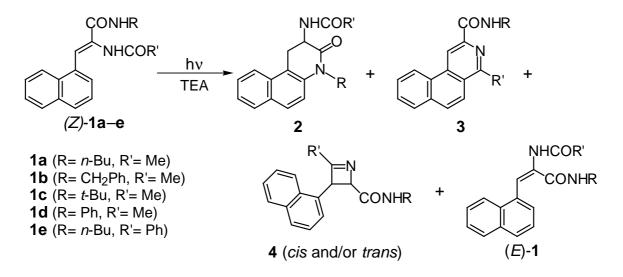
HETEROCYCLES, Vol. 53, No. 2, 2000, pp. 271 - 276, Received, 6th October, 1999 ELECTRON TRANSFER-INITIATED PHOTOCYCLIZATION OF SUBSTITUTED α-DEHYDRO(1-NAPHTHYL)ALANINES

Tadamitsu Sakurai,* Yoshiko Morioka, Kei Maekawa, and Kanji Kubo[†]


Department of Applied Chemistry, Faculty of Technology, Kanagawa University, Kanagawa-ku, Yokohama 221-8686, Japan [†]Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

<u>Abstract</u>-On irradiation in the presence of triethylamine, the title compounds (1) having *n*-butyl and benzyl groups gave preferentially dihydrobenzoquinolinones (2) *via* electron transfer, whereas the introduction of the bulky *tert*-butyl and phenyl substituents into 1 resulted in the formation of benzoisoquinoline (3) and 1-azetine (4) derivatives without affording 2.

In recent years much attention has been devoted to the synthetic application of excited-state processes initiated by electron transfer (ET), owing to the fact that many photoinduced ET reactions proceed in high chemical and quantum yields enabling the construction of heteroatom-containing polycyclic compounds.^{1,2} In the course of our systematic study towards the characterization of the excited-state reactions of substituted -dehydrophenylalanines, we have discovered interesting photocyclization reactions giving isoquinoline and 1-azetine derivatives.³ If we introduce a naphthyl group (instead of a phenyl) into - dehydroamino acids, it is expected that we might be able to explore ET-initiated photoreactions of naphthyl-substituted -dehydroamino acid derivatives in the presence of an aliphatic amine.^{1,4} In this communication we demonstrate that the photoreaction of *N*-acyl -dehydro(1-naphthyl)alanines (1) bearing *n*-butyl and benzyl groups on its carboxamide side chain in MeOH containing triethylamine (TEA) proceeds by an ET mechanism to give 1,2-dihydro[*f*]benzoquinolinone derivative (2) as the major product, whereas the introduction of bulky *tert*-butyl and phenyl substituents into 1 completely suppresses the appearance of 2 resulting in the formation of benzo[*f*]isoquinoline (3) and 1-azetine (4) derivatives (Scheme 1).

The starting (*Z*)-isomers (**1a**–**e**) were prepared in nearly quantitative yields by the ring-opening reactions of 1-naphthyl-substituted oxazolones with primary amines.⁵ After a nitrogen-purged MeOH solution of **1a** $(5.0 \times 10^{-3} \text{ mol dm}^{-3})$ containing TEA (0.10 mol dm⁻³) was irradiated with Pyrex-filtered light (>280 nm) from a 450 W high-pressure Hg lamp for 1.5 h at room temperature, the product mixture obtained was subjected to preparative thin-layer chromatography over silica gel, which allowed us to isolate (*Z*)-**1a** (22%: isolated yield), (*E*)-**1a** (20%), **2a** (12%), and **3a** (5%).⁶ A careful ¹H NMR analysis of the product mixture suggested the detectable formation of the *cis*-azetine isomer (**4a**) whose ring-proton signals with the J_{34} value of 10.7 Hz were detected at 5.04 and 6.50 ppm,³ though no attempt was made to isolate **4a owing**

to its poor yield (Scheme 1).

Scheme 1 Product distribution derived from the photoreaction of (*Z*)-1a–e in MeOH containing TEA.

