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Abstract – Palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-

propenyl acetate (8) with a dimethyl malonate-BSA-LiOAc system has been

successfully carried out in the presence of new chiral P,N-ligands 5 in good yields

with good enantioselectives (up to 83% ee).

Palladium-catalyzed allylic alkylation is a widely used process in organic synthesis,1 and the

development of efficient enantioselective catalysis for this reaction is awaited.2 Recently, P,N-bidentate

ligands were found to be efficient chiral sources for this reaction.3 A sort of this ligand is

aminophosphine such as Wimmer’s C2-symmetric ligand (1),4 Miyano’s ligand (2)5 and Hiroi’s ligand

(3).6 On the other hand, we previously reported phosphine-hydrazone bidentate ligands such as 2-

diphenylphosphinobenzaldehyde SAMP hydrazone (DPPB-SAMP) (4).7   

We were interested in aminophosphine ligands which have a methoxymethyl moiety. This ether bond

was expected to interact with the incoming nucleophile to bring about good stereoselectivity. Thus we

designed a chiral P,N-ligand which was cut out a hydrazone moeity of 4 for application to asymmetric

catalysis. Here, we report palladium-catalyzed asymmetric allylic alkylation (AAA reaction) using chiral

P,N-ligands (5).  

 The synthesis of chiral P,N-ligand such as (R)-1-[2-(diphenylphosphino)phenyl]-2-

(methoxymethyl)pyrrolidine (5a) was shown to Scheme 1. Nucleophilic aromatic substitution (SNAr)

reactions8 of the corresponding phosphine oxide compound such as diphenyl(2-
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methoxyphenyl)phosphine oxide (6a) with lithiated (R)-1-(methoxymethyl)pyrrolidine gave phosphine

oxide (7a). Phosphine oxide (7a) was converted into the desired chiral P,N-ligand (5a) using

trichlorosilane-triethylmine in good yield.9 The other ligands (5b-d) were prepared in the same manner.10  

These chiral P,N-ligands (5) were applied to the palladium-catalyzed AAA reaction of 1,3-diphenyl-2-

propenyl acetate (8) with a dimethyl malonate (9). This reaction was carried out under our previously

reported conditions7 (2 mol% of [Pd(η3-C3H5)Cl]2, 4 mol% of chiral ligand, and a mixture of N,O-

bis(trimethylsilyl)acetamide (BSA) and 2 mol% of LiOAc in THF) (Scheme 2, Table 1).

Using ligand (5a), the product (10) was obtained in good chemical yield (93%), but enantiomeric excess

was low (49% ee) (Entry 1). However, using ligand (5b)11 which have a naphthyl backbone, the product

(10) was obtained in good enantioselectivity (74% ee) (Entry 2). Using regioisomeres of 5b such as 5c

and 5d, the enantioselectivities of 10 were decreased (Entry 3 and 4). When the reaction was carried out

in toluene, the chemical yield and enantiomeric excess were increased (Entry 2 vs Entry 5). The reaction

at 0 °C further improved the enantioselectivity to 79% ee (entry 9). Although enantioselectivity was

improved to 83% ee by further depressing the temperature (-20 °C), the reaction rate became slow (Entry

10). In each case, the product (10) was formed with the (R)-(+)-enantiomer predominating, as determined

from the sign of the optical rotation.12 When 2-diphenylphosphinobenzaldehyde RAMP hydrazone (ent-

4) was used as a catalyst, palladium-catalyzed AAA reaction with ent-4 was gave (S)-isomer of 10.7
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RAMP ((R)-1-amino-2-(methoxymethyl)pyrrolidine) was prepared from (R)-1-

(methoxymethyl)pyrrolidine. So we can show that palladium-catalyzed AAA reactions gave each

enantiomer products (10) using chiral ligands which were prepared from one chiral source such as (R)-1-

(methoxymethyl)pyrrolidine.

In conclusion, we showed the palladium-catalyzed AAA reaction using chiral P,N-ligands (5) with a

good enantiomeric excess. Further studies on the optimization of ligands and application to other

asymmetric reactions are in progress in our laboratory.  
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Table 1.  Asymmetric allylic alkylation using chiral P,N-ligands (5). a

Entry Ligand Solv. Yield  of (R)-10/ %b ee  of (R)-10/ %c

1 5a 93 49

2 5b 79 74

3 5c 91 24

6 5b 94 60

7 5b 95

4 5d 96 35

5 5b 94 76

8 5b 63

THF

THF

THF

THF

PhMe

CH2Cl2

DMF

PhMe

MeCN

10e 5b 88 83

a The reaction was carried out at rt. for 24 h.
b Isolated yields. 
c Determing by HPLC analysis using a chiral column (Chiralcel OD).
d This reaction was carried out at 0 °C for 96 h.
e This reaction was carried out at -20 °C for 7 days.
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