oxidation of amines.⁴ We have also achieved the electrocatalytic oxidation of amines to nitriles on a graphite felt (GF) electrode coated with a thin poly (acrylic acid) (PAA) layer immobilizing 4-amino-TEMPO.⁵ However, a considerable body of these works has used TEMPO derivatives as an effective redox mediator. More recently, we have reported the electrocatalytic behavior of (±)-*trans*,*cis*-4-benzoyloxy-2,2,8a-trimethyl-decahydroquinolinyl-*N*-oxyl (**1**)⁶ in the electrooxidation reactions of alcohols to aldehydes or ketoness.⁷ To examine the wide applicability of this nitroxyl radical to the electrocatalytic oxidation of substrates other

Scheme 1. A reversible redox system based on 1.

than alcohol, we report here a preparative electrocatalytic oxidation of amines using **1**.

Cyclic voltammetry was used to check whether electrontransfer from oxidatively generated 2 to benzylamine occurred.⁸ The cyclic voltammogram of **1** in the presence of benzylamine and 2,6-lutidine in anhydrous CH₂CN solution is shown in Figure 1. The reversible wave at + 0.55 V vs. Ag/AgCl which corresponds to the 1/2 couple became irreversible; an increase of the catalytic peak height corresponded to oxidation of 1, although benzylamine is not electroactive below + 0.8 V vs. Ag/AgCl at a glass y carbon electrode. This means that 1 is electrocatalytically active for the Based on the cyclic oxidation of benzylamine. voltammmetry results, we have used two procedures for the oxidation of benzylamine.⁹ In the first

Figure 1. Cyclic voltammograms of 0.02 M of **1** in the presence (----) and absence (----) of 0.2 M of benzylamine and 1.6 M of 2,6-lutidine in 0.1 M of NaClO₄/CH₃CN at scan rate of 50 mV sec⁻¹.

procedure (method A), the preparative electrolysis reaction of benzylamine was performed at + 0.6 V *vs*. Ag/AgCl in anhydrous CH_3CN solution. During electrolysis, the substrate and product were occasionally analyzed by gas chromatography (GC).¹⁰ A time course of the electrooxidation of benzylamine by **1** is shown in Figure 2. One mmol of benzylamine reacted almost completely in about 5 h to yield benzonitrile. The current efficiency in the electrolysis is 93.5 % during the course of electrolysis, and a small amount of benzaldehyde was observed (95.6 % selectivity). The turnover number based on **1** (given by ratio of mole of product x 2 / mole of **1**) was calculated to be 19.0 at 5 h of electrolysis. On the contrary, the use

of 4-benzoyloxy-TEMPO in place of 1 yielded benzonitrile low conversion (18.2%) at 5 h of electrolysis, because the electrolysis potential was more negative than the oxidation peak potential 4-benzoyloxy-TEMPO (+ 0.66 V vs. Ag/AgCl). The nitroxyl radical compounds having benzoyloxy group has been smoothly electron transfer between electrode and substrate than other nitroxyl radical derivatives.¹¹ In the second procedure (method B), the reaction was carried out in mixtures of H₂O and CH₃CN. The consumption of benzylamine and formation of benzaldehyde are plotted against electrolysis time in Figure 3. After 5 h of electrolysis, benzylamine was oxidized to benzaldehyde in

Figure 2. Macroelectrolysis of benzylamine by **1** in the presence of 2,6-lutidine in 0.1 M of $NaClO_4 / CH_3CN$. O: benzylamine, O: benzonitrile, O: benzaldehyde and D: current efficiency.

95.3 % yield, and no by-product was observed (100 % selectivity). The current efficiency and turnover number were 96.2 % and 19.1, respectively, at 5 h of electrolysis. The preparative results of oxidation for five kinds of amines (benzylamine, p-methoxybenzylamine, nonylamine, 1-phenylethylamine and cyclohexylamine) are shown in Table 1. Under anhydrous condition, nitriles were the major products from RCH_2NH_2 . After 5 h of electrolysis, amines were oxidized to the corresponding nitriles in adequate current efficiency (89.1-93.5 %) and yield (76.6 -92.8 %). A slightly lower selectivity (95.6 -96.8 %) is ascribable to the formation of small amounts (2.5 - 4.2 %) of aldehyde induced by

Figure 3. Macroelectrolysis of benzylamine by **1** in the presence of 2,6-lutidine in 0.1 M of $NaClO_4 / CH_3CN-H_2O(4:1 v/v)$. O: benzylamine, • : benzaldehyde and : : current efficiency.

 H_2O . The turnover numbers are larger than 15. Shono *et al.* have reported the electrooxidation of amines to nitriles using halogen ions as mediators.¹² However, the use of halogen ions required more charge passed than that of nitroxyl radicals such as **1**. On the other hand, as long as some water was present, the products from RCH₂NH₂ and R₂CHNH₂ were aldehydes and ketones, respectively. After 5 h of electrolysis, amines were oxidized to the corresponding carbonyl compounds in 90.2 – 98.4 % current