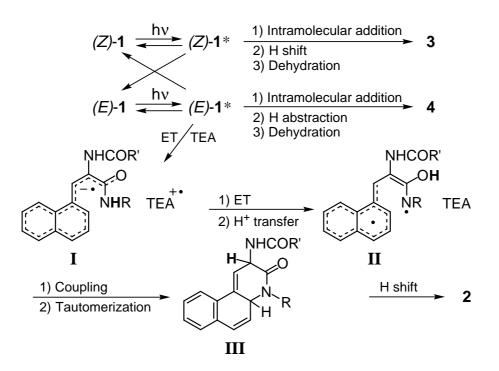

Compound	Irradiation time /h								
Compound	0	0.5	1.0	1.5	2.0	3.0	5.0		
<i>(Z</i>)-1a	100	66.0	45.9	37.4	27.7	16.3	3.2		
<i>(E)</i> -1a	0	28.8	38.2	36.7	32.8	20.3	4.5		
2a	0	3.9	10.3	18.3	28.6	47.9	71.7		
3a	0	1.0	5.1	6.9	9.9	13.9	18.4		
4a	0	0.2	0.4	0.7	1.0	1.6	2.1		

Table 1. Relation between irradiation time and composition (%) of each compound in methanol^a

^a At regular time intervals, an appropriate amount of the solution being irradiated was pipetted off and concentrated to dryness in vacuo, giving the residue which was subjected to ¹H NMR analysis in DMSO- d_6 . ¹H NMR compositions were estimated from the area ratio of a given signal for each compound.

The finding that the photoproducts (2-4) are stable enough such that they undergo only negligible decomposition under the irradiation conditions made it possible to monitor the reactions by means of ¹H NMR spectroscopy, as typically shown in Table 1. The result obtained for (*Z*)-1a demonstrates the rapid production of (*E*)-1a and the subsequent increase in compositions for 2a-4a with the decrease of (*E*)- and (*Z*)-isomer compositions, being consistent with the mechanism in which these excited-state isomers serve as precursors of these products. On the other hand, there was no formation of the benzoquinolinone derivative (2a) when an oxygen-free MeOH solution of (*Z*)-1a (5.0×10^{-3} mol dm⁻³) containing no TEA was irradiated with Pyrex-filtered light (UV and ¹H NMR analyses), suggesting that ET from TEA to the excited-state naphthylmethylene moiety in 1a participates in the appearance of 2a as the primary process.

The same results were obtained also for **1b** and **1e**. The suggestion described above is substantiated by the following findings: (1) the fluorescence of **1a** $(5.0 \times 10^{-5} \text{ mol dm}^{-3})$ in MeOH is quenched by TEA according to the Stern-Volmer equation, $I_0/I = 1 + 4.5 \pm 0.5$ [TEA], where *I* and I_0 refer to the fluorescence intensities of **1a** with and without TEA and (2) the 250 nm absorption (which is characteristic of the benzoquinolinone skeleton) increases with an increase in TEA concentration (absorbance at 250 nm= 1.00 and 2.20 at [TEA]= 0 and 0.10 mol dm⁻³, respectively) when a MeOH solution of **1a** (5.0×10^{-5} mol dm⁻³) is irradiated for 12 min in the same manner. Chem 3D modeling of (*Z*)- and (*E*)-**1a** showed that the (*E*)-isomer adopts a most suitable conformation for the cyclization affording **2a**. Accordingly, these considerations (in addition to the previous result)^{3a} led us to propose Scheme 2 that explains the observed product distribution.

Scheme 2 Proposed mechanism for the formation of 2.

According to Scheme 2, we predict that the *N*-alkyl amide hydrogen in the starting **1** should migrate to the 2-position of the benzoquinolinone ring upon forming **2**, and that the TEA concentration should remain constant during the reaction. After the H-D exchange reaction for the amide protons of **1a** $(5.0 \times 10^{-3} \text{ mol dm}^{-3})$ in MeOD was completed (12 h incubation), deuterated **1a** was irradiated for 5.0 h in the same solvent under the same conditions. ¹H NMR spectra of the product in DMSO-*d*₆, obtained after usual work-up, clearly showed disappearance of the 4.56 ppm signal which was ascribed to the proton attached to the 2-position in the ring. Furthermore, a ¹H NMR analysis of the reaction mixture obtained by the irradiation of a CD₃OD solution of **1a** (0.025 mol dm⁻³) containing TEA (0.10 mol dm⁻³) and 1,4-dioxane (internal standard; 0.10 mol dm⁻³) for a given period of time showed no sign of a change in this amine concentration during the reaction. These results are consistent with our prediction, thereby substantiating the mechanism proposed for the formation of **2**.

