THE FIRST TOTAL SYNTHESIS OF (R)-(-)-PYRIDINDOLOL K2 AND ITS ENANTIOMER

Naoko Kanekiyo,^a Tominari Choshi, ^a Takeshi Kuwada,^b Eiichi Sugino,[†]^a and Satoshi Hibino^{* a}

^a Graduate School of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan

^b Process Chemistry Laboratory, Pharmaceutical Research Laboratory, Taisho Pharmaceutical Co. Ltd., 1-403 Yoshino-cho, Ohmiya, Saitama 330-8530, Japan

Abstract The enantioselective first total synthesis of (*R*)-(-)-pyridindolol K2(2) together with its enantiomer (2a) has been achieved in nine steps.

Pyridindolol K2 (2) was isolated from the culture broth of *Streptomyces* sp. K93-0711 together with pyridindolol K1 (1) and pyridindolol (3) in 1997 by Omura and co-workers.¹ Pyridindolol (3) is already known to be a β -galactosidase inhibitor,² and pyridindolol glucosides have also been isolated from *Streptomyces* parvulus.³ The structures of these compounds (1-3) have been elucidated by spectroscopic and X-Ray crystallographic analyses.^{1,2} The absolute stereochemistry of three pyridindolols (1-3) has been determined to be an *R*-configuration.¹

We here describe the first total synthesis of (*R*)-(-)-pyridindolol K2 (2). *N*-Methoxymethyl-(MOM)-3iodoindole-2-carbaldehyde (4)⁴ was used as a starting material for the synthesis of 1,3-disubstituted β carboline nucleus. 3-Iodoindole (4) was subjected to the palladium catalyzed cross-coupling reaction with [(methoxymethyloxy)propynyl]tributyltin in the presence of tetraethylammonium chloride in DMF to

[†] Death: May 29, 2000

yield the 3-(methoxymethyloxy)propynylindole (5) (95%).⁵ The treatment of the indole-2-carbaldehyde (5) with hydroxylamine gave the oxime (6a) (90%). Thermal cyclization of 5 was carried out at 180°C in *o*-dichlorobenzene to produce the β -carboline *N*-oxide (7a) in 80% yield. This type of cyclization reaction for the synthesis of β - and γ -carbolines has recently been reported by the Sakamoto group.⁶ In order to examine the reaction mechanism of this cyclization, the oxime (6a) was treated with deuterated water-deuterated acetone (1:2) to give the deuterated oxime (6b). After the removal of solvent, the deuterated oxime (6b) was heated at 180°C in *o*-dichlorobenzene to give the 4-deuterated β -carboline *N*-oxide (7b). In the ¹H-NMR spectra, a singlet signal at δ 8.12 due to the proton at the 4-position of β -carboline (7a) was observed, but a singlet signal attributable to the 4-position of 7b was not. Based on this fact, it was confirmed that D atom was incorporated at the 4-position of 7b. The incorporation of D atom of 7b was also supported by observations of the molecular ion peaks in the mass spectra, 7a: m/z 302 and 7b: m/z 303, respectively. These results indicated that the reaction proceeded through an ionic process similar to that described by Sakamoto.⁷

Next, the *N*-oxide (**7a**) was heated at 110°C in acetic anhydride to give the *N*-MOM-1-hydroxy-3-(methoxymethyloxy)methyl- β -carboline (**8**) (82%). Treatment of **8** with trifluoromethanesulfonic acid and pyridine afforded the triflate (**9**) (99%), which was subjected to the palladium catalyzed crosscoupling reaction with ethenyltributyltin in the presence of tetraethylammonium chloride in DMF to give the 1-vinyl- β -carboline (**10**) (90%). Deprotection of the *N*,*O*-bis-MOM group of **10** with trimethyl orthoformate, trifluoromethanesulfonic acid, and methanol in nitromethane⁸ afforded the 1,3-disubstituted β -carboline (**11**) (75%).

After acetylation (70%) of the alcohol (11), the enantioselective oxidation of 1-vinyl- β -carboline (12) by the Sharpless procedure⁹ was attempted. The reaction of 12 with AD-mix- α provided the 1,2-diol (2a)¹⁰ in 67% yield {99.2%ee by HPLC, [α] $_{D}^{23}$ +33.0° (*c*=0.212, MeOH)}. By contrast, the reaction of 12 with AD-mix- β provided the 1,2-diol (2)¹⁰ in 60% yield {99.6%ee by HPLC, [α] $_{D}^{23}$ –33.8° (*c*=0.195, MeOH)}. The specific rotation of the latter (-)-pyridindolol K2 (2) approximately corresponded to that reported for natural pyridindolol K2 (2) {[α] $_{D}^{20}$ -35°(*c*=0.40 in MeOH)}. The spectral data¹⁰ of 2a and 2 were identical in all respects to data¹ reported for the natural product.

