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Abstract- A slight modification of the Borch reductive amination method (delayed

addition of NaBH3CN) was applied to an indole aldehyde compound, analog of the

natural alkaloid, goniomitine. This reaction led to a series of new cytotoxic bis-

indole alkaloids with a 1,2,3,4-tetrahydroquinoline bridge.

In a previous publication, we reported on a slight modification of the Borch reductive amination method

which consists in delayed addition of NaBH3CN.1,2 In the case of reductive amination between an

enolizable aldehyde and aniline, this modification allows a one-pot synthesis of 2,3-disubstituted 1,2,3,4-

tetrahydroquinolines.
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This cyclization implies a Schiff base intermediate and results at the beginning from the addition of the

enamine form to the tautomeric Schiff base, as iminium salt. The application of this modified reductive

amination to the indole alkaloid (2), a semi-synthetic analog of natural goniomitine (3) 3 derived from (-)-



vincadifformine (1),4 provides a series of new cytotoxic bisindole alkaloids which are described in this

paper.
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Reaction of the aldehyde (2) with aniline hydrochloride (5 eq, MeOH, 16 h, rt) afforded under the Borch

original conditions (immediate addition of NaBH3CN) two main compounds (4) (23%) and (5) (28%)

while a delayed addition (20 min) of NaBH3CN led only to 5 (45%). HR-EIMS of these two products

proved the expected reductive amination structure for 4 and the dimeric structure for 5. 2D homo- and

heteronuclear NMR experiments were in full agreement with the 2,3 disubstituted 1,2,3,4-

tetrahydroquinoline hypothesis and demonstrated that 5 was a pure compound and not a mixture of

diastereoisomers at C2 and C3.5

N

N

N
N

N

N
N

R'

R21

19

18

17

15
14

12
11

10
9

6

3

8

7 6

5

4
32

R

R''

R''

NHC6H5

H

CO2CH3

HO
H

4

H

R R' R"

5 OH H CO2CH3
6 H H CO2CH3
7 COCH3 H CO2CH3
8 COCH3 COCH3 CO2CH3
9 OCOCH3 H CO2CH3
1 0 OH CH3 CO2CH3
1 1 OH H CH2OH

Numbering system of indole part according to ref. 8

In view of biological studies and structure activity relationships establishment, several derivatives were

prepared from 5. Reduction of the hydroxylamino functions was performed by aqueous TiCl3 in MeOH (6

eq, 20 h, rt) according to Murahashi's method 6 and led in 38% yield to the triamine (6). Acetylation of 6

(pyridine, Ac2O, 48 h, rt) furnished in 48 and 22% yields respectively 7, diacetylated on both indole

moieties, and the triacetylated compound (8). Acetylation of the hydroxylamino groups of 5 (pyridine,

Ac2O, 3 h, rt) afforded in 68% yield the di-O-acetyl (9). A selective functionalization of 5 on the only

tetrahydroquinoline secondary amino group was accomplished by methylation (CH2O/NaBH3CN, AcOH,



2 h, rt) and provided in 64% yield the N-methyl derivative (10). Finally the LiAlH4 reduction of 5 (THF, 3

h, reflux) led to the tetrahydroxy compound (11) in 32% yield.7

Stereochemistry of 5 at C2 and C3 - Previously,2 we had already observed that the relative stereochemistry

at C2 and C3 of the 1,2,3,4-tetrahydroquinoline was highly dependent on the starting aldehyde, a bulky

aldehyde yielding only the 2,3-trans disubstituted isomer because of steric hindrance of the substituents.

The very likely trans stereochemistry was inferred from 1H NMR experiments with the TiCl3 reduction

compound (6) (conclusions could not be drawn from 5 itself owing to the overlapping of H3, one H6 and

two other protons into a multiplet). 1H NMR spectrum of 6 displayed clearly both signals of H2 (td, J = 11

and 2.5 Hz) and H3 (ddd, J = 11.8, 11 and 5 Hz) at respectively δ 4.60 and 3.37 ppm. The observed JH2-

H3 = 11 Hz by irradiation experiments unambiguously proved the 2,3-trans relative configuration.

Unfortunately, the amorphous state of compounds (5-11) did not allow determination of the absolute

configuration at C2 and C3 by X-Ray crystallography.

Biological results - The original bisindole structure of 5 and its derivatives led us to evaluate their

cytotoxicity (IC50 and cell cycle effect) on L1210 leukemia cells in culture compared to monomers (2) and

(4) (Table 1).

Table 1
Compound IC50 (µM) a Effect on cell cycle

(% accumulation in G1) b
---------------------------------------------------------------------------------------------------------------------

2 38 n s c

4   7.1 61% at 50 µM

5    2.7 80% at 25 µM

6    3.1 no specificity

7           > 100 n s

8 24.8 55% at 100 µM

9           > 100 n s

1 0   5.3 79% at 25 µM

1 1   3.4 no specificity

a Inhibition of L1210 cells proliferation measured by the microculture tetrazolium assay
b 46% of untreated cells are in the G1 phase
c no studied

The most interesting compounds are 5 and 10 which induced a high and dose-dependent accumulation in

the G1-phase of the L1210 cell cycle. It is noteworthy that hydroxylamino group on the indole moieties

seems essential for the cytotoxicity with accumulation in the G1-phase but not the tetrahydroquinoline N-H

function. These observations could be related to probable occurence of intramolecular hydrogen bonds

between the carboxyl group and the hydroxylamino group of the two indole moieties. A computational

conformational analysis of 5 with Systematic Search within Sybyl v 6.2 confirmed these hydrogen bond

patterns in both 2S,3S and 2R,3R trans stereoisomers, which does not allow to specify the absolute



configuration at C2 and C3. Synthesis and biological study of analogs of 5 modified on the only

tetrahydroquinoline ring are in progress and will be the subject of a further article.
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