In Table 2 are shown substituent and solvent effects on the product distribution and composition. Interestingly, the introduction of bulky *tert*-butyl (**1c**) and phenyl (**1d**) groups into **1** completely inhibits the appearance of the corresponding benzoquinolinone derivative (**2**), while the phenyl substituent in **1d** substantially lowers the excited-state reactivity of this naphthylalanine derivative. Because the fluorescence of **1c** was also quenched by TEA ($I_0/I = 1 + 3.0 \pm 0.4$ [TEA]), ET from TEA to the excited-state (*E*)-**1c** must take place giving the **1c** anion and TEA cation radical pair (**I**) (Scheme 2). Taking into account that the enol-type biradical (**II**) [generated by ET and the subsequent proton transfer within its precursor (**I**)] may adopt a nearly planar structure, it is reasonable to conclude that the bulky *tert*-butyl and phenyl substituents exert their great steric effects on the coupling process of **II** so as to completely inhibit this process, providing also a piece of evidence for the mechanism shown in Scheme 2. There were negligible products other than (*E*)-**1**, **3**, and **4** in the reaction mixtures obtained by the irradition of **1c** and **1d** in the presence (and even in the absence) of TEA (¹H NMR analysis). This observation suggests that on prevention of the cyclization of **II** affording **2** *via* **III**, the intermediate (**II**) eventually reverts to the (*E*)-isomer.

Table 2. Substituent and solvent effects on the composition of each compound obtained by 1.0 and 5.0 h irradiations of the starting (*Z*)-**1a**–**e** ($5.0 \times 10^{-3} \text{ mol dm}^{-3}$) in a given solvent

Compound	Irradiation time /h	Composition (%)						
		<i>(Z)</i> -1	<i>(E)</i> -1	2	3	4		
1a ^a	1.0 (5.0)	45.9 (3.2)	38.2 (4.5)	10.3(71.7)	5.1(18.4)	0.4 (2.1)		
1b ^a	1.0 (5.0)	49.8 (4.7)	37.9 (6.6)	8.0(68.6)	3.8(17.5)	0.4 (2.7)		
1c ^a	1.0 (5.0)	52.1(27.6)	40.0(37.6)	0 (0)	6.4(25.8)	1.4 (9.0)		
1d ^a	1.0 (5.0)	82.2(51.9)	17.1(38.6)	0 (0)	0.7 (4.6)	0 (4.9)		
1e ^a	1.0 (5.0)	65.4(11.8)	27.3(11.7)	6.0(64.1)	0 (1.7)	1.3(10.8)		
1a ^b	1.0 (5.0)	70.0(38.0)	24.3(26.3)	3.6(25.3)	2.0(10.5)	0 (0)		

^a In MeOH. ^b In MeCN.

The previous finding^{3b} that intramolecular cyclization in the excited-state (*Z*)-*N*-benzoyl- - dehydrophenylalanines leading to isoquinoline derivatives is almost completely suppressed (owing to stereoelectronic effects of the bulky benzoyl group) to selectively give 1-azetines *via* the (*E*)-isomer provides a good explanation for the increased composition of the azetine (**4e**) (10.8%) as compared to that of **4a** (2.1%, 5.0 h irradiation).

An analysis of solvent effects on the reactivity of **1a** shows that the excited-state reactivities of both isomers are much higher in the protic polar solvent, MeOH, than in the aprotic polar solvent, MeCN, which lowers not only the relative rate for the Z = E isomerization (1.0 h irradiation, Table 2) but also the productcomposition ratio **2a**/(**2a**+**3a**+**4a**) (77.8 70.7% at 5.0 h irradiation). The fact that a tertiary amine undergoes hydrogen-bonding solvation to decrease its electron-donating ability,⁴ therefore, confirms that this solvation of the excited singlet-state (**1a**) by MeOH accelerates the Z = E isomerization and then greatly enhances the electron-accepting ability of the naphthylmethylene moiety.