Thus, the first total synthesis of (R)-(-)-pyridindolol K2 (2) together with its enantiomer (2a) was established in a nine-step sequence through the thermal cyclization of 3-ethynylindole-2-carbaldehyde oxime (6), followed by enantioselective 1,2-dihyhydroxylation. The conversion of pyridindolol K2 (2) to pyridindolol (3) has previously been carried out with sodium methoxide in methanol by the Omura

group.¹ Consequently, formal total synthesis of pyridindolol (3) was also completed. We are now in the process of constructing of the β -carboline nucleus (7a) based on the thermal electrocyclic reaction of 1-azahexatriene system^{8,11} involving the indole 2,3-bond, along with the total synthesis of pyridindolol K1

ACKNOWLEDGEMENT

We wish to thank Professor T. Sakamoto (Tohoku University) for useful suggestions of the thermal cyclization. This work was supported in part by Grants-in Aid for Scientific Research (11672131) from the Ministry of Education, Science, Sports and Culture of Japan.

REFERENCES AND NOTES

- 1 Y.-P. Kim, S. Takamatsu, M. Hayashi, K. Komiyama, and S. Omura, J. Antibiotics, 1997, 50, 189.
- T. Aoyagi, M. Kumagai, T. Hazato, M. Hamada, T. Takeuchi, and H. Umezawa, *ibid.*, 1975, 28, 555;
 M. Kumagai, H. Nagasawa, T. Aoyagi, and H. Umezawa, *ibid.*, 1975, 28, 876; M. Kumagai, T. Aoyagi, and H. Umezawa, *ibid.*, 1976, 29, 696.
- 3 L. Hagmann and W. Keller-Sherlein, J. Antibiotics, 1988, 41, 289.
- 4 T. Choshi, T. Sada, H. Fujimoto, C. Nagayama, E. Sugino, and S. Hibino, *J. Org. Chem.*, 1997, **62**, 2535.
- 5 All new compounds provided satisfactory spectral and physical data.
- 6 T. Sakamoto, A. Numata, H. Saitoh, and Y. Kondo, *Chem. Pharm. Bull.*, 1999, 47, 1740.
- 7 T. Sakamoto, A. Numata, K. Hayashi, and Y. Kondo, *ibid.*, 2000, **48**, 669.
- T. Choshi, T. Kuwada, M. Fukui, Y. Matsuya, E. Sugino, and S. Hibino, *Chem. Pharm. Bull.*, 2000, 48, 108.
- K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K.-S. Jeong, H.-L.Kwong,
 Z.-M. Wang, D. Zu, and X.-L. Zhang, J. Org. Chem., 1992, 57, 2768.
- 10 (S)-(+)-Pyridindolol K2 (2a): mp 124-125°C (MeOH-CHCl₃); ¹H-NMR (300 MHz, MeOH-d₄) δ
 2.13 (3H, s), 3.97 (2H, br s), 5.20 (1H, br s), 5.32 (2H, s), 7.22 (1H, t, J=7.7 Hz), 7.53 (1H, dd, J=7.0, 1.1 Hz), 7.60 (1H, d, J=8.0 Hz), 8.05 (1H, s), 8.15 (1H, d, J=8.0 Hz); ¹³C-NMR (75 MHz, MeOH-d₄) δ 20.9, 67.0, 68.4, 76.0, 113.0, 114.3, 120.7, 122.0, 122.5, 129.6, 131.6, 134.7, 142.8, 144.1, 145.7, 172.7; MS *m*/z: 300 (M⁺). (*R*)-(-)-Pyridindolol K2 (2): mp 123-124°C (MeOH-CHCl₃); ¹H-NMR (300 MHz, MeOH- d₄) δ 2.13 (3H, s), 3.97 (2H, br s), 5.20 (1H, br s), 5.32 (2H, s), 7.22 (1H, t, J=7.0 Hz), 7.54 (1H, dd, J=8.0, 1.1 Hz), 7.60 (1H, d, J=8.0 Hz), 8.05 (1H, s), 8.15 (1H, d, J=8.0 Hz); ¹³C-NMR (75 MHz, MeOH- d₄) δ 20.9, 67.0, 68.4, 76.1, 113.0, 114.3, 120.7, 122.0, 122.5, 129.6, 131.6, 134.7, 142.8, 144.2, 145.7, 172.7; MS *m*/z; 300 (M⁺).
- H. Yoshioka, Y. Matsuya, T. Choshi, E. Sugino, and S. Hibino, *Chem. Pharm. Bull.*, 1996, 44, 709;
 T. Choshi, Y. Matsuya, M. Okita, K. Inada, E. Sugino, and S. Hibino, *Tetrahedron Lett.*, 1998, 39, 2341; N. Kuwabara, H. Hayashi, N. Hiramatsu, T. Choshi, E. Sugino, and S. Hibino, *Chem. Pharm. Bull.*, 1999, 47, 1805 and related references cited therein.