	Substrate	Method	Product	Charge passed / C	Current efficiency / %	Conversion %	Selectivity %	Turnover
				Passed / C		,.	,.	
	NH ₂	А	CN (CHO)	195.9	93.5	90.7 (4.2)	95.6	19.0
CH₃O		В	СНО	191.2	96.2	95.3	100	19.1
	NH ₂	А	CH ₃ O CN (CH ₃ O CHO)	200.5	92.6	92.8 (3.4)	96.5	19.2
		В	СН30	192.6	98.4	98.2	100	19.6
	CH ₃ (CH ₂) ₈ NH ₂	А	$CH_3(CH_2)_7CN (CH_3(CH_2)_7CHO)$	171.3	89.1	76.6 (2.5)	96.8	15.8
		В	CH ₃ (CH ₂) ₇ CHO	167.7	90.2	78.4	100	15.7
	CH ₃	В	CH3	184.8	91.8	87.9	100	17.6
	NH ₂	В	O O	185.5	95.7	92.0	100	18.4

Table 1. Electrocatalytic Oxidation of Amines to Nitriles and Carbonyl Compounds on 1

Scheme 2. A proposed mechanism of oxidation of amine to nitrile and carbonyl compound with 2.

efficiency, 78.4 - 98.2 % yield and 100 % selectivity. (*R*)- and (*S*)-forms of racemic 1-phenethylamine were equally oxidized to acetophenone, though 1 contains chiral centers. This fact means that 1 is non-enantioselective for the oxidation of optically active amines.

The mechanism of electrocatalytic oxidation of amines to nitriles and carbonyl compounds with 1 is proposed in Scheme 2. The oxoammonium ion (2) is expected at first to react with the amine, that is, to eliminate a proton from the amine, then to change to the hydroxylamine (3). The disproportionation of 2 and 3 produces 1, which is re-oxidized electrochemically to complete a catalytic cycle.³ Imines are the expected unstable intermediates, which can react again with 2 to produce stable nitriles or can be hydrolyzed to carbonyl compounds.

In conclusion, the compound (1) catalyzed the oxidation reaction of RCH_2NH_2 and R_2CHNH_2 to aldehydes and ketones, respectively, in an aqueous media. Under anhydrous conditions, RCH_2NH_2 were converted to the corresponding nitriles. During electrolysis, the oxoammonium ion (2) slowly decomposes. We are now trying to clarify the decomposition mechanism of 2.

ACKNOWLEDGEMENTS

This work was supported in part by Grants-in-Aid for Scientific Research on Priority Areas (No. 11119208: "Innovative Synthetic Reactions") and for Encouragement Research (No. 10771266) from the Ministry of Education, Science, Sports and Culture of Japan.

REFERENCES AND NOTES

- 1. M. F. Semmelhack, C. R. Schmid, D. A. Cortes, and C. S. Chou, J. Am. Chem. Soc., 1983, 105, 4492.
- 2. J. M. Bobbitt and M. C. L. Flores, Heterocycles, 1988, 27, 509.

- 3. M. F. Semmelhack and C. R. Schmid, J. Am. Chem. Soc., 1983, 105, 6732.
- 4. F. MacCorquodale, J. A. Crayston, J. C. Walton, and D. J. Worsfold, *Tetrahedron Lett.*, 1990, **31**, 771.
- 5. Y. Kashiwagi, F. Kurashima, C. Kikuchi, J. Anzai, T. Osa, and J. M. Bobbitt, J. Chin. Chem. Soc., 1998, 45, 135.
- 6. J. S. Roberts and C. Thomson, J. Chem. Soc., Perkin Trans. 2, 1972, 2129.
- 7. F. Kurashima, Y. Kashiwagi, C. Kikuchi, J. Anzai, and T. Osa, *Heterocycles*, 1999, 50, 79.
- 8. A glassy carbon disk electrode (3 mm diameter) and a platinum wire were employed as the working electrode and the counter electrode, respectively. The anode potentials were referred to Ag/AgCl (saturated AgCl and $(CH_3)_3C_2H_5NCl$ in acetonitrile). Cyclic potential sweeps were generated by a Hokuto Denko Model HABF-501 potentiostat/galvanostat. Cyclic voltammograms were recorded on a Graphtec Model WX1200 X-Y recorder. All electrochemical measurements were carried out at room temperature (*ca.* 20 °C).
- 9. Preparative potential-controlled electrolysis was performed in an anhydrous CH₃CN (method A) or 4:1 CH₃CN/H₂O (v:v) (method B) solution, using an 'H' type divided cell separated by a cationic exchange membrane (Nafion 117). The anolyte contained 1 mmol of substrate, 0.1 mmol of 1, 0.5 mmol of tetralin as gas chromatographic standard, 8 mmol of 2,6-lutidine and 0.5 mmol of NaClO₄ as a supporting electrolyte in a total volume of 5 mL. The catholyte was 5 mL of anhydrous CH₃CN (method A) or 4:1 CH₃CN/H₂O (v:v) (method B) containing 0.5 mmol of NaClO₄. Controlled potential electrolysis was carried out at + 0.6 V vs. Ag/AgCl. The GF electrode (Nippon Kynol Inc.), the size of 5 x 5 x 5 mm, was used as a working anode electrode.
- 10. The GC analysis was carried out using CP-Cyclodextrin-B-2,3,6-M-19 capillary column (0.25 mm φ x 25 m). The column temperature was increased at 3 °C min⁻¹ from 80 °C to 150 °C. The injection and detector temperatures were 200 °C and 240 °C, respectively.
- 11. T. Inokuchi, S. Matsumoto, T. Nishiyama, S. Torii, Synlett, 1990, 1, 57.
- 12. T. Shono, Y. Matumura, and K. Inoue, J.and Am. Chem. Soc., 1984, 106, 6075.