Although there are several synthetic routes to lactams fused to an aromatic ring,⁷ no convenient photochemical route to substituted dihydroquinolinones is known. The procedure for preparing the starting **1** is very simple and is easily applicable to its related compounds carrying less bulky alkyl substituents on the carboxamide side chain. Taking into consideration the fact that the benzoquinolinone derivatives (**2**) obtained are photochemically very stable, we are led to conclude that the photoreaction of substituted -dehydro(1-naphthyl)alanines (**1a**–**e**) in the presence of TEA presents a new method for constructing the quinolinone skeleton and also offers significant information regarding the mechanism for the novel photocyclization reactions of **1** *via* ET.

REFERENCES AND NOTES

- 1. P. S. Mariano and J. L. Stavinoha, 'Synthetic Organic Photochemistry,' ed. by W. M. Horspool, Plenum Press, New York, 1984, pp. 145–257.
- F. D. Lewis and G. D. Reddy, J. Am. Chem. Soc., 1989, 111, 6465; F. D. Lewis, G. D. Reddy, and D. M. Bassani, J. Am. Chem. Soc., 1993, 115, 6468; F. D. Lewis, D. M. Bassani, and G. D. Reddy, J. Org. Chem., 1993, 58, 6390; F. D. Lewis, G. D. Reddy, D. M. Bassani, S. Schneider, and M. Gahr, J. Am. Chem. Soc., 1994, 116, 597; F. D. Lewis, D. M. Bassani, E. L. Burch, B. E. Cohen, J. A. Engleman, G. D. Reddy, S. Schneider, W. Jaeger, P. Gedeck, and M. Gahr, J. Am. Chem. Soc., 1995, 117, 660.
- 3. a) K. Kubo, S. Yaegashi, K. Sasaki, T. Sakurai, and H. Inoue, *Tetrahedron Lett.*, 1996, **37**, 5917;b) K. Kubo, M. Koshiba, H. Hoshina, and T. Sakurai, *Heterocycles*, 1998, **48**, 25.
- 4. T. Sakurai, K. Miyoshi, M. Obitsu, and H. Inoue, *Ber. Bunsenges. Phys. Chem.*, 1996, **100**, 46; K. Miyoshi, K. Kubo, T. Sakurai, and H. Inoue, *Nippon Kagaku Kaishi*, 1999, 37 and references cited therein.
- 5. Y. S. Rao and R. Filler, *Synthesis*, 1975, 749; B. Rzeszotarska, J. Karolak-Wojciechowska, M. A. Broda, Z. Galdecki, B. Trzezwinska, and A. E. Koziol, *Int. J. Peptide Protein Res.*, 1994, **44**, 313.
- 6. Selected data for (*Z*)-**1a**: mp 187.0–188.5 °C (EtOH-hexane); IR (KBr) ν/cm^{-1} = 3306, 1660, 1625, 1550; ¹H NMR (500 MHz, DMSO-*d*₆) δ = 0.90 (3H, t, *J*= 7.3 Hz), 1.33 (2H, tq, *J*= 7.3, 7.6 Hz), 1.48 (2H, tt, *J*= 6.7, 7.6 Hz), 1.83 (3H, s), 3.17 (2H, dt, *J*= 6.4, 6.7 Hz), 7.46 (1H, s), 7.50–7.57 (4H, m), 7.89 (1H, d, *J*= 7.9 Hz), 7.93–7.96 (2H, m), 8.06 (1H, t, *J*= 6.4 Hz), 9.20 (1H, s); ¹³C NMR (DMSO-*d*₆) δ = 13.7, 19.5, 22.6, 31.2, 38.8, 123.7, 124.1, 125.4, 125.9, 126.2(2C), 128.2, 128.3, 131.0, 131.3, 132.7, 133.1, 164.6, 169.3. Anal. Calcd for C₁₉H₂₂N₂O₂: C, 73.52; H, 7.14; N, 9.03%. Found: C, 73.54; H, 7.02; N, 9.13%.

For (*E*)-**1a**: mp 148.0–149.0 °C (EtOAc-hexane); IR (KBr) v/cm⁻¹ = 3250, 1650, 1629, 1539; ¹H NMR (500 MHz, DMSO- d_6) δ = 0.66 (3H, t, *J*= 7.3 Hz), 0.88 (2H, tq, *J*= 7.3, 7.6 Hz), 1.06 (2H, tt, *J*= 7.0, 7.3 Hz), 2.00 (3H, s), 2.87 (2H, dt, *J*= 6.1, 7.0 Hz), 7.36–7.40 (2H, m), 7.43 (1H, s), 7.52 (2H, m), 7.75 (1H, t, *J*= 6.1 Hz), 7.77–7.79 (1H, m), 7.89 (1H, d, *J*= 7.3 Hz), 7.98 (1H, d, *J*= 7.6 Hz), 9.69 (1H, s); ¹³C NMR (DMSO- d_6) δ = 13.6, 19.4, 23.5, 30.3, 38.3, 112.6, 124.6, 125.3, 125.6, 125.8, 126.0, 127.1, 128.2, 131.3, 132.6, 133.1, 135.1, 164.4, 168.6. Anal. Calcd for C₁₉H₂₂N₂O₂: C, 73.52; H, 7.14; N, 9.03%. Found: C, 73.29; H, 7.19; N, 9.14%. For **2a**: mp 157.0–158.0 °C (EtOH); IR (KBr) v/cm⁻¹ = 3308, 1668, 1642; ¹H NMR (500 MHz, DMSO- d_6) δ = 0.89 (3H, t, *J*= 7.3 Hz), 1.53 (2H, m), 1.95 (3H, s), 2.96 (1H, dd, *J*= 14.3, 15.6 Hz), 3.64 (1H, dd, *J*= 6.1, 15.6 Hz), 3.95–4.14 (2H, m), 4.56 (1H, ddd, *J*= 6.1, 7.9, 14.3 Hz), 7.45 (1H, dd, *J*= 7.6, 7.9 Hz), 7.51 (1H, d, *J*= 8.2 Hz), 7.55 (1H, dd, *J*= 7.6, 8.2 Hz), 7.91 (1H, d, *J*= 8.5 Hz),

7.92 (1H, d, J= 8.5 Hz), 8.00 (1H, d, J= 8.2 Hz), 8.34 (1H, d, J= 7.9 Hz); ¹³C NMR (DMSO- d_6) δ = 13.7, 19.4, 22.6, 27.0, 29.4, 41.7, 48.1, 116.2, 118.2, 123.1, 124.6, 127.1, 128.1, 128.3, 129.6, 130.8, 136.0, 168.2, 169.4. Anal. Calcd for C₁₉H₂₂N₂O₂: C, 73.52; H, 7.14; N, 9.03%. Found: C, 73.24; H, 7.13; N, 9.11%.

For **3a**: mp 61.5–62.5 °C (EtOAc-hexane); IR (KBr) v/cm⁻¹= 3382, 1668, 1530; ¹H NMR (500 MHz, DMSO- d_6) δ = 0.94 (3H, t, *J*= 7.3 Hz), 1.37 (2H, tq, *J*= 7.3, 7.6 Hz), 1.60 (2H, tt, *J*= 7.0, 7.6 Hz), 3.04 (3H, s), 3.41 (2H, dt, *J*= 6.1, 7.0 Hz), 7.81–7.85 (2H, m), 8.12 (1H, d, *J*= 9.2 Hz), 8.13 (1H, m), 8.17 (1H, d, *J*= 9.2 Hz), 8.83 (1H, t, *J*= 6.1 Hz), 8.92 (1H, m), 9.12 (1H, s); ¹³C NMR (DMSO- d_6) δ = 13.7, 19.6, 22.6, 31.5, 38.6, 113.0, 122.8, 123.8, 126.2, 127.9, 128.65, 128.71, 129.1, 129.5, 132.9, 134.6, 144.4, 157.0, 164.1. Anal. Calcd for C₁₉H₂₀N₂O: C, 78.05; H, 6.89; N, 9.58%. Found: C, 77.85; H, 7.09; N, 9.74%.

I. Ninomiya, C. Hashimoto, T. Kiguchi, and T. Naito, J. Chem. Soc., Perkin Trans. 1, 1985, 941; K. Jones, M. Thompson, and C. Wright, J. Chem. Soc., Chem. Commun., 1986, 115; G. P. Johnson and B. A. Marples, J. Chem. Soc., Perkin Trans. 1, 1988, 3399; B. E. Ali, K. Okuro, G. Vasapollo, and H. Alper, J. Am. Chem. Soc., 1996, 118, 